Machine Learning Tools¶
Configuration File: packages/machine_learning_tools.json
Tool Type: Local
Tools Count: 21
This page contains all tools defined in the machine_learning_tools.json
configuration file.
Available Tools¶
get_catboost_info (Type: PackageTool)¶
Get information about the catboost package. High-performance gradient boosting library
get_catboost_info tool specification
Tool Information:
Name:
get_catboost_info
Type:
PackageTool
Description: Get information about the catboost package. High-performance gradient boosting library
Parameters:
No parameters required.
Example Usage:
query = {
"name": "get_catboost_info",
"arguments": {
}
}
result = tu.run(query)
get_cobrapy_info (Type: PackageTool)¶
Get comprehensive information about COBRApy – constraint-based metabolic modeling
get_cobrapy_info tool specification
Tool Information:
Name:
get_cobrapy_info
Type:
PackageTool
Description: Get comprehensive information about COBRApy – constraint-based metabolic modeling
Parameters:
info_type
(string) (required) Type of information to retrieve about COBRApy
Example Usage:
query = {
"name": "get_cobrapy_info",
"arguments": {
"info_type": "example_value"
}
}
result = tu.run(query)
get_deeppurpose_info (Type: PackageTool)¶
Get comprehensive information about DeepPurpose – deep learning toolkit for drug discovery
get_deeppurpose_info tool specification
Tool Information:
Name:
get_deeppurpose_info
Type:
PackageTool
Description: Get comprehensive information about DeepPurpose – deep learning toolkit for drug discovery
Parameters:
info_type
(string) (required) Type of information to retrieve about DeepPurpose
Example Usage:
query = {
"name": "get_deeppurpose_info",
"arguments": {
"info_type": "example_value"
}
}
result = tu.run(query)
get_deepxde_info (Type: PackageTool)¶
Get comprehensive information about DeepXDE – a library for physics-informed neural networks (PIN…
get_deepxde_info tool specification
Tool Information:
Name:
get_deepxde_info
Type:
PackageTool
Description: Get comprehensive information about DeepXDE – a library for physics-informed neural networks (PINNs) solving PDEs and inverse problems.
Parameters:
include_examples
(boolean) (optional) Whether to include usage examples and a quick-start guide
Example Usage:
query = {
"name": "get_deepxde_info",
"arguments": {
}
}
result = tu.run(query)
get_faiss_info (Type: PackageTool)¶
Get comprehensive information about Faiss – efficient similarity search and clustering
get_faiss_info tool specification
Tool Information:
Name:
get_faiss_info
Type:
PackageTool
Description: Get comprehensive information about Faiss – efficient similarity search and clustering
Parameters:
include_examples
(boolean) (optional) Whether to include usage examples and quick start guide
Example Usage:
query = {
"name": "get_faiss_info",
"arguments": {
}
}
result = tu.run(query)
get_harmony_pytorch_info (Type: PackageTool)¶
Get comprehensive information about harmony-pytorch – single-cell data integration
get_harmony_pytorch_info tool specification
Tool Information:
Name:
get_harmony_pytorch_info
Type:
PackageTool
Description: Get comprehensive information about harmony-pytorch – single-cell data integration
Parameters:
info_type
(string) (required) Type of information to retrieve about harmony-pytorch
Example Usage:
query = {
"name": "get_harmony_pytorch_info",
"arguments": {
"info_type": "example_value"
}
}
result = tu.run(query)
get_hmmlearn_info (Type: PackageTool)¶
Get comprehensive information about hmmlearn – Hidden Markov Models in Python
get_hmmlearn_info tool specification
Tool Information:
Name:
get_hmmlearn_info
Type:
PackageTool
Description: Get comprehensive information about hmmlearn – Hidden Markov Models in Python
Parameters:
info_type
(string) (required) Type of information to retrieve about hmmlearn
Example Usage:
query = {
"name": "get_hmmlearn_info",
"arguments": {
"info_type": "example_value"
}
}
result = tu.run(query)
get_hyperopt_info (Type: PackageTool)¶
Get comprehensive information about Hyperopt – distributed hyperparameter optimization
get_hyperopt_info tool specification
Tool Information:
Name:
get_hyperopt_info
Type:
PackageTool
Description: Get comprehensive information about Hyperopt – distributed hyperparameter optimization
Parameters:
include_examples
(boolean) (optional) Whether to include usage examples and quick start guide
Example Usage:
query = {
"name": "get_hyperopt_info",
"arguments": {
}
}
result = tu.run(query)
get_imbalanced_learn_info (Type: PackageTool)¶
Get information about the imbalanced-learn package. Python toolbox for imbalanced dataset learning
get_imbalanced_learn_info tool specification
Tool Information:
Name:
get_imbalanced_learn_info
Type:
PackageTool
Description: Get information about the imbalanced-learn package. Python toolbox for imbalanced dataset learning
Parameters:
No parameters required.
Example Usage:
query = {
"name": "get_imbalanced_learn_info",
"arguments": {
}
}
result = tu.run(query)
get_lightgbm_info (Type: PackageTool)¶
Get information about the lightgbm package. Fast gradient boosting framework
get_lightgbm_info tool specification
Tool Information:
Name:
get_lightgbm_info
Type:
PackageTool
Description: Get information about the lightgbm package. Fast gradient boosting framework
Parameters:
No parameters required.
Example Usage:
query = {
"name": "get_lightgbm_info",
"arguments": {
}
}
result = tu.run(query)
get_optuna_info (Type: PackageTool)¶
Get information about the optuna package. Hyperparameter optimization framework
get_optuna_info tool specification
Tool Information:
Name:
get_optuna_info
Type:
PackageTool
Description: Get information about the optuna package. Hyperparameter optimization framework
Parameters:
No parameters required.
Example Usage:
query = {
"name": "get_optuna_info",
"arguments": {
}
}
result = tu.run(query)
get_pymzml_info (Type: PackageTool)¶
Get comprehensive information about pymzML – mzML file parser for mass spectrometry
get_pymzml_info tool specification
Tool Information:
Name:
get_pymzml_info
Type:
PackageTool
Description: Get comprehensive information about pymzML – mzML file parser for mass spectrometry
Parameters:
info_type
(string) (required) Type of information to retrieve about pymzML
Example Usage:
query = {
"name": "get_pymzml_info",
"arguments": {
"info_type": "example_value"
}
}
result = tu.run(query)
get_python_libsbml_info (Type: PackageTool)¶
Get comprehensive information about python-libsbml – SBML (Systems Biology Markup Language) support
get_python_libsbml_info tool specification
Tool Information:
Name:
get_python_libsbml_info
Type:
PackageTool
Description: Get comprehensive information about python-libsbml – SBML (Systems Biology Markup Language) support
Parameters:
info_type
(string) (required) Type of information to retrieve about python-libsbml
Example Usage:
query = {
"name": "get_python_libsbml_info",
"arguments": {
"info_type": "example_value"
}
}
result = tu.run(query)
get_pytorch_info (Type: PackageTool)¶
Get comprehensive information about PyTorch – an open source machine learning framework
get_pytorch_info tool specification
Tool Information:
Name:
get_pytorch_info
Type:
PackageTool
Description: Get comprehensive information about PyTorch – an open source machine learning framework
Parameters:
include_examples
(boolean) (optional) Whether to include usage examples and quick start guide
Example Usage:
query = {
"name": "get_pytorch_info",
"arguments": {
}
}
result = tu.run(query)
get_schnetpack_info (Type: PackageTool)¶
Get comprehensive information about SchNetPack – a deep-learning toolbox for molecules and materi…
get_schnetpack_info tool specification
Tool Information:
Name:
get_schnetpack_info
Type:
PackageTool
Description: Get comprehensive information about SchNetPack – a deep-learning toolbox for molecules and materials built on PyTorch.
Parameters:
include_examples
(boolean) (optional) Whether to include usage examples and a quick-start guide
Example Usage:
query = {
"name": "get_schnetpack_info",
"arguments": {
}
}
result = tu.run(query)
get_scikit_learn_info (Type: PackageTool)¶
Get comprehensive information about scikit-learn – simple and efficient tools for predictive data…
get_scikit_learn_info tool specification
Tool Information:
Name:
get_scikit_learn_info
Type:
PackageTool
Description: Get comprehensive information about scikit-learn – simple and efficient tools for predictive data analysis
Parameters:
include_examples
(boolean) (optional) Whether to include usage examples and quick start guide
Example Usage:
query = {
"name": "get_scikit_learn_info",
"arguments": {
}
}
result = tu.run(query)
get_skopt_info (Type: PackageTool)¶
Get information about the skopt package. Scikit-Optimize: sequential model-based optimization
get_skopt_info tool specification
Tool Information:
Name:
get_skopt_info
Type:
PackageTool
Description: Get information about the skopt package. Scikit-Optimize: sequential model-based optimization
Parameters:
No parameters required.
Example Usage:
query = {
"name": "get_skopt_info",
"arguments": {
}
}
result = tu.run(query)
get_statsmodels_info (Type: PackageTool)¶
Get comprehensive information about statsmodels – statistical modeling and econometrics
get_statsmodels_info tool specification
Tool Information:
Name:
get_statsmodels_info
Type:
PackageTool
Description: Get comprehensive information about statsmodels – statistical modeling and econometrics
Parameters:
include_examples
(boolean) (optional) Whether to include usage examples and quick start guide
Example Usage:
query = {
"name": "get_statsmodels_info",
"arguments": {
}
}
result = tu.run(query)
get_torch_geometric_info (Type: PackageTool)¶
Get comprehensive information about PyTorch Geometric – a high-performance library for graph neur…
get_torch_geometric_info tool specification
Tool Information:
Name:
get_torch_geometric_info
Type:
PackageTool
Description: Get comprehensive information about PyTorch Geometric – a high-performance library for graph neural networks widely used in molecular and materials science.
Parameters:
include_examples
(boolean) (optional) Whether to include usage examples and quick start guide
Example Usage:
query = {
"name": "get_torch_geometric_info",
"arguments": {
}
}
result = tu.run(query)
get_umap_learn_info (Type: PackageTool)¶
Get comprehensive information about UMAP-learn – dimensionality reduction technique
get_umap_learn_info tool specification
Tool Information:
Name:
get_umap_learn_info
Type:
PackageTool
Description: Get comprehensive information about UMAP-learn – dimensionality reduction technique
Parameters:
include_examples
(boolean) (optional) Whether to include usage examples and quick start guide
Example Usage:
query = {
"name": "get_umap_learn_info",
"arguments": {
}
}
result = tu.run(query)
get_xgboost_info (Type: PackageTool)¶
Get information about the xgboost package. Optimized gradient boosting framework
get_xgboost_info tool specification
Tool Information:
Name:
get_xgboost_info
Type:
PackageTool
Description: Get information about the xgboost package. Optimized gradient boosting framework
Parameters:
No parameters required.
Example Usage:
query = {
"name": "get_xgboost_info",
"arguments": {
}
}
result = tu.run(query)