A Foundation Model for Clinician Centered Drug Repurposing

Of the several thousand diseases that affect humans, only about 500 have treatments approved by the U.S. Food and Drug Administration. Even for those with approved treatments, discovering new drugs can offer alternative options that cause fewer side effects and replace drugs that are ineffective for certain patient groups. However, identifying new therapeutic opportunities for diseases with limited treatment options remains a challenge, as existing algorithms often perform poorly.

Here, we leverage recent advances in geometric deep learning and human-centered AI to introduce TxGNN, a model for identifying therapeutic opportunities for diseases with limited treatment options and minimal molecular understanding. TxGNN is a graph neural network pre-trained on a comprehensive knowledge graph of 17,080 clinically-recognized diseases and 7,957 therapeutic candidates. The model can process various therapeutic tasks, such as indication and contraindication prediction, in a unified formulation. Once trained, we show that TxGNN can perform zero-shot inference on new diseases without additional parameters or fine-tuning on ground truth labels.

Evaluation of TxGNN shows significant improvements over existing methods, with up to 49.2% higher accuracy in indication tasks and 35.1% higher accuracy in contraindication tasks. TxGNN can also predict therapeutic use for new drugs developed since June 2021. To facilitate interpretation and analysis of the model's predictions by clinicians, we develop a human-AI explorer for TxGNN and evaluate its usability with medical experts. Finally, we demonstrate that TxGNN's novel predictions are consistent with off-label prescription decisions made by clinicians in a large healthcare system.

These label-efficient and clinician-centered learning systems pave the way for improvements for many therapeutic tasks.

TxGNN is a graph foundation model for drug repurposing, identifying candidate drugs for diseases with limited treatment options and limited molecular data.

TxGNN accurately predicts drug indications and contraindications.

TxGNN predicts drug indications and contraindications across challenging disease areas with small molecular datasets.

Publication

A Foundation Model for Clinician Centered Drug Repurposing
Kexin Huang*, Payal Chandak*, Qianwen Wang, Shreyas Havaldar, Akhil Vaid, Jure Leskovec, Girish Nadkarni, Benjamin S. Glicksberg, Nils Gehlenborg and Marinka Zitnik
Nature Medicine 2024 [Harvard Gazette] [Harvard Medicine News] [Forbes]

@article{huang2024zeroshot,
  title={A Foundation Model for Clinician Centered Drug Repurposing},
  author={Huang, Kexin and Chandak, Payal and Wang, Qianwen and Havaldar, Shreyas and Vaid, Akhil and Leskovec, Jure and Nadkarni, Girish and Glicksberg, Benjamin and Gehlenborg, Nils and Zitnik, Marinka},
  journal = {Nature Medicine},
  doi = {10.1101/2023.03.19.23287458},
  volume={},
  number={},
  pages={},
  year={2023},
  publisher={}
}

Code

PyTorch implementation together with documentation and examples of usage is available in the GitHub repository.

Human-AI Explorer for TxGNN

To facilitate interpretation and analysis of the model’s predictions by clinicians, we develop a human-AI explorer for TxGNN and evaluate its usability with medical experts. The TxGNN explorer is available at http://txgnn.org.

Authors

Latest News

Oct 2025:   Our research featured by Kempner and Crimson

A news story about PDGrapher in Harvard Crimson. ToolUniverse featured on the Kempner Institute blog.

Oct 2025:   A Scientist's Guide to AI Agents in Nature

A piece on AI agents in Nature highlights ongoing projects in our group, including methods for evaluating scientific hypotheses, challenges in benchmarking AI agents, and the open ToolUniverse ecosystem.

Sep 2025:   ToolUniverse: AI Agents for Science and Medicine

New paper: ToolUniverse introduces an open ecosystem for building AI scientists with 600+ scientific and biomedical tools. Build your AI co-scientists at https://aiscientist.tools.

Sep 2025:   Democratizing "AI Scientists" with ToolUniverse

Our new initiative: Use Tool Universe to build an AI scientist for yourself from any language or reasoning model, whether open or closed. https://aiscientist.tools

Sep 2025:   InfEHR in Nature Communications

Collaboration with Ben and Girish on clinical phenotype resolution through deep geometric learning on electronic health records published in Nature Communications.

Sep 2025:   PDGrapher in Nature Biomedical Engineering

New paper in Nature Biomedical Engineering introducing PDGrapher, a model for phenotype-based target discovery. [Harvard Medicine News]

Sep 2025:   AI and Net Medicine: Path to Precision Medicine

Aug 2025:   CUREBench - Reasoning for Therapeutics

Update from CUREBench: 650+ entrants, 100+ teams and 500+ submissions. Thank you to the CUREBench community. Working on AI for drug discovery and reasoning in medicine? New teams welcome. Tasks, rules, and leaderboard: https://curebench.ai.

Aug 2025:   Drug Discovery Workshop at NeurIPS 2025

Excited to organize a NeurIPS workshop on Virtual Cells and Digital Instruments. Submit your papers.

Aug 2025:   AI for Science Workshop at NeurIPS

Excited to organize a NeurIPS workshop on AI for Science. This is our 6th workshop in the AI for Science series. Submit your papers.

Jul 2025:   Launching CUREBench

Launched CUREBench, the first competition in AI reasoning for therapeutics. Colocated with NeurIPS 2025. Start at https://curebench.ai.

Jul 2025:   Launching TxAgent Evaluation Portal

Launched TxAgent evaluation portal, our global evaluation of AI for drug decision-making and therapeutic reasoning. Participate in TxAgent evaluations! [TxAgent project]

Jul 2025:   SPATIA Model of Spatial Cell Phenotypes

Jul 2025:   AI-Enabled Drug Discovery Reaches Clinical Milestone

Jun 2025:   Knowledge Tracing for Biomedical AI Education

New preprint on biologically inspired architecture for knowledge tracing. The study on the use of generative AI in education with prospective evaluation of knowledge tracing in the classroom.

Jun 2025:   Few shot learning for rare disease diagnosis

Jun 2025:   One Patient, Many Contexts: Scaling Medical AI

Jun 2025:   ToolUniverse - 211+ Tools for "AI Scientist" Agents

ToolUniverse now offers access to over 211 cutting-edge biological and medical tools, all integrated with Model Context Protocol (MCP). Any “AI Scientist” agent can tap into these tools for biomedical research. [Tutorial] [ToolUniverse] [TxAgent]

May 2025:   What Perturbation Can Reverse Disease Effects?

In press at Nature Biomedical Engineering: PDGrapher AI predicts chemicals to reverse disease phenotypic effects — with applications to drug target identification.

May 2025:   Decision Transformers for Cell Reprogramming

New preprint: Decision transformers for generating reach-avoid policies in sequential decision making — with applications from robotics to cell reprogramming.

Zitnik Lab  ·  Artificial Intelligence in Medicine and Science  ·  Harvard  ·  Department of Biomedical Informatics