Source code for tooluniverse.mgnify_tool
import json
from typing import Any, Dict
from urllib.parse import urlencode
from urllib.request import Request, urlopen
from tooluniverse.tool_registry import register_tool
def _http_get(
url: str,
headers: Dict[str, str] | None = None,
timeout: int = 30,
) -> Dict[str, Any]:
req = Request(url, headers=headers or {})
with urlopen(req, timeout=timeout) as resp:
data = resp.read()
try:
return json.loads(data.decode("utf-8", errors="ignore"))
except Exception:
return {"raw": data.decode("utf-8", errors="ignore")}
[docs]
@register_tool(
"MGnifyStudiesTool",
config={
"name": "MGnify_search_studies",
"type": "MGnifyStudiesTool",
"description": "Search MGnify studies via /studies with optional biome/search filters",
"parameter": {
"type": "object",
"properties": {
"biome": {
"type": "string",
"description": "Biome identifier, e.g., 'root:Host-associated'",
},
"search": {
"type": "string",
"description": "Keyword to search in study title/description",
},
"size": {
"type": "integer",
"default": 10,
"minimum": 1,
"maximum": 100,
},
},
},
"settings": {
"base_url": "https://www.ebi.ac.uk/metagenomics/api/latest",
"timeout": 30,
},
},
)
class MGnifyStudiesTool:
[docs]
def run(self, arguments: Dict[str, Any]):
base = self.tool_config.get("settings", {}).get(
"base_url", "https://www.ebi.ac.uk/metagenomics/api/latest"
)
timeout = int(self.tool_config.get("settings", {}).get("timeout", 30))
query: Dict[str, Any] = {}
if arguments.get("biome"):
query["biome"] = arguments["biome"]
if arguments.get("search"):
query["search"] = arguments["search"]
if arguments.get("size") is not None:
query["size"] = int(arguments["size"])
else:
query["size"] = 10
url = f"{base}/studies?{urlencode(query)}"
try:
api_response = _http_get(
url, headers={"Accept": "application/json"}, timeout=timeout
)
# Wrap API response to match schema: data.data should be array
# API returns {"data": [...], "links": {...}, "meta": {...}}
# Schema expects {"data": {"data": [...]}}
if isinstance(api_response, dict) and "data" in api_response:
wrapped_data = {"data": api_response.get("data", [])}
else:
# Fallback if response format is unexpected
wrapped_data = {
"data": api_response if isinstance(api_response, list) else []
}
return {
"source": "MGnify",
"endpoint": "studies",
"query": query,
"data": wrapped_data,
"success": True,
}
except Exception as e:
return {
"error": str(e),
"source": "MGnify",
"endpoint": "studies",
"success": False,
}
[docs]
@register_tool(
"MGnifyAnalysesTool",
config={
"name": "MGnify_list_analyses",
"type": "MGnifyAnalysesTool",
"description": "List MGnify analyses via /analyses for a given study_accession",
"parameter": {
"type": "object",
"properties": {
"study_accession": {
"type": "string",
"description": "MGnify study accession, e.g., 'MGYS00000001'",
},
"size": {
"type": "integer",
"default": 10,
"minimum": 1,
"maximum": 100,
},
},
"required": ["study_accession"],
},
"settings": {
"base_url": "https://www.ebi.ac.uk/metagenomics/api/latest",
"timeout": 30,
},
},
)
class MGnifyAnalysesTool:
[docs]
def run(self, arguments: Dict[str, Any]):
base = self.tool_config.get("settings", {}).get(
"base_url", "https://www.ebi.ac.uk/metagenomics/api/latest"
)
timeout = int(self.tool_config.get("settings", {}).get("timeout", 30))
query: Dict[str, Any] = {
"study_accession": arguments.get("study_accession"),
}
if arguments.get("size") is not None:
query["size"] = int(arguments["size"])
else:
query["size"] = 10
url = f"{base}/analyses?{urlencode(query)}"
try:
api_response = _http_get(
url, headers={"Accept": "application/json"}, timeout=timeout
)
# Wrap API response to match schema: data.data should be array
# API returns {"data": [...], "links": {...}, "meta": {...}}
# Schema expects {"data": {"data": [...]}}
if isinstance(api_response, dict) and "data" in api_response:
wrapped_data = {"data": api_response.get("data", [])}
else:
# Fallback if response format is unexpected
wrapped_data = {
"data": api_response if isinstance(api_response, list) else []
}
return {
"source": "MGnify",
"endpoint": "analyses",
"query": query,
"data": wrapped_data,
"success": True,
}
except Exception as e:
return {
"error": str(e),
"source": "MGnify",
"endpoint": "analyses",
"success": False,
}