Machine Learning for Medicine and Science


Open positions

The Zitnik Lab opened doors in December 2019!

AI holds tremendous promise in enabling scientific breakthroughs and discoveries in diverse areas. We investigate applied machine learning with a current focus on networked systems that require infusing structure and domain knowledge.

Our research strategy is to create foundational models, including pre-trained models, self-supervised models, general-purpose models, multi-purpose models, and multi-modal models, that are trained on broad data at scale. We:

  1. Invent ways to infuse domain knowledge & structure into complex and heterogeneous datasets to reduce uncertainty and enable generalization to entirely new scenarios not seen during training.
  2. Develop methods that produce actionable & trustworthy representations and can reason over massive datasets.
  3. Translate machine learning research into innovative applications.

This research creates new avenues for network biology, developing safe & effective medicines, and giving the right patient the right treatment at the right time to have medicinal effects that are consistent from person to person and with results in the laboratory.

AI4Science

Our world is interconnected, from the molecular level to the level of connections between diseases in a person, and all the way to the societal level encompassing human interactions within a society. These interactions at different levels give rise to a bewildering degree of complexity.

To disentangle the complexity, science inextricably relies on the existence of scientific instruments. While in the past science used physical instruments to facilitate the discoveries, modern science needs the new kind of instruments, which will, we postulate, in a vital way be optimized for learning and reasoning from data.

Read about our research. . .

Latest News

Nov 2021:   Deciphering Pleiotropy with Sparse Learning

Genes can participate in multiple independent biological functions, a foundational genetic principle known as pleiotropy. We develop a sparse dictionary learning approach to reason about pleiotropy from high-dimensional gene perturbation datasets. Join us at MLCB 2021 and NeurIPS’21 LMRL to learn about our approach.

Nov 2021:   Submit to Our AAAI 2022 Workshop

Submit your finest work at the nexus between trustworthy AI and healthcare to AAAI 2022. Call for papers.

Nov 2021:   Co-Evolution for Functional Interactions

Hot off the press in Nature Communications. Excited to share an ML approach for predicting functional interactions between human genes using the phylogenetic profiles across 1,154 eukaryotic species.

Oct 2021:   Adverse Drug Effects During the Pandemic

The COVID-19 pandemic has reshaped health and medicine in ways both dramatic and subtle. Some of the less obvious shifts can only emerge from analysis of millions of pieces of data—patient records, medical notes, clinical encounter reports. Read the story in Harvard Medicine News highlighting our research.

Oct 2021:   Graph-Guided Networks for Time Series

New preprint! We introduce Raindrop, a graph-guided network for learning representations of irregularly sampled multivariate time series.

Oct 2021:   Massive Analysis of Differential Adverse Events

Hot off the press in Nature Computational Science! We develop an algorithmic approach for massive analysis of drug adverse events. Our analyses of 10,443,476 adverse event reports have implications for safe medication use and public health policy, and can enable comparison of COVID-19 pandemic to other health emergencies.

Sep 2021:   Leveraging Cell Ontology to Classify Cell Types

Hot off the press in Nature Communications! We developed OnClass, an algorithm and accompanying software for automatically classifying cells into cell types that are part of the controlled vocabulary that forms the Cell Ontology.

Sep 2021:   Major New Release of TDC

We are very excited to announce a major release of Therapeutics Data Commons! In the 0.3.0 release we restructured the codebase, simplified the backend and kept user interfaces the same. We also provide detailed documentation for our TDC package.

Aug 2021:   Trustworthy AI for Healthcare at AAAI

We will be organizing a meeting on Trustworthy AI for Healthcare at AAAI 2022. Stay tuned for details and call for papers.

Aug 2021:   New Paper on Therapeutics Data Commons

Our latest paper on Therapeutics Data Commons: Machine Learning Datasets and Tasks for Drug Discovery and Development will appear at NeurIPS. We are excited to contribute novel datasets and benchmarks in the broad area of therapeutics.

Aug 2021:   AI for Science at NeurIPS

We are organizing the AI for Science workshop at NeurIPS 2021 and have a stellar lineup of invited speakers.

Aug 2021:   Best Poster Award at ICML Comp Biology

Congratulations to Michelle for winning the Best Poster Award for her work on deep contextual learners for protein networks at the ICML Workshop on Computational Biology.

Jul 2021:   Best Paper Award at ICML Interpretable ML

Our short paper on Interactive Visual Explanations for Deep Drug Repurposing received the Best Paper Award at the ICML Interpretable ML in Healthcare Workshop. Stay tuned for more news on this evolving project.

Jul 2021:   Five presentations at ICML 2021

Jun 2021:   Theory and Evaluation for Explanations

We introduce the first axiomatic framework for theoretically analyzing, evaluating, and comparing GNN explanation methods. We formalize key properties that all methods should satisfy to generate reliable explanations: faithfulness, stability, and fairness.

Jun 2021:   Deep Contextual Learners for Protein Networks

New preprint on contextualized protein embeddings aims to characterize genes with disease-specific interactions and elucidate disease manifestation in specific cell types.

May 2021:   New Paper Accepted at UAI

Our unified framework for fair and stable graph representation learning has just been accepted at UAI. We establish a theoretical connection between counterfactual fairness and stability and use it in a framework that can be used with any GNN to learn fair and stable embeddings.

Apr 2021:   Hot Off the Press: COVID-19 Repurposing in PNAS

Hot off the press in PNAS! We deployed AI/ML and network medicine algorithms to rank 6,340 drugs for their expected efficacy against SARS-CoV-2. We screened in human cells the top-ranked drugs, identifying six drugs that reduced viral infection, four of which could be repurposed to treat COVID-19.

Apr 2021:   Representation Learning for Biomedical Nets

In our survey on representation learning for biomedical networks we discuss how long-standing principles of network biology and medicine provide the conceptual grounding for representation learning, explain its successes, and inform future advances.

Mar 2021:   Receiving Amazon Research Award

We are excited about receiving Amazon Faculty Research Award on Actionable Graph Learning for Finding Cures for Emerging Diseases. Thank you to Amazon Science for supporting our research.

Zitnik Lab  ·  Harvard  ·  Department of Biomedical Informatics