Subgraph Neural Networks

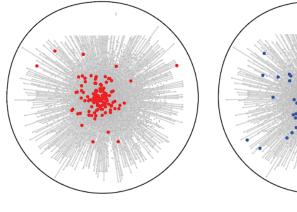
Emily Alsentzer*, Sam Finlayson*, Michelle Li, Marinka Zitnik {emilya, sgfin}@mit.edu, michelleli@g.harvard.edu, marinka@hms.harvard.edu

Motivation

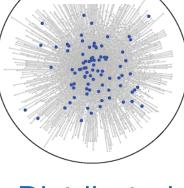
Limited existing work on subgraph representation learning

Subgraphs present unique challenges for representation learning that do not exist for nodes or entire graphs

- Need to jointly predict over structures of varying size
- Subgraphs can be localized or distributed throughout the graph



Localized



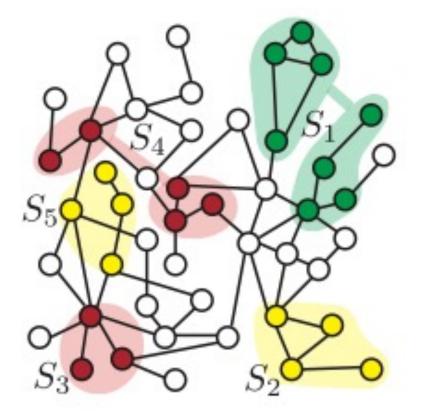
Distributed

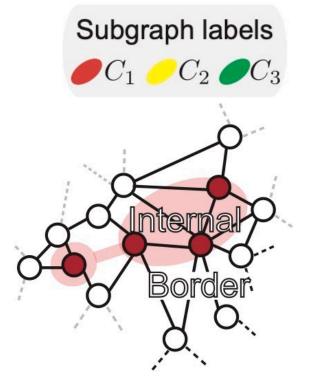
Subgraphs have rich topology and connectivity patterns, both internally & externally with the rest of G

	Internal (I)	Border (B)
Position (P)	Distance between S_i 's components	Distance between S_i and rest of G
Neighborhood (N)	Identity of S_i 's internal nodes	Identity of S_i 's border nodes
Structure (S)	Internal connectivity of S_i	Border connectivity of S_i

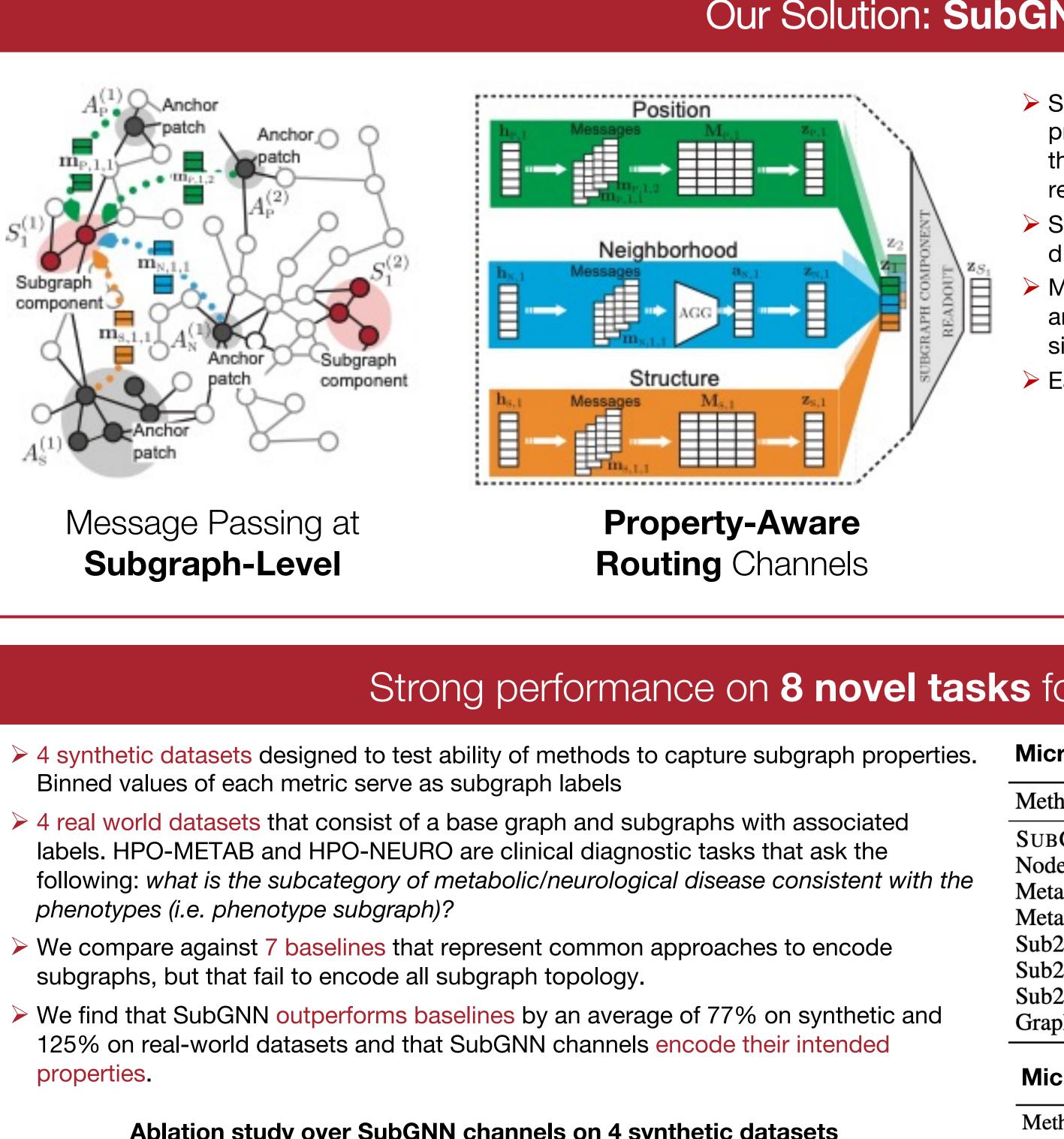
Open Questions

How to represent subgraphs that comprise of multiple disparate components? How to represent rich internal and border subgraph topology?





Goal: Learn a representation of each subgraph S_i such that the likelihood of preserving properties of S_i is maximized in the embedding space



SUB-GNN Channel DENSITY CUT RATIO CORENESS COMPONENT						
Position (P)	0.758 ± 0.046	0.516 ± 0.083	0.581±0.044 🖌	0.958±0.098 🗸		
Neighborhood (N)	0.777 ± 0.057	0.313 ± 0.087	0.485 ± 0.075	$0.823{\scriptstyle\pm0.089}$		
Structure (S)	0.919±0.016 🖌	0.629±0.039 🖌	0.663±0.058 🖌	0.600±0.170		
All (P+N+S)	0.894 ± 0.025	0.458 ± 0.101	0.659±0.092	0.726 ± 0.120		

Channels designed to encode relevant properties yield best performance (e.g. structure channel performs best on DENSITY (internal structure dataset)

Project Website: https://zitniklab.hms.harvard.edu/projects/SubGNN

Our Solution: SubGNN

Strong performance on 8 novel tasks for subgraph prediction

Ablation study over SubGNN channels on 4 synthetic datasets

Micro F1 on Synthetic Datasets

Method	DENSITY	CUT RATIO	CORENESS	COMPONENT
SUBGNN (Ours)	0.919±0.016	0.629±0.039	0.659±0.092	0.958±0.098
Node Averaging	$0.429{\scriptstyle\pm0.041}$	$0.358{\scriptstyle\pm0.055}$	$0.530{\scriptstyle\pm0.050}$	$0.516 \pm < 0.001$
Meta Node (GIN)	$0.442{\scriptstyle\pm0.052}$	$0.423{\scriptstyle\pm0.057}$	0.611 ± 0.050	$0.784{\pm}0.046$
Meta Node (GAT)	$0.690{\scriptstyle\pm0.021}$	$0.284{\scriptstyle\pm0.052}$	$0.519{\scriptstyle \pm 0.076}$	$0.935 \pm < 0.001$
Sub2Vec Neighborhood	$0.345{\scriptstyle\pm0.066}$	$0.339{\scriptstyle\pm0.058}$	$0.381 {\pm} 0.047$	$0.568{\scriptstyle\pm0.039}$
Sub2Vec Structure	$0.339{\scriptstyle\pm0.036}$	$0.345{\scriptstyle\pm0.121}$	0.404 ± 0.097	$0.510{\scriptstyle \pm 0.013}$
Sub2Vec N & S Concat	$0.352{\scriptstyle\pm0.071}$	$0.303{\scriptstyle\pm0.062}$	$0.356{\scriptstyle\pm0.050}$	$0.568{\scriptstyle\pm0.021}$
Graph-level GNN	$0.803{\scriptstyle\pm0.039}$	$0.329{\scriptstyle\pm0.073}$	$0.370{\scriptstyle\pm0.091}$	$0.500{\scriptstyle \pm 0.068}$

Micro F1 on Real-World Datasets

Meth SUB(SUB(Node Meta Meta Sub2 Sub2 Sub₂ Grapl

- SubGNN learns subgraph representations in a hierarchical fashion by propagating neural messages from anchor patches sampled throughout the graph to subgraph components and aggregating the resulting representations into a final subgraph embedding
- SubGNN specifies three channels, each designed to capture a distinct property: position, neighborhood, structure
- Message passing occurs separately within each channel: messages are sent from anchor patches and weighted by a property-specific similarity function
- \succ Each channel x has three key elements:
 - \succ Sampling function ϕ_x to sample anchor patches (helper) subgraphs randomly sampled from G)
 - \succ Anchor patch encoder ψ_x to embed the anchor patches
 - \succ Similarity function γ_x to weight messages sent from anchor patches to connected components

hod	PPI-BP	HPO-NEURO	HPO-METAB	EM-USER
GNN (+ GIN) GNN (+ GraphSAINT)	$\begin{array}{ }\textbf{0.599}{\scriptstyle\pm 0.024}\\ 0.583 {\scriptstyle\pm 0.017}\end{array}$		$\begin{array}{c} \textbf{0.537}{\scriptstyle\pm \textbf{0.023}} \\ 0.428 {\scriptstyle\pm 0.035} \end{array}$	$\begin{array}{c} 0.814 {\pm} 0.046 \\ 0.816 {\pm} 0.040 \end{array}$
e Averaging a Node (GIN) a Node (GAT) 2Vec Neighborhood 2Vec Structure 2Vec N & S Concat oh-level GNN	$\begin{array}{c} 0.297 \pm 0.027 \\ 0.306 \pm 0.025 \\ 0.307 \pm 0.021 \\ 0.306 \pm 0.009 \\ 0.306 \pm 0.021 \\ 0.309 \pm 0.023 \\ 0.398 \pm 0.058 \end{array}$	$\begin{array}{c} 0.259 \pm 0.063 \\ 0.211 \pm 0.068 \\ 0.223 \pm 0.065 \\ 0.206 \pm 0.073 \end{array}$	$\begin{array}{c} 0.443 \pm 0.063 \\ 0.151 \pm 0.073 \\ 0.138 \pm 0.034 \\ 0.132 \pm 0.047 \\ 0.124 \pm 0.025 \\ 0.114 \pm 0.021 \\ 0.452 \pm 0.025 \end{array}$	$\begin{array}{c} 0.808 \pm 0.138 \\ 0.480 \pm 0.089 \\ 0.471 \pm 0.048 \\ 0.520 \pm 0.090 \\ \textbf{0.859} \pm \textbf{0.014} \\ 0.522 \pm 0.043 \\ 0.561 \pm 0.059 \end{array}$

Standard deviations from runs with 10 random seeds