Spliceai Tools¶
Configuration File: spliceai_tools.json
Tool Type: Local
Tools Count: 3
This page contains all tools defined in the spliceai_tools.json configuration file.
Available Tools¶
SpliceAI_get_max_delta (Type: SpliceAITool)¶
Get simplified maximum SpliceAI delta score and pathogenicity interpretation for a variant. Retur…
SpliceAI_get_max_delta tool specification
Tool Information:
Name:
SpliceAI_get_max_deltaType:
SpliceAIToolDescription: Get simplified maximum SpliceAI delta score and pathogenicity interpretation for a variant. Returns single max score across all splice effects (AG/AL/DG/DL) with interpretation: benign (<0.2), low (0.2-0.5), moderate (0.5-0.8), high (≥0.8). Best for quick variant triage.
Parameters:
variant(string) (required) Variant in chr-pos-ref-alt format (e.g., chr8-140300616-T-G)genome(string) (optional) Genome build: 37 or 38 (default: 38)
Example Usage:
query = {
"name": "SpliceAI_get_max_delta",
"arguments": {
"variant": "example_value"
}
}
result = tu.run(query)
SpliceAI_predict_pangolin (Type: SpliceAITool)¶
Predict splice-altering effects using Pangolin model (alternative to SpliceAI). Pangolin uses a d…
SpliceAI_predict_pangolin tool specification
Tool Information:
Name:
SpliceAI_predict_pangolinType:
SpliceAIToolDescription: Predict splice-altering effects using Pangolin model (alternative to SpliceAI). Pangolin uses a different architecture and may provide complementary predictions. Returns splice effect scores per transcript. Useful for validation or when SpliceAI gives borderline results.
Parameters:
variant(string) (required) Variant in chr-pos-ref-alt format (e.g., chr8-140300616-T-G)genome(string) (optional) Genome build: 37 or 38 (default: 38)distance(integer) (optional) Distance parameter for model (default: 1000)mask(boolean) (optional) Use masked scores
Example Usage:
query = {
"name": "SpliceAI_predict_pangolin",
"arguments": {
"variant": "example_value"
}
}
result = tu.run(query)
SpliceAI_predict_splice (Type: SpliceAITool)¶
Predict splice-altering effects using SpliceAI deep learning model. Returns delta scores for acce…
SpliceAI_predict_splice tool specification
Tool Information:
Name:
SpliceAI_predict_spliceType:
SpliceAIToolDescription: Predict splice-altering effects using SpliceAI deep learning model. Returns delta scores for acceptor gain (DS_AG), acceptor loss (DS_AL), donor gain (DS_DG), donor loss (DS_DL). Scores ≥0.2 suggest splice impact, ≥0.5 moderate, ≥0.8 high pathogenicity. Critical for intronic/exonic variant interpretation.
Parameters:
variant(string) (required) Variant in chr-pos-ref-alt format (e.g., chr8-140300616-T-G) or colon-separatedgenome(string) (optional) Genome build: 37 (GRCh37/hg19) or 38 (GRCh38/hg38). Default: 38distance(integer) (optional) Distance parameter for model (default: 50). Larger values capture more distal effects.mask(boolean) (optional) Use masked scores (recommended for variant interpretation). Raw scores better for alternative splicing analysis.
Example Usage:
query = {
"name": "SpliceAI_predict_splice",
"arguments": {
"variant": "example_value"
}
}
result = tu.run(query)