Unified Framework for Fair and Stable Graph Representation Learning

As the representations output by Graph Neural Networks (GNNs) are increasingly employed in real-world applications, it becomes important to ensure that these representations are fair and stable. We establish a key connection between counterfactual fairness and stability and use it to develop a novel framework, NIFTY (uNIfying Fairness and stabiliTY), which can be used with any GNN to learn fair and stable representations.

We establish a key connection between counterfactual fairness and stability and leverage it to develop NIFTY (uNIfying Fairness and stabiliTY), a novel framework that can be used with any GNN to learn fair and stable representations.

We introduce a novel objective function that simultaneously accounts for fairness and stability and develop a layer-wise weight normalization using the Lipschitz constant to enhance neural message passing in GNNs. In doing so, we enforce fairness and stability both in the objective function as well as in the GNN architecture. Further, we show theoretically that our layer-wise weight normalization promotes counterfactual fairness and stability in the resulting representations.

We introduce three new graph datasets comprising of high-stakes decisions in criminal justice and financial lending domains. Extensive experimentation with the above datasets demonstrates the efficacy of our framework.

Publication

Towards a Unified Framework for Fair and Stable Graph Representation Learning
Chirag Agarwal, Himabindu Lakkaraju*, Marinka Zitnik*
Conference on Uncertainty in Artificial Intelligence, UAI 2021 [arXiv] [poster] [ICML 2021 Socially Responsible ML]

@inproceedings{agarwal2021towards,
  title={Towards a Unified Framework for Fair and Stable Graph Representation Learning},
  author={Agarwal, Chirag and Lakkaraju, Himabindu and Zitnik, Marinka},
  booktitle={Proceedings of Conference on Uncertainty in Artificial Intelligence, UAI},
  year={2021}
}

Motivation

Over the past decade, there has been a surge of interest in leveraging GNNs for graph representation learning. GNNs have been used to learn powerful representations that enabled critical predictions in downstream applications—e.g., predicting protein-protein interactions, drug repurposing, crime forecasting, news and product recommendations.

As GNNs are increasingly implemented in real-world applications, it becomes important to ensure that these models and the resulting representations are safe and reliable. More specifically, it is important to ensure that:

  • these models and the representations they produce are not perpetrating undesirable discriminatory biases (i.e., they are fair), and
  • these models and the representations they produce are robust to attacks resulting from small perturbations to the graph structure and node attributes (i.e., they are stable).

NIFTY framework

We first identify a key connection between counterfactual fairness and stability. While stability accounts for robustness w.r.t. small random perturbations to node attributes and/or edges, counterfactual fairness accounts for robustness w.r.t. modifications of the sensitive attribute.

We leverage this connection to develop NIFTY that can be used with any existing GNN model to learn fair and stable representations. Our framework exploits the aforementioned connection to enforce fairness and stability both in the objective function as well as in the GNN architecture.

More specifically, we introduce a novel objective function which simultaneously optimizes for counterfactual fairness and stability by maximizing the similarity between representations of the original nodes in the graph, and their counterparts in the augmented graph. Nodes in the augmented graph are generated by slightly perturbing the original node attributes and edges or by considering counterfactuals of the original nodes where the value of the sensitive attribute is modified. We also develop a novel method for improving neural message passing by carrying out layer-wise weight normalization using the Lipschitz constant.

We theoretically show that this normalization promotes counterfactual fairness and stability of learned representations. To the best of our knowledge, this work is the first to tackle the problem of learning node representations that are both fair and stable.

The figure above gives an overview of NIFTY. NIFTY can learn node representations that are both fair and stable (i.e., invariant to the sensitive attribute value and perturbations to the graph structure and non-sensitive attributes) by maximizing the similarity between representations from diverse augmented graphs.

Datasets

We introduce and experiment with three new graph datasets comprising of critical decisions in criminal justice (if a defendant should be released on bail) and financial lending (if an individual should be given loan) domains.

  • German credit graph has 1,000 nodes representing clients in a German bank that are connected based on the similarity of their credit accounts. The task is to classify clients into good vs. bad credit risks considering clients’ gender as the sensitive attribute.
  • Recidivism graph has 18,876 nodes representing defendants who got released on bail at the U.S state courts during 1990-2009. Defendants are connected based on the similarity of past criminal records and demographics. The task is to classify defendants into bail (i.e., unlikely to commit a violent crime if released) vs. no bail (i.e., likely to commit a violent crime) considering race information as the protected attribute.
  • Credit defaulter graph has 30,000 nodes representing individuals that we connected based on the similarity of their spending and payment patterns. The task is to predict whether an individual will default on the credit card payment or not while considering age as the sensitive attribute.

Code

Source code is available in the GitHub repository.

Authors

Latest News

Apr 2024:   Biomedical AI Agents

Mar 2024:   Efficient ML Seminar Series

We started a Harvard University Efficient ML Seminar Series. Congrats to Jonathan for spearheading this initiative. Harvard Magazine covered the first meeting focusing on LLMs.

Mar 2024:   UniTS - Unified Time Series Model

UniTS is a unified time series model that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. Project website.

Mar 2024:   Weintraub Graduate Student Award

Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. News Story. Congratulations!

Mar 2024:   PocketGen - Generating Full-Atom Ligand-Binding Protein Pockets

PocketGen is a deep generative model that generates residue sequence and full-atom structure of protein pockets, maximizing binding to ligands. Project website.

Feb 2024:   SPECTRA - Generalizability of Molecular AI

Feb 2024:   Kaneb Fellowship Award

The lab receives the John and Virginia Kaneb Fellowship Award at Harvard Medical School to enhance research progress in the lab.

Feb 2024:   NSF CAREER Award

The lab receives the NSF CAREER Award for our research in geometric deep learning to facilitate algorithmic and scientific advances in therapeutics.

Feb 2024:   Dean’s Innovation Award in AI

Jan 2024:   AI's Prospects in Nature Machine Intelligence

We discussed AI’s 2024 prospects with Nature Machine Intelligence, covering LLM progress, multimodal AI, multi-task agents, and how to bridge the digital divide across communities and world regions.

Jan 2024:   Combinatorial Therapeutic Perturbations

New paper introducing PDGrapher for combinatorial prediction of chemical and genetic perturbations using causally-inspired neural networks.

Nov 2023:   Next Generation of Therapeutics Commons

Oct 2023:   Structure-Based Drug Design

Geometric deep learning has emerged as a valuable tool for structure-based drug design, to generate and refine biomolecules by leveraging detailed three-dimensional geometric and molecular interaction information.

Oct 2023:   Graph AI in Medicine

Graph AI models in medicine integrate diverse data modalities through pre-training, facilitate interactive feedback loops, and foster human-AI collaboration, paving the way to clinically meaningful predictions.

Sep 2023:   New papers accepted at NeurIPS

Sep 2023:   Future Directions in Network Biology

Excited to share our perspectives on current and future directions in network biology.

Aug 2023:   Scientific Discovery in the Age of AI

Jul 2023:   PINNACLE - Contextual AI protein model

PINNACLE is a contextual AI model for protein understanding that dynamically adjusts its outputs based on biological contexts in which it operates. Project website.

Jun 2023:   Our Group is Joining the Kempner Institute

Excited to join Kempner’s inaugural cohort of associate faculty to advance Kempner’s mission of studying the intersection of natural and artificial intelligence.

Zitnik Lab  ·  Artificial Intelligence in Medicine and Science  ·  Harvard  ·  Department of Biomedical Informatics