Artificial Intelligence & Machine Learning Methods


Our team on GitHub

TF-C

Self-Supervised Contrastive Pre-Training For Time Series

View TF-C TF-C project website

Raindrop

Graph-Guided Network for Irregularly Sampled Multivariate Time Series

View Raindrop Raindrop project website

REMAP

Multimodal Learning on Graphs for Disease Relation Extraction

View REMAP REMAP project website

Therapeutics Data Commons

Machine Learning Datasets and Tasks for Drug Discovery and Development

View TDC TDC Documentation TDC Website

NIFTY

Unified Framework for Fair and Stable Graph Representation Learning

View NIFTY NIFTY project website

G-Meta

Graph meta learning via local subgraphs

View G-Meta G-Meta Project Website

SubGNN

Subgraph Neural Networks

View SubGNN SubGNN Project Website

GNNGuard

Defending graph neural networks against adversarial attacks

View GNNGuard GNNGuard Project Website

Graph ML Tutorials

Tutorials on machine learning for graphs

View Graph ML Tutorials

Nimfa

Python module for fast non-negative matrix factorization

View Nimfa Nimfa Project Website

Decagon

Graph neural networks for multirelational link prediction

View Decagon

DeepPurpose

Deep learning library for drug-target interaction prediction and applications to drug repurposing and virtual screening

View DeepPurpose

SkipGNN

Skip-graph networks for molecular interaction prediction

View SkipGNN

scikit-fusion

Data fusion via collective latent factor models

View Scikit-fusion

Network Enhancement

Method for denoising biological networks

View NE

CRank

Method for prioritizing network communities

View CRank

OhmNet

Representation learning for multi-layer graphs

View OhmNet

Mambo

Tool for construction, representation, and analysis of large multi-modal networks

View Mambo

GNNExplainer

Method for generating explanations for graph neural networks

View GNNExplainer

GraphWave

Method for learning structural node embeddings

View GraphWave

Graph Query Embeddings

Method for embedding logical queries on knowledge graphs

View Graph Query Embeddings

Collage

Method for gene prioritization by compressive data fusion and chaining

View Collage

Network-Guided Matrix Completion

Method for probabilistic prediction and imputation of interactions using prior knowledge

View NGMC

fast-NMTF

Fast methods for non-negative matrix tri-factorization

View Fast-NMTF

Multi-BioNER

Deep multi-task learning for cross-type biomedical named entity recognition

View Multi-BioNER

CROW

Scalable multi-GPU and multi-CPU methods for non-negative matrix tri-factorization

View CROW

Latest News

Sep 2022:   New Paper in Nature Chemical Biology

Our paper on artificial intelligence foundation for therapeutic science is published in Nature Chemical Biology.

Sep 2022:   Self-Supervised Pre-Training at NeurIPS 2022

New paper on self-supervised contrastive pre-training accepted at NeurIPS 2022. Project page. Thankful for this collaboration with the Lincoln National Laboratory.

Sep 2022:   Best Paper Honorable Mention Award at IEEE VIS

Our paper on user-centric AI of drug repurposing received the Best Paper Honorable Mention Award at IEEE VIS 2022. Thankful for this collaboration with Gehlenborg Lab.

Sep 2022:   Multimodal Representation Learning with Graphs

Aug 2022:   On Graph AI for Precision Medicine

The recording of our tutorial on using graph AI to advance precision medicine is available. Tune into four hours of interactive lectures about state-of-the-art graph AI methods and applications in precision medicine.

Aug 2022:   Evaluating Explainability for GNNs

New preprint! We introduce a resource for broad evaluation of the quality and reliability of GNN explanations, addressing challenges and providing solutions for GNN explainability. Project website.

Jul 2022:   New Frontiers in Graph Learning at NeurIPS

Excited to organize the New Frontiers in Graph Learning workshop at NeurIPS.

Jul 2022:   AI4Science at NeurIPS

We are excited to host the AI4Science meeting at NeurIPS discussing AI-driven scientific discovery, implementation and verification of AI in science, the influence AI has on the conduct of science, and more.

Jul 2022:   Graph AI for Precision Medicine at ISMB

Jul 2022:   Welcoming Fellows and Summer Students

Welcoming a research fellow Julia Balla and three Summer students, Nicholas Ho, Satvik Tripathi, and Isuru Herath.

Jun 2022:   Broadly Generalizable Pre-Training Approach

Excited to share a preprint on self-supervised method for pre-training. Project website with evaluation on eight datasets, including electrodiagnostic testing, human daily activity recognition, and health state monitoring.

Jun 2022:   Welcoming New Postdocs

Excited to welcome George Dasoulas and Huan He, new postdocs joining us this Summer.

May 2022:   George Named the 2022 Wojcicki Troper Fellow

May 2022:   New preprint on PrimeKG

New preprint on building knowledge graphs to enable precision medicine applications.

May 2022:   Building KGs to Support Precision Medicine

Apr 2022:   Webster on the Cover of Cell Systems

Webster is on the cover of April issue of Cell Systems. Webster uses cell viability changes following gene perturbation to automatically learn cellular functions and pathways from data.

Apr 2022:   NASA Space Biology

Dr. Zitnik will serve on the Science Working Group at NASA Space Biology.

Mar 2022:   Yasha's Graduate Research Fellowship

Yasha won the National Defense Science and Engineering Graduate (NDSEG) Fellowship. Congratulations!

Mar 2022:   AI4Science at ICML 2022

We are excited to be selected to organize the AI4Science meeting at ICML 2022. Stay tuned for details. http://www.ai4science.net/icml22

Mar 2022:   Graph Algorithms in Biomedicine at PSB 2023

Excited to be organizing a session on Graph Algorithms at PSB 2023. Stay tuned for details.

Zitnik Lab  ·  Artificial Intelligence in Medicine and Science  ·  Harvard  ·  Department of Biomedical Informatics