Evaluating Generalizability of Artificial Intelligence Models for Molecular Datasets

Deep learning has made rapid advances in modeling molecular sequencing data. Despite achieving high performance on benchmarks, it remains unclear to what extent deep learning models learn general principles and generalize to previously unseen sequences.

Benchmarks traditionally interrogate model generalizability by generating metadata based (MB) or sequence-similarity based (SB) train and test splits of input data before assessing model performance. Here, we show that this approach mischaracterizes model generalizability by failing to consider the full spectrum of cross-split overlap, i.e., similarity between train and test splits.

We introduce SPECTRA, a spectral framework for comprehensive model evaluation. For a given model and input data, SPECTRA plots model performance as a function of decreasing cross-split overlap and reports the area under this curve as a measure of generalizability.

We use SPECTRA with 18 sequencing datasets and phenotypes ranging from antibiotic resistance in tuberculosis to protein-ligand binding to evaluate the generalizability of 19 state-of-the-art deep learning models, including large language models, graph neural networks, diffusion models, and convolutional neural networks. We show that SB and MB splits provide an incomplete assessment of model generalizability.

Using SPECTRA, we find as cross-split overlap decreases, deep learning models consistently exhibit a reduction in performance in a task- and model-dependent manner. Although no model consistently achieved the highest performance across all tasks, we show that deep learning models can, in some cases, generalize to previously unseen sequences on specific tasks. SPECTRA paves the way toward a better understanding of how foundation models generalize in biology.

Publication

Evaluating Generalizability of Artificial Intelligence Models for Molecular Datasets
Yasha Ektefaie, Andrew Shen, Daria Bykova, Maximillian Marin, Marinka Zitnik* and Maha Farhat*
In Review 2024 [bioRxiv]

@article{ektefaie2024evaluating,
  title={Evaluating Generalizability of Artificial Intelligence Models for Molecular Datasets},
  author={Ektefaie, Yasha and Shen, Andrew and Bykova, Daria and Maximillian, Marin and Zitnik, Marinka* and Farhat, Maha*},
  journal={bioRxiv},
  url={https://www.biorxiv.org/content/10.1101/2024.02.25.581982v1},
  year={2024}
}

Code Availability

Pytorch implementation of SPECTRA is available in the GitHub repository.

Authors

Latest News

Nov 2024:   Ayush Noori Selected as a Rhodes Scholar

Congratulations to Ayush Noori on being named a Rhodes Scholar! Such an incredible achievement!

Nov 2024:   PocketGen in Nature Machine Intelligence

Oct 2024:   Activity Cliffs in Molecular Property Prediction

Oct 2024:   Knowledge Graph Agent for Medical Reasoning

Sep 2024:   Three Papers Accepted to NeurIPS

Exciting projects include a unified multi-task time series model, a flow-matching approach for generating protein pockets using geometric priors, and a tokenization method that produces invariant molecular representations for integration into large language models.

Sep 2024:   TxGNN Published in Nature Medicine

Aug 2024:   Graph AI in Medicine

Excited to share a new perspective on Graph Artificial Intelligence in Medicine in Annual Reviews.

Aug 2024:   How Proteins Behave in Context

Harvard Medicine News on our new AI tool that captures how proteins behave in context. Kempner Institute on how context matters for foundation models in biology.

Jul 2024:   PINNACLE in Nature Methods

PINNACLE contextual AI model is published in Nature Methods. Paper. Research Briefing. Project website.

Jul 2024:   Digital Twins as Global Health and Disease Models of Individuals

Paper on digitial twins outlining strategies to leverage molecular and computational techniques to construct dynamic digital twins on the scale of populations to individuals.

Jul 2024:   Three Papers: TrialBench, 3D Structure Design, LLM Editing

Jun 2024:   TDC-2: Multimodal Foundation for Therapeutics

The Commons 2.0 (TDC-2) is an overhaul of Therapeutic Data Commons to catalyze research in multimodal models for drug discovery by unifying single-cell biology of diseases, biochemistry of molecules, and effects of drugs through multimodal datasets, AI-powered API endpoints, new tasks and benchmarks. Our paper.

May 2024:   Broad MIA: Protein Language Models

Apr 2024:   Biomedical AI Agents

Mar 2024:   Efficient ML Seminar Series

We started a Harvard University Efficient ML Seminar Series. Congrats to Jonathan for spearheading this initiative. Harvard Magazine covered the first meeting focusing on LLMs.

Mar 2024:   UniTS - Unified Time Series Model

UniTS is a unified time series model that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. Project website.

Mar 2024:   Weintraub Graduate Student Award

Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. News Story. Congratulations!

Zitnik Lab  ·  Artificial Intelligence in Medicine and Science  ·  Harvard  ·  Department of Biomedical Informatics