Source code for tooluniverse.tools.HypothesisGenerator

"""
HypothesisGenerator

Generates research hypotheses based on provided background context, domain, and desired format. U...
"""

from typing import Any, Optional, Callable
from ._shared_client import get_shared_client


[docs] def HypothesisGenerator( context: str, domain: str, number_of_hypotheses: str, hypothesis_format: Optional[str] = "concise declarative sentences", *, stream_callback: Optional[Callable[[str], None]] = None, use_cache: bool = False, validate: bool = True, ) -> Any: """ Generates research hypotheses based on provided background context, domain, and desired format. U... Parameters ---------- context : str Background information, observations, or data description from which to deriv... domain : str Field of study or research area (e.g., 'neuroscience', 'ecology', 'materials ... number_of_hypotheses : str Number of hypotheses to generate (e.g., '3', '5'). hypothesis_format : str Optional directive on how to structure each hypothesis. Choose from one of th... stream_callback : Callable, optional Callback for streaming output use_cache : bool, default False Enable caching validate : bool, default True Validate parameters Returns ------- Any """ # Handle mutable defaults to avoid B006 linting error return get_shared_client().run_one_function( { "name": "HypothesisGenerator", "arguments": { "context": context, "domain": domain, "number_of_hypotheses": number_of_hypotheses, "hypothesis_format": hypothesis_format, }, }, stream_callback=stream_callback, use_cache=use_cache, validate=validate, )
__all__ = ["HypothesisGenerator"]