Subgraph Neural Networks

SubGNN is a general framework for subgraph representation learning. SubGNN learns meaningful representations for subgraphs and supports prediction of any subgraph properties.

We present SubGNN, a general method for subgraph representation learning. It addresses a fundamental gap in current graph neural network (GNN) methods that are not yet optimized for subgraph-level predictions.

Our method implements in a neural message passing scheme three distinct channels to each capture a key property of subgraphs: neighborhood, structure, and position. We have generated four synthetic datasets highlighting a specific subgraph property. By performing an ablation study over the channels, we demonstrate that the performance of individual channels aligns closely with their inductive biases.

SubGNN outperforms baseline methods across both synthetic and real-world datasets. Along with SubGNN, we have released eight new datasets representing a diverse collection of tasks to pave the way for innovating subgraph neural networks in the future.

Publication

Subgraph Neural Networks
Emily Alsentzer, Samuel G. Finlayson, Michelle M. Li, Marinka Zitnik
NeurIPS 2020 [arXiv] [poster]

@inproceedings{alsentzer2020subgraph,
  title={Subgraph Neural Networks},
  author={Alsentzer, Emily and Finlayson, Samuel G and Li, Michelle M and Zitnik, Marinka},
  booktitle={Proceedings of Neural Information Processing Systems, NeurIPS},
  year={2020}
}

Motivation

Encoding subgraphs for GNNs is not well-studied or commonly used. Rather, current GNN methods are optimized for node-, edge-, and graph-level predictions, but not yet at the subgraph-level.

Representation learning for subgraphs presents unique challenges.

  • Subgraphs require that we make joint predictions over structures of varying sizes. They do not necessarily cluster together, and can even be composed of multiple disparate components that are far apart from each other in the graph.
  • Subgraphs contain rich higher-order connectivity patterns, both internally and externally with the rest of the graph. The challenge is to inject information about border and external subgraph structure into the GNN’s neural message passing.
  • Subgraphs can be localized or distributed throughout the graph. We must effectively learn about subgraph positions within the underlying graph.

The following figure depicts a simple base graph and five subgraphs, each with different structures. For instance, subgraphs S2, S3, and S5 comprise of single connected components in the graph, whereas subgraphs S1 and S4 each form two isolated components. Colors indicate subgraph labels. The right panel illustrates an example of internal connectivity versus border structure

SubGNN framework

SubGNN takes as input a base graph and subgraph information to train embeddings for each subgraph. Each channel’s output embeddings are then concatenated to generate one final subgraph embedding.

The figure above depicts SubGNN’s architecture. The left panel illustrates how property-specific messages are propagated from anchor node patches to subgraph components. The right panel shows the three channels designed to capture a distinct subgraph property.

Datasets

We present four new synthetic datasets and four novel real-world social and biological datasets to stimulate subgraph representation learning research.

Synthetic datasets

Each synthetic dataset challenges the ability of our methods to capture:

  • DENSITY: Internal structure of subgraph topology.
  • CUT RATIO: Border structure of subgraph topology.
  • CORENESS: Border structure and position of subgraph topology.
  • COMPONENT: Internal and external position of subgraph topology.

Real-world datasets

  • PPI-BP is a molecular biology dataset, where the subgraphs are a group of genes and their labels are the genes’ collective cellular function. The base graph is a human protein-protein interaction network.
  • UDN-METAB is a clinical dataset, where the subgraphs are a collection of phenotypes associated with a rare monogenic disease and their labels are the subcategory of the metabolic disorder most consistent with those phenotypes. The base graph is a knowledge graph containing phenotype and genotype information about rare diseases.
  • UDN-NEURO is similar to UDN-METAB but for one or more neurological disorders (multilabel classification), and shares the same base graph.
  • EM is a social dataset, where the subgraphs are the workout history of a user and their labels are the gender of the user. The base graph is a social fitness network from Endomondo.

Code

Source code is available in the GitHub repository.

Authors

Latest News

Aug 2024:   Graph AI in Medicine

Excited to share a new perspective on Graph Artificial Intelligence in Medicine in Annual Reviews.

Aug 2024:   How Proteins Behave in Context

Harvard Medicine News on our new AI tool that captures how proteins behave in context. Kempner Institute on how context matters for foundation models in biology.

Jul 2024:   PINNACLE in Nature Methods

PINNACLE contextual AI model is published in Nature Methods. Paper. Research Briefing. Project website.

Jul 2024:   Digital Twins as Global Health and Disease Models of Individuals

Paper on digitial twins outlining strategies to leverage molecular and computational techniques to construct dynamic digital twins on the scale of populations to individuals.

Jul 2024:   Three Papers: TrialBench, 3D Structure Design, LLM Editing

Jun 2024:   TDC-2: Multimodal Foundation for Therapeutics

The Commons 2.0 (TDC-2) is an overhaul of Therapeutic Data Commons to catalyze research in multimodal models for drug discovery by unifying single-cell biology of diseases, biochemistry of molecules, and effects of drugs through multimodal datasets, AI-powered API endpoints, new tasks and benchmarks. Our paper.

May 2024:   Broad MIA: Protein Language Models

Apr 2024:   Biomedical AI Agents

Mar 2024:   Efficient ML Seminar Series

We started a Harvard University Efficient ML Seminar Series. Congrats to Jonathan for spearheading this initiative. Harvard Magazine covered the first meeting focusing on LLMs.

Mar 2024:   UniTS - Unified Time Series Model

UniTS is a unified time series model that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. Project website.

Mar 2024:   Weintraub Graduate Student Award

Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. News Story. Congratulations!

Mar 2024:   PocketGen - Generating Full-Atom Ligand-Binding Protein Pockets

PocketGen is a deep generative model that generates residue sequence and full-atom structure of protein pockets, maximizing binding to ligands. Project website.

Feb 2024:   SPECTRA - Generalizability of Molecular AI

Feb 2024:   Kaneb Fellowship Award

The lab receives the John and Virginia Kaneb Fellowship Award at Harvard Medical School to enhance research progress in the lab.

Feb 2024:   NSF CAREER Award

The lab receives the NSF CAREER Award for our research in geometric deep learning to facilitate algorithmic and scientific advances in therapeutics.

Feb 2024:   Dean’s Innovation Award in AI

Jan 2024:   AI's Prospects in Nature Machine Intelligence

We discussed AI’s 2024 prospects with Nature Machine Intelligence, covering LLM progress, multimodal AI, multi-task agents, and how to bridge the digital divide across communities and world regions.

Jan 2024:   Combinatorial Therapeutic Perturbations

New paper introducing PDGrapher for combinatorial prediction of chemical and genetic perturbations using causally-inspired neural networks.

Zitnik Lab  ·  Artificial Intelligence in Medicine and Science  ·  Harvard  ·  Department of Biomedical Informatics