Machine Learning for Medicine and Science

Open positions

Artificial intelligence holds tremendous promise in enabling scientific breakthroughs and discoveries in diverse areas. We investigate applied machine learning with a current focus on networked systems that require infusing structure and knowledge.

Our research strategy is to create foundational models, including pre-trained, self-supervised, multi-purpose, and multi-modal models trained on broad networked data at scale. This entails identifying ways to infuse knowledge and structure into models to address uncertainty and enable broad generalization, and producing actionable and trustworthy representations that advance the biological problem past the state of the art and open up new opportunities.


The state of a person is described with increasing precision incorporating modalities like genetic code, behaviors, therapeutics, and the environment—the challenge is how to reason over these data to improve decision making. Our research creates new avenues for accelerating the development of therapeutics, fusing biomedical knowledge and patient data, and giving the right patient the right treatment at the right time to have medicinal effects that are consistent from person to person and with results in the laboratory.


For centuries, the method of discovery—the fundamental practice of science that scientists use to explain the natural world systematically and logically—has remained largely the same. However, the natural world is interconnected, from all facets of genome regulation to the molecular level and to the population level. These interactions at different levels give rise to a bewildering degree of complexity. Our research disentangles this complexity and develops artificial intelligence tools to guide discovery in biomedical sciences and produce interpretable outputs that lend themselves to actionable hypotheses.

Read about our research...

Latest News

May 2022:   George Named the 2022 Wojcicki Troper Fellow

May 2022:   New preprint on PrimeKG

New preprint on building knowledge graphs to enable precision medicine applications.

Apr 2022:   Webster on the Cover of Cell Systems

Webster is on the cover of April issue of Cell Systems. Webster uses cell viability changes following gene perturbation to automatically learn cellular functions and pathways from data.

Apr 2022:   NASA Space Biology

Dr. Zitnik will serve on the Science Working Group at NASA Space Biology.

Mar 2022:   Yasha's Graduate Research Fellowship

Yasha won the National Defense Science and Engineering Graduate (NDSEG) Fellowship. Congratulations!

Mar 2022:   AI4Science at ICML 2022

We are excited to be selected to organize the AI4Science meeting at ICML 2022. Stay tuned for details.

Mar 2022:   Graph Algorithms in Biomedicine at PSB 2023

Excited to be organizing a session on Graph Algorithms at PSB 2023. Stay tuned for details.

Mar 2022:   Multimodal Learning on Graphs

New preprint! We introduce REMAP, a multimodal AI approach for disease relation extraction and classification. Project website.

Feb 2022:   Explainable Graph AI on the Capitol Hill

Owen has been selected to present our research on explainable biomedical AI to members of the US Congress at the “Posters on the Hill” symposium. Congrats Owen!

Feb 2022:   Graph Neural Networks for Time Series

Hot off the press at ICLR 2022. Check out Raindrop, our graph neural network with unique predictive capability to learn from irregular time series. Project website.

Feb 2022:   Biomedical Graph ML Tutorial Accepted to ISMB

Excited to present a tutorial at ISMB 2022 on graph representation learning for precision medicine. Congratulations, Michelle!

Feb 2022:   Marissa Won the Gates Cambridge Scholarship

Marissa Sumathipala is among the 23 outstanding US scholars selected be part of the 2022 class of Gates Cambridge Scholars at the University of Cambridge. Congratulations, Marissa!

Jan 2022:   Inferring Gene Multifunctionality

Jan 2022:   Deep Graph AI for Time Series Accepted to ICLR

Paper on graph representation learning for time series accepted to ICLR. Congratulations, Xiang!

Jan 2022:   Probing GNN Explainers Accepted to AISTATS

Jan 2022:   Marissa Sumathipala selected as Churchill Scholar

Marissa Sumathipala is selected for the prestigious Churchill Scholarship. Congratulations, Marissa!

Jan 2022:   Therapeutics Data Commons User Meetup

We invite you to join the growing open-science community at the User Group Meetup of Therapeutics Data Commons! Register for the first live user group meeting on Tuesday, January 25 at 11:00 AM EST.

Jan 2022:   Workshop on Graph Learning Benchmarks

Dec 2021:   NASA: Precision Space Health System

Human space exploration beyond low Earth orbit will involve missions of significant distance and duration. To effectively mitigate myriad space health hazards, paradigm shifts in data and space health systems are necessary to enable Earth independence. Delighted to be working with NASA and can share our recommendations!

Zitnik Lab  ·  Harvard  ·  Department of Biomedical Informatics