Machine Learning for Medicine and Science


Open positions

AI for Medicine | Individualized Diagnosis and Treatment

The state of a person is described with increasing precision incorporating modalities like genetic code, behaviors, therapeutics, and the environment—the challenge is how to reason over these data to improve decision making. Our research creates new avenues for accelerating the development of therapeutics, fusing biomedical knowledge and patient data, and giving the right patient the right treatment at the right time to have medicinal effects that are consistent from person to person and with results in the laboratory.

AI for Science | Therapeutic Science

For centuries, the method of discovery—the fundamental practice of science that scientists use to explain the natural world systematically and logically—has remained largely the same. We are using artificial intelligence to change that. The natural world is interconnected, from all facets of genome regulation to molecular and organismal levels. These interactions at different levels give rise to a bewildering degree of complexity. Our research disentangles this complexity and develops artificial intelligence tools to guide drug design and discovery and produce interpretable outputs that lend themselves to actionable hypotheses.

Latest News

Mar 2023:   New Paper in Nature Machine Intelligence

New paper with NASA in Nature Machine Intelligence on biomonitoring and precision health in deep space supported by artificial intelligence.

Mar 2023:   New Paper in Nature Machine Intelligence

Mar 2023:   TxGNN - Zero-shot prediction of therapeutic use

Mar 2023:   GraphXAI published in Scientific Data

Feb 2023:   Welcoming New Postdoctoral Fellows

A warm welcome to postdoctoral fellows Ruth Johnson and Wanxiang Shen. We are thrilled to have them joining us soon and look forward to working together.

Feb 2023:   New Preprint on Distribution Shifts

Feb 2023:   PrimeKG published in Scientific Data

Jan 2023:   GNNDelete published at ICLR 2023

Jan 2023:   New Network Principle for Molecular Phenotypes

Dec 2022:   Can we shorten rare disease diagnostic odyssey?

New preprint! Geometric deep learning for diagnosing patients with rare genetic diseases. Implications for using deep learning on sparsely-labeled medical datasets. Thankful for this collaboration with Zak Lab. Project website.

Nov 2022:   Can AI transform the way we discover new drugs?

Our conversation with Harvard Medicine News highlights recent developments and new features in Therapeutics Data Commons.

Oct 2022:   New Paper in Nature Biomedical Engineering

New paper on graph representation learning in biomedicine and healthcare published in Nature Biomedical Engineering.

Sep 2022:   New Paper in Nature Chemical Biology

Our paper on artificial intelligence foundation for therapeutic science is published in Nature Chemical Biology.

Sep 2022:   Self-Supervised Pre-Training at NeurIPS 2022

New paper on self-supervised contrastive pre-training accepted at NeurIPS 2022. Project page. Thankful for this collaboration with the Lincoln National Laboratory.

Sep 2022:   Best Paper Honorable Mention Award at IEEE VIS

Our paper on user-centric AI of drug repurposing received the Best Paper Honorable Mention Award at IEEE VIS 2022. Thankful for this collaboration with Gehlenborg Lab.

Sep 2022:   Multimodal Representation Learning with Graphs

Aug 2022:   On Graph AI for Precision Medicine

The recording of our tutorial on using graph AI to advance precision medicine is available. Tune into four hours of interactive lectures about state-of-the-art graph AI methods and applications in precision medicine.

Aug 2022:   Evaluating Explainability for GNNs

New preprint! We introduce a resource for broad evaluation of the quality and reliability of GNN explanations, addressing challenges and providing solutions for GNN explainability. Project website.

Jul 2022:   New Frontiers in Graph Learning at NeurIPS

Excited to organize the New Frontiers in Graph Learning workshop at NeurIPS.

Jul 2022:   AI4Science at NeurIPS

We are excited to host the AI4Science meeting at NeurIPS discussing AI-driven scientific discovery, implementation and verification of AI in science, the influence AI has on the conduct of science, and more.

Zitnik Lab  ·  Artificial Intelligence in Medicine and Science  ·  Harvard  ·  Department of Biomedical Informatics