Machine Learning Foundations
Artificial intelligence is poised to enable breakthroughs in science and reshape medicine. We investigate machine learning with a current focus on learning systems informed by geometry, structure, and symmetry and grounded in knowledge. This approach creates foundational models, including pre-trained, self-supervised, multi-purpose, and multi-modal models trained at scale to enable broad generalization. Our methods produce actionable outputs to advance biological problems past the state of the art and open up new opportunities.
AI for Medicine | Individualized Diagnosis and Treatment
The state of a person is described with increasing precision incorporating modalities like genetic code, behaviors, therapeutics, and the environment—the challenge is how to reason over these data to improve decision making. Our research creates new avenues for accelerating the development of therapeutics, fusing biomedical knowledge and patient data, and giving the right patient the right treatment at the right time to have medicinal effects that are consistent from person to person and with results in the laboratory.
AI for Science | Therapeutic Science
For centuries, the method of discovery—the fundamental practice of science that scientists use to explain the natural world systematically and logically—has remained largely the same. We are using artificial intelligence to change that. The natural world is interconnected, from all facets of genome regulation to molecular and organismal levels. These interactions at different levels give rise to a bewildering degree of complexity. Our research disentangles this complexity and develops artificial intelligence tools to guide drug design and discovery and produce interpretable outputs that lend themselves to actionable hypotheses.