Multimodal AI Predicts Clinical Outcomes of Drug Combinations from Preclinical Data

Predicting clinical outcomes from preclinical data is essential for identifying safe and effective drug combinations. Current models rely on structural or target-based features to identify high-efficacy, low-toxicity drug combinations. However, these approaches fail to incorporate the multimodal data necessary for accurate, clinically-relevant predictions.

Here, we introduce MADRIGAL, a multimodal AI model that learns from structural, pathway, cell viability, and transcriptomic data to predict drug combination effects across 953 clinical outcomes and 21842 compounds, including combinations of approved drugs and novel compounds in development. MADRIGAL uses a transformer bottleneck module to unify preclinical drug data modalities while handling missing data during training and inference--a major challenge in multimodal learning.

It outperforms single-modality methods and state-of-the-art models in predicting adverse drug interactions. MADRIGAL performs virtual screening of anticancer drug combinations and supports polypharmacy management for type II diabetes and metabolic dysfunction-associated steatohepatitis (MASH). It identifies transporter-mediated drug interactions. MADRIGAL predicts resmetirom, the first and only FDA-approved drug for MASH, among therapies with the most favorable safety profile. It supports personalized cancer therapy by integrating genomic profiles from cancer patients. Using primary acute myeloid leukemia samples and patient-derived xenograft models, it predicts the efficacy of personalized drug combinations. Integrating MADRIGAL with a large language model allows users to describe clinical outcomes in natural language, improving safety assessment by identifying potential adverse interactions and toxicity risks. MADRIGAL provides a multimodal approach for designing combination therapies with improved predictive accuracy and clinical relevance.

Publication

Multimodal AI predicts clinical outcomes of drug combinations from preclinical data
Yepeng Huang, Xiaorui Su, Varun Ullanat, Ivy Liang, Lindsay Clegg, Damilola Olabode, Nicholas Ho, Bino John, Megan Gibbs, Marinka Zitnik
In Review 2025 [arXiv]

@article{huang2025madrigal,
  title={Multimodal AI predicts clinical outcomes of drug combinations from preclinical data},
  author={Huang, Yepeng and Su, Xiaorui and Ullanat, Varun and Liang, Ivy and Clegg, Lindsay and Olabode, Damilola and  Ho, Nicholas and John, Bino and Gibbs, Megan and Zitnik, Marinka},
  journal={arXiv:2503.02781},
  url={https://arxiv.org/abs/2503.02781},
  year={2025}
}

Code and Data Availability

Pytorch implementation of PocketGen is available in the GitHub repository. Datasets are also available at Harvard Dataverse repository.

Authors

Latest News

Oct 2025:   Our research featured by Kempner and Crimson

A news story about PDGrapher in Harvard Crimson. ToolUniverse featured on the Kempner Institute blog.

Oct 2025:   A Scientist's Guide to AI Agents in Nature

A piece on AI agents in Nature highlights ongoing projects in our group, including methods for evaluating scientific hypotheses, challenges in benchmarking AI agents, and the open ToolUniverse ecosystem.

Sep 2025:   ToolUniverse: AI Agents for Science and Medicine

New paper: ToolUniverse introduces an open ecosystem for building AI scientists with 600+ scientific and biomedical tools. Build your AI co-scientists at https://aiscientist.tools.

Sep 2025:   Democratizing "AI Scientists" with ToolUniverse

Our new initiative: Use Tool Universe to build an AI scientist for yourself from any language or reasoning model, whether open or closed. https://aiscientist.tools

Sep 2025:   InfEHR in Nature Communications

Collaboration with Ben and Girish on clinical phenotype resolution through deep geometric learning on electronic health records published in Nature Communications.

Sep 2025:   PDGrapher in Nature Biomedical Engineering

New paper in Nature Biomedical Engineering introducing PDGrapher, a model for phenotype-based target discovery. [Harvard Medicine News]

Sep 2025:   AI and Net Medicine: Path to Precision Medicine

Aug 2025:   CUREBench - Reasoning for Therapeutics

Update from CUREBench: 650+ entrants, 100+ teams and 500+ submissions. Thank you to the CUREBench community. Working on AI for drug discovery and reasoning in medicine? New teams welcome. Tasks, rules, and leaderboard: https://curebench.ai.

Aug 2025:   Drug Discovery Workshop at NeurIPS 2025

Excited to organize a NeurIPS workshop on Virtual Cells and Digital Instruments. Submit your papers.

Aug 2025:   AI for Science Workshop at NeurIPS

Excited to organize a NeurIPS workshop on AI for Science. This is our 6th workshop in the AI for Science series. Submit your papers.

Jul 2025:   Launching CUREBench

Launched CUREBench, the first competition in AI reasoning for therapeutics. Colocated with NeurIPS 2025. Start at https://curebench.ai.

Jul 2025:   Launching TxAgent Evaluation Portal

Launched TxAgent evaluation portal, our global evaluation of AI for drug decision-making and therapeutic reasoning. Participate in TxAgent evaluations! [TxAgent project]

Jul 2025:   SPATIA Model of Spatial Cell Phenotypes

Jul 2025:   AI-Enabled Drug Discovery Reaches Clinical Milestone

Jun 2025:   Knowledge Tracing for Biomedical AI Education

New preprint on biologically inspired architecture for knowledge tracing. The study on the use of generative AI in education with prospective evaluation of knowledge tracing in the classroom.

Jun 2025:   Few shot learning for rare disease diagnosis

Jun 2025:   One Patient, Many Contexts: Scaling Medical AI

Jun 2025:   ToolUniverse - 211+ Tools for "AI Scientist" Agents

ToolUniverse now offers access to over 211 cutting-edge biological and medical tools, all integrated with Model Context Protocol (MCP). Any “AI Scientist” agent can tap into these tools for biomedical research. [Tutorial] [ToolUniverse] [TxAgent]

May 2025:   What Perturbation Can Reverse Disease Effects?

In press at Nature Biomedical Engineering: PDGrapher AI predicts chemicals to reverse disease phenotypic effects — with applications to drug target identification.

May 2025:   Decision Transformers for Cell Reprogramming

New preprint: Decision transformers for generating reach-avoid policies in sequential decision making — with applications from robotics to cell reprogramming.

Zitnik Lab  ·  Artificial Intelligence in Medicine and Science  ·  Harvard  ·  Department of Biomedical Informatics