Artificial Intelligence for Medicine and Science

Open positions

AI for Medicine | Individualized Diagnosis and Treatment

The state of a person is described with increasing precision incorporating modalities like genetic code, cellular atlases, molecular datasets, and therapeutics—the challenge is how to reason over these data to develop powerful disease diagnostics and empower new kinds of therapies. Our research creates new avenues for fusing knowledge and patient data to give the right patient the right treatment at the right time and have medicinal effects that are consistent from person to person and with results in the laboratory.

AI for Science | Therapeutic Science

For centuries, the method of discovery—the fundamental practice of science that scientists use to explain the natural world systematically and logically—has remained largely the same. We are using AI to change that. The natural world is interconnected, from the various facets of genome regulation to the molecular and organismal levels. These interactions across different levels yield a bewildering degree of complexity. Our research seeks to disentangle this complexity, developing AI models that advance drug design and help develop new kinds of therapies.

Latest News

Feb 2024:   Kaneb Fellowship and Dean’s Innovation Award

Feb 2024:   NSF CAREER Award

The lab receives the NSF CAREER Award for our research in geometric deep learning to facilitate algorithmic and scientific advances in therapeutics.

Jan 2024:   AI's Prospects in Nature Machine Intelligence

We discussed AI’s 2024 prospects with Nature Machine Intelligence, covering LLM progress, multimodal AI, multi-task agents, and how to bridge the digital divide across communities and world regions.

Jan 2024:   Combinatorial Therapeutic Perturbations

New paper introducing PDGrapher for combinatorial prediction of chemical and genetic perturbations using causally-inspired neural networks.

Nov 2023:   Next Generation of Therapeutics Commons

Oct 2023:   Structure-Based Drug Design

Geometric deep learning has emerged as a valuable tool for structure-based drug design, to generate and refine biomolecules by leveraging detailed three-dimensional geometric and molecular interaction information.

Oct 2023:   Graph AI in Medicine

Graph AI models in medicine integrate diverse data modalities through pre-training, facilitate interactive feedback loops, and foster human-AI collaboration, paving the way to clinically meaningful predictions.

Sep 2023:   New papers accepted at NeurIPS

Sep 2023:   Future Directions in Network Biology

Excited to share our perspectives on current and future directions in network biology.

Aug 2023:   Scientific Discovery in the Age of AI

Jul 2023:   PINNACLE - Contextual AI protein model

PINNACLE is a contextual AI model for protein understanding that dynamically adjusts its outputs based on biological contexts in which it operates. Project website.

Jun 2023:   Our Group is Joining the Kempner Institute

Excited to join Kempner’s inaugural cohort of associate faculty to advance Kempner’s mission of studying the intersection of natural and artificial intelligence.

Jun 2023:   Welcoming a New Postdoctoral Fellow

An enthusiastic welcome to Shanghua Gao who is joining our group as a postdoctoral research fellow.

Jun 2023:   On Pretraining in Nature Machine Intelligence

May 2023:   Congratulations to Ada and Michelle

Congrats to PhD student Michelle on being selected as the 2023 Albert J. Ryan Fellow and also to participate in the Heidelberg Laureate Forum. Congratulations to PhD student Ada for being selected as the Kempner Institute Graduate Fellow!

Apr 2023:   Universal Domain Adaptation at ICML 2023

New paper introducing the first model for closed-set and universal domain adaptation on time series accepted at ICML 2023. Raincoat addresses feature and label shifts and can detect private labels. Project website.

Apr 2023:   Celebrating Achievements of Our Undergrads

Undergraduate researchers Ziyuan, Nick, Yepeng, Jiali, Julia, and Marissa are moving onto their PhD research in Computer Science, Systems Biology, Neuroscience, and Biological & Medical Sciences at Harvard, MIT, Carnegie Mellon University, and UMass Lowell. We are excited for the bright future they created for themselves.

Apr 2023:   Welcoming a New Postdoctoral Fellow

An enthusiastic welcome to Tianlong Chen, our newly appointed postdoctoral fellow.

Apr 2023:   New Study in Nature Machine Intelligence

New paper in Nature Machine Intelligence introducing the blueprint for multimodal learning with graphs.

Mar 2023:   Precision Health in Nature Machine Intelligence

New paper with NASA in Nature Machine Intelligence on biomonitoring and precision health in deep space supported by artificial intelligence.

Zitnik Lab  ·  Artificial Intelligence in Medicine and Science  ·  Harvard  ·  Department of Biomedical Informatics