Nvidia Nim Tools¶
Configuration File: nvidia_nim_tools.json
Tool Type: Local
Tools Count: 16
This page contains all tools defined in the nvidia_nim_tools.json configuration file.
Available Tools¶
NvidiaNIM_alphafold2 (Type: NvidiaNIMTool)¶
Predict protein 3D structure from amino acid sequence using DeepMindās AlphaFold2 via NVIDIA NIMā¦.
NvidiaNIM_alphafold2 tool specification
Tool Information:
Name:
NvidiaNIM_alphafold2Type:
NvidiaNIMToolDescription: Predict protein 3D structure from amino acid sequence using DeepMindās AlphaFold2 via NVIDIA NIM. Returns PDB format structure. Requires NVIDIA_API_KEY. Input: sequence (amino acids), algorithm (jackhmmer/mmseqs2), databases (uniref90, mgnify, small_bfd). Long-running async operation.
Parameters:
sequence(string) (required) Amino acid sequence to predict structure for (single letter codes)algorithm(string) (optional) MSA search algorithm. mmseqs2 is faster, jackhmmer is more sensitivedatabases(array) (optional) Sequence databases for MSA search: uniref90, mgnify, small_bfde_value(number) (optional) E-value threshold for MSA searchiterations(integer) (optional) Number of search iterationsrelax_prediction(boolean) (optional) Whether to perform structure relaxationskip_template_search(boolean) (optional) Skip template-based prediction
Example Usage:
query = {
"name": "NvidiaNIM_alphafold2",
"arguments": {
"sequence": "example_value"
}
}
result = tu.run(query)
NvidiaNIM_alphafold2_multimer (Type: NvidiaNIMTool)¶
Predict multi-chain protein complex structure using AlphaFold2-Multimer via NVIDIA NIM. Input: seā¦
NvidiaNIM_alphafold2_multimer tool specification
Tool Information:
Name:
NvidiaNIM_alphafold2_multimerType:
NvidiaNIMToolDescription: Predict multi-chain protein complex structure using AlphaFold2-Multimer via NVIDIA NIM. Input: sequences (array of 1-6 protein sequences for complex). Returns predicted complex structure. Long-running async operation.
Parameters:
sequences(array) (required) Array of 1-6 protein sequences (amino acid single letter codes) to predict as a complexdatabases(array) (optional) Sequence databases for MSA: uniref90, small_bfdrelax_prediction(boolean) (optional) Whether to relax the predicted structure
Example Usage:
query = {
"name": "NvidiaNIM_alphafold2_multimer",
"arguments": {
"sequences": ["item1", "item2"]
}
}
result = tu.run(query)
NvidiaNIM_boltz2 (Type: NvidiaNIMTool)¶
Predict multi-molecular complex structure (proteins, DNA, RNA, ligands) using Boltz2 via NVIDIA Nā¦
NvidiaNIM_boltz2 tool specification
Tool Information:
Name:
NvidiaNIM_boltz2Type:
NvidiaNIMToolDescription: Predict multi-molecular complex structure (proteins, DNA, RNA, ligands) using Boltz2 via NVIDIA NIM. Supports protein-protein, protein-DNA/RNA, protein-ligand complexes. Input: polymers (proteins/DNA/RNA), ligands (SMILES or CCD codes). Long-running async operation.
Parameters:
polymers(array) (required) List of polymer molecules (1-12)ligands(array) (optional) Ligands specified by CCD code OR SMILES (max 20)recycling_steps(integer) (optional) Number of recycling steps (1-6)sampling_steps(integer) (optional) Number of sampling steps (10-1000)diffusion_samples(integer) (optional) Number of structure samples (1-5)output_format(string) (optional) No description
Example Usage:
query = {
"name": "NvidiaNIM_boltz2",
"arguments": {
"polymers": ["item1", "item2"]
}
}
result = tu.run(query)
NvidiaNIM_diffdock (Type: NvidiaNIMTool)¶
Blind molecular docking using DiffDock via NVIDIA NIM. Predict ligand binding poses without speciā¦
NvidiaNIM_diffdock tool specification
Tool Information:
Name:
NvidiaNIM_diffdockType:
NvidiaNIMToolDescription: Blind molecular docking using DiffDock via NVIDIA NIM. Predict ligand binding poses without specifying binding pocket. Input: protein (PDB content or asset ID), ligand (SDF content or asset ID). For large files, use is_staged=true with asset IDs. Returns docking poses with confidence scores.
Parameters:
protein(string) (required) Protein structure: PDB content directly OR asset ID (if is_staged=true)ligand(string) (required) Ligand structure: SDF/MOL2 content directly OR asset ID (if is_staged=true)ligand_file_type(string) (optional) Ligand file formatnum_poses(integer) (optional) Number of docking poses to generate (1-40)time_divisions(integer) (optional) Time divisions for diffusionsteps(integer) (optional) Number of diffusion stepssave_trajectory(boolean) (optional) Save diffusion trajectoryis_staged(boolean) (optional) If true, protein and ligand are asset IDs (uploaded via NVCF assets API). If false, they are raw file content.
Example Usage:
query = {
"name": "NvidiaNIM_diffdock",
"arguments": {
"protein": "example_value",
"ligand": "example_value"
}
}
result = tu.run(query)
NvidiaNIM_esm2_650m (Type: NvidiaNIMTool)¶
Generate protein sequence embeddings using ESM2-650M via NVIDIA NIM. 650 million parameter languaā¦
NvidiaNIM_esm2_650m tool specification
Tool Information:
Name:
NvidiaNIM_esm2_650mType:
NvidiaNIMToolDescription: Generate protein sequence embeddings using ESM2-650M via NVIDIA NIM. 650 million parameter language model for protein sequences. Input: sequences (array of protein sequences, max 1024 AA each), format (npz/json). Output: embedding vectors in specified format. Returns binary npz file or JSON. Fast synchronous response.
Parameters:
sequences(array) (required) Array of protein sequences (max 1024 amino acids each, valid: ARNDCQEGHILKMFPSTWYVXBOU)format(string) (required) Output format: npz (binary NumPy archive) or json
Example Usage:
query = {
"name": "NvidiaNIM_esm2_650m",
"arguments": {
"sequences": ["item1", "item2"],
"format": "example_value"
}
}
result = tu.run(query)
NvidiaNIM_esmfold (Type: NvidiaNIMTool)¶
Fast alignment-free protein structure prediction using ESMFold via NVIDIA NIM. No MSA required - ā¦
NvidiaNIM_esmfold tool specification
Tool Information:
Name:
NvidiaNIM_esmfoldType:
NvidiaNIMToolDescription: Fast alignment-free protein structure prediction using ESMFold via NVIDIA NIM. No MSA required - predicts directly from sequence. Input: sequence (max 1024 amino acids). Returns PDB structure. Fast synchronous response.
Parameters:
sequence(string) (required) Amino acid sequence (max 1024 chars, valid: ARNDCQEGHILKMFPSTWYVXBOU)
Example Usage:
query = {
"name": "NvidiaNIM_esmfold",
"arguments": {
"sequence": "example_value"
}
}
result = tu.run(query)
NvidiaNIM_evo2 (Type: NvidiaNIMTool)¶
Generate DNA sequences using Evo2-40B via NVIDIA NIM. 40 billion parameter model trained on 9 triā¦
NvidiaNIM_evo2 tool specification
Tool Information:
Name:
NvidiaNIM_evo2Type:
NvidiaNIMToolDescription: Generate DNA sequences using Evo2-40B via NVIDIA NIM. 40 billion parameter model trained on 9 trillion nucleotides. Input: DNA sequence (ACTG), num_tokens to generate. Output: generated sequence with optional per-nucleotide probabilities. Fast synchronous response.
Parameters:
sequence(string) (required) Input DNA sequence (A, C, T, G characters only)num_tokens(integer) (optional) Number of nucleotides to generatetemperature(number) (optional) Sampling temperaturetop_k(integer) (optional) Top-k sampling parametertop_p(number) (optional) Top-p (nucleus) sampling parameterenable_sampled_probs(boolean) (optional) Return per-nucleotide probabilitiesenable_logits(boolean) (optional) Return raw logits
Example Usage:
query = {
"name": "NvidiaNIM_evo2",
"arguments": {
"sequence": "example_value"
}
}
result = tu.run(query)
NvidiaNIM_genmol (Type: NvidiaNIMTool)¶
Generate molecules using GenMol via NVIDIA NIM. Input: SMILES/SAFE template with masked regions. ā¦
NvidiaNIM_genmol tool specification
Tool Information:
Name:
NvidiaNIM_genmolType:
NvidiaNIMToolDescription: Generate molecules using GenMol via NVIDIA NIM. Input: SMILES/SAFE template with masked regions. Output: generated molecules with property scores. Use [*{min-max}] syntax for masked fragments. Fast synchronous response.
Parameters:
smiles(string) (required) SAFE/SMILES template with masked fragments. Use [*{min-max}] for variable-length masks. Example: āCC(=O)O[*{5-10}]ānum_molecules(integer) (optional) Number of molecules to generate (1-1000)temperature(number) (optional) Sampling temperature (0.01-10.0). Higher = more diversenoise(number) (optional) Noise level for generation (0-2.0)step_size(integer) (optional) Step size for samplingscoring(string) (optional) Property to score generated molecules
Example Usage:
query = {
"name": "NvidiaNIM_genmol",
"arguments": {
"smiles": "example_value"
}
}
result = tu.run(query)
NvidiaNIM_maisi (Type: NvidiaNIMTool)¶
Generate synthetic CT images with segmentation masks using MAISI via NVIDIA NIM. 3D Latent Diffusā¦
NvidiaNIM_maisi tool specification
Tool Information:
Name:
NvidiaNIM_maisiType:
NvidiaNIMToolDescription: Generate synthetic CT images with segmentation masks using MAISI via NVIDIA NIM. 3D Latent Diffusion Model for medical imaging data augmentation. Input: body_region, anatomy_list, controllable_anatomy_size, output_size. Returns ZIP file with NIfTI/NRRD images and labels. Long-running async operation.
Parameters:
num_output_samples(integer) (required) Number of CT images to generatebody_region(array) (required) Body regions to generateanatomy_list(array) (optional) Specific anatomical structures to include (e.g., liver, spleen, kidney)controllable_anatomy_size(array) (optional) Control anatomy sizes as [[name, ratio], ā¦]. Example: [[āhepatic tumorā, 0.3], [āliverā, 0.5]]output_size(array) (optional) Output volume size [x, y, z]. x,y: 256-512, z: 128-768spacing(array) (optional) Voxel spacing [x, y, z] in mmimage_output_ext(string) (optional) Output image formatlabel_output_ext(string) (optional) Output segmentation formatpre_signed_url(string) (optional) Optional pre-signed URL to upload results to
Example Usage:
query = {
"name": "NvidiaNIM_maisi",
"arguments": {
"num_output_samples": 10,
"body_region": ["item1", "item2"]
}
}
result = tu.run(query)
NvidiaNIM_molmim (Type: NvidiaNIMTool)¶
Controlled molecule generation using MolMIM via NVIDIA NIM. Generates molecules with optimized prā¦
NvidiaNIM_molmim tool specification
Tool Information:
Name:
NvidiaNIM_molmimType:
NvidiaNIMToolDescription: Controlled molecule generation using MolMIM via NVIDIA NIM. Generates molecules with optimized properties based on a reference molecule. Input: smi (SMILES string), num_molecules, algorithm (CMA-ES, GA, etc.). Output: generated molecules with property scores. Fast synchronous response.
Parameters:
smi(string) (required) Reference SMILES string for molecule generationnum_molecules(integer) (optional) Number of molecules to generate (1-100)algorithm(string) (optional) Optimization algorithm: CMA-ES (Covariance Matrix Adaptation Evolution Strategy) or GA (Genetic Algorithm)
Example Usage:
query = {
"name": "NvidiaNIM_molmim",
"arguments": {
"smi": "example_value"
}
}
result = tu.run(query)
NvidiaNIM_msa_search (Type: NvidiaNIMTool)¶
GPU-accelerated multiple sequence alignment search using ColabFold/MMseqs2 via NVIDIA NIM. Input:ā¦
NvidiaNIM_msa_search tool specification
Tool Information:
Name:
NvidiaNIM_msa_searchType:
NvidiaNIMToolDescription: GPU-accelerated multiple sequence alignment search using ColabFold/MMseqs2 via NVIDIA NIM. Input: protein sequence. Output: MSA alignments in a3m/fasta format. Use for structure prediction pipelines. Long-running async operation.
Parameters:
sequence(string) (required) Protein sequence to search (1-4096 amino acids)e_value(number) (optional) E-value threshold for sequence inclusioniterations(integer) (optional) Number of search iterations for sensitivityoutput_alignment_formats(array) (optional) Output alignment formatsdatabases(array) (optional) Specific databases to searchmax_msa_sequences(integer) (optional) Maximum sequences in output MSA (max 10000)
Example Usage:
query = {
"name": "NvidiaNIM_msa_search",
"arguments": {
"sequence": "example_value"
}
}
result = tu.run(query)
NvidiaNIM_openfold2 (Type: NvidiaNIMTool)¶
Predict protein structure from sequence and MSA using OpenFold2 via NVIDIA NIM. PyTorch reimplemeā¦
NvidiaNIM_openfold2 tool specification
Tool Information:
Name:
NvidiaNIM_openfold2Type:
NvidiaNIMToolDescription: Predict protein structure from sequence and MSA using OpenFold2 via NVIDIA NIM. PyTorch reimplementation of AlphaFold2 with improved speed. Input: sequence plus pre-computed MSA alignments in a3m format. Long-running async operation.
Parameters:
sequence(string) (required) Amino acid sequence to predictalignments(object) (optional) MSA alignments by database. Format: {db_name: {a3m: {alignment: str, format: āa3mā}}}selected_models(array) (optional) Model indices to use for prediction (1-5)
Example Usage:
query = {
"name": "NvidiaNIM_openfold2",
"arguments": {
"sequence": "example_value"
}
}
result = tu.run(query)
NvidiaNIM_openfold3 (Type: NvidiaNIMTool)¶
Predict biomolecular complex structure (proteins, DNA, RNA, ligands) using OpenFold3 via NVIDIA Nā¦
NvidiaNIM_openfold3 tool specification
Tool Information:
Name:
NvidiaNIM_openfold3Type:
NvidiaNIMToolDescription: Predict biomolecular complex structure (proteins, DNA, RNA, ligands) using OpenFold3 via NVIDIA NIM. AlphaFold3-style prediction for complete biological assemblies. Input: molecules (proteins with MSA, DNA, RNA, ligands). Long-running async operation.
Parameters:
inputs(array) (required) List of input specifications for structure prediction
Example Usage:
query = {
"name": "NvidiaNIM_openfold3",
"arguments": {
"inputs": ["item1", "item2"]
}
}
result = tu.run(query)
NvidiaNIM_proteinmpnn (Type: NvidiaNIMTool)¶
Design protein sequences for a given backbone structure using ProteinMPNN via NVIDIA NIM (inverseā¦
NvidiaNIM_proteinmpnn tool specification
Tool Information:
Name:
NvidiaNIM_proteinmpnnType:
NvidiaNIMToolDescription: Design protein sequences for a given backbone structure using ProteinMPNN via NVIDIA NIM (inverse folding). Input: PDB structure text. Output: designed sequences in Multi-FASTA format with log-probabilities. Fast synchronous response.
Parameters:
input_pdb(string) (required) PDB format text of the backbone structure (ATOM records)ca_only(boolean) (optional) Use only CA atoms for designuse_soluble_model(boolean) (optional) Use model trained on soluble proteinssampling_temp(array) (optional) Sampling temperatures (0.1-0.3 recommended for high quality)num_seq_per_target(integer) (optional) Number of sequences to generate
Example Usage:
query = {
"name": "NvidiaNIM_proteinmpnn",
"arguments": {
"input_pdb": "example_value"
}
}
result = tu.run(query)
NvidiaNIM_rfdiffusion (Type: NvidiaNIMTool)¶
De novo protein design using RFdiffusion via NVIDIA NIM. Generate novel protein structures, bindeā¦
NvidiaNIM_rfdiffusion tool specification
Tool Information:
Name:
NvidiaNIM_rfdiffusionType:
NvidiaNIMToolDescription: De novo protein design using RFdiffusion via NVIDIA NIM. Generate novel protein structures, binders, or scaffold motifs. Input: contigs DSL (e.g., āA20-60/0 50-100ā), input_pdb (required for scaffolding), hotspot_res for binding sites. Long-running async operation.
Parameters:
contigs(string) (required) Contig specification DSL. Format: āChainStart-End/gap lengthā. Example: āA20-60/0 50-100ā keeps residues A20-60 and generates 50-100 new residuesinput_pdb(string) (required) PDB structure for scaffolding/binder design (ATOM records only). Required by the API.hotspot_res(array) (optional) Hotspot residues for binder design (e.g., [āA50ā, āA51ā, āA52ā])diffusion_steps(integer) (optional) Number of diffusion steps (15-50)random_seed(integer) (optional) Random seed for reproducibility
Example Usage:
query = {
"name": "NvidiaNIM_rfdiffusion",
"arguments": {
"contigs": "example_value",
"input_pdb": "example_value"
}
}
result = tu.run(query)
NvidiaNIM_vista3d (Type: NvidiaNIMTool)¶
3D medical image segmentation using VISTA-3D via NVIDIA NIM. Segment organs and structures from Cā¦
NvidiaNIM_vista3d tool specification
Tool Information:
Name:
NvidiaNIM_vista3dType:
NvidiaNIMToolDescription: 3D medical image segmentation using VISTA-3D via NVIDIA NIM. Segment organs and structures from CT scans. Input: image URL (NIfTI/NRRD), class prompts, optional point prompts for interactive refinement. Returns ZIP file with segmentation masks. Synchronous response.
Parameters:
image(string) (required) URL to NIfTI or NRRD CT image fileprompts(object) (optional) Segmentation prompts: classes and optional point coordinates
Example Usage:
query = {
"name": "NvidiaNIM_vista3d",
"arguments": {
"image": "example_value"
}
}
result = tu.run(query)