uai

Towards A Unified Framework For Fair And Stable Graph Representation Learning

<u>Chirag Agarwal</u>, Himabindu Lakkaraju*, Marinka Zitnik* <u>chirag agarwal@hms.harvard.edu</u>, <u>hlakkaraju@hbs.edu</u>, <u>marinka@hms.harvard.edu</u>

Motivation

(*U*)

 $\bullet Z_{11}$

 $Z_{u}, Z_{v} \in \mathbb{R}^{d}$

Limited existing work on learning graph representation that are Fair and stable as they present some unique challenges:

Need for a unifying framework that jointly optimizes for Fairness and Stability

Nodes with similar sensitive attribute values are likely to share similar representations leading to severe discriminatory biases **Open Questions**

How to identify a connection between fairness and stability?

How does fairness and stability affect node representation downstream performance?

Goal: Given a graph G, learn embeddings that are counterfactually fair and stable to attribute and structural perturbations of G

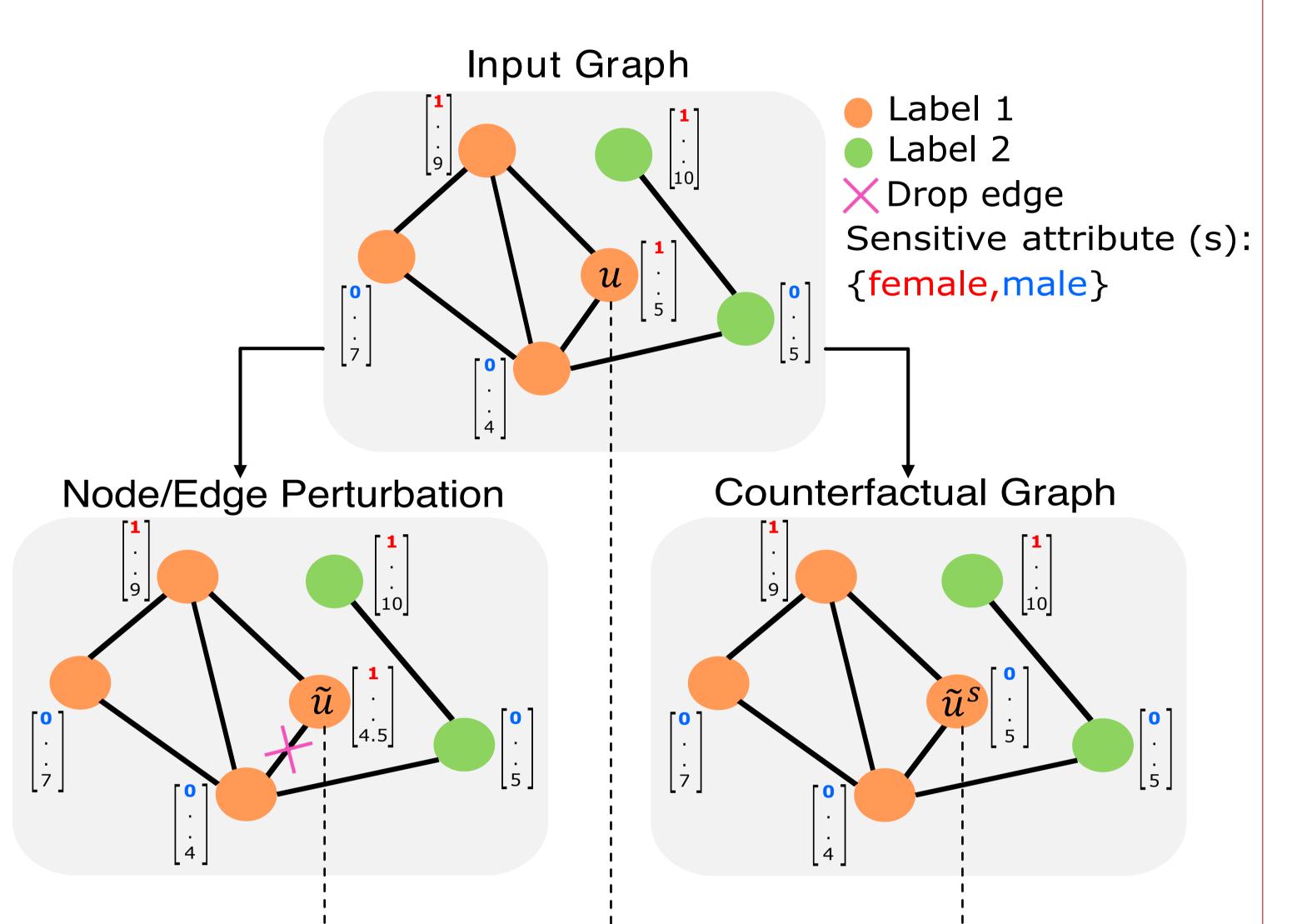
Our Framework: NIFTY

- NIFTY identifies a key connection between counterfactual fairness and stability where stability accounts for robustness *w.r.t.* small random perturbations to node attributes and/or edges, counterfactual fairness accounts for robustness *w.r.t.* modifications of the sensitive attribute
- NIFTY enforces fairness and stability both in the objective function as well as in the GNN architecture
 - The objective function maximizes the similarity between representations of the original nodes in the graph, and their counterparts in the augmented graph

$$\mathcal{L}_{s} = \mathbb{E}_{u} \Big[\frac{1}{2} \Big(D(t(\mathbf{z}_{u}), \operatorname{sg}(\tilde{\mathbf{z}}_{u})) + D(t(\tilde{\mathbf{z}}_{u}), \operatorname{sg}(\mathbf{z}_{u})) \Big) \Big]$$
$$\min_{\theta_{\text{ENC}}, \theta_{t}, \theta_{f}} \mathbb{E}_{u} \left[(1 - \lambda) \mathcal{L}_{c} \right] + \lambda \mathcal{L}_{s}$$

• Enhancing the neural message passing step by carrying out layer-wise weight normalization using the Lipschitz constant

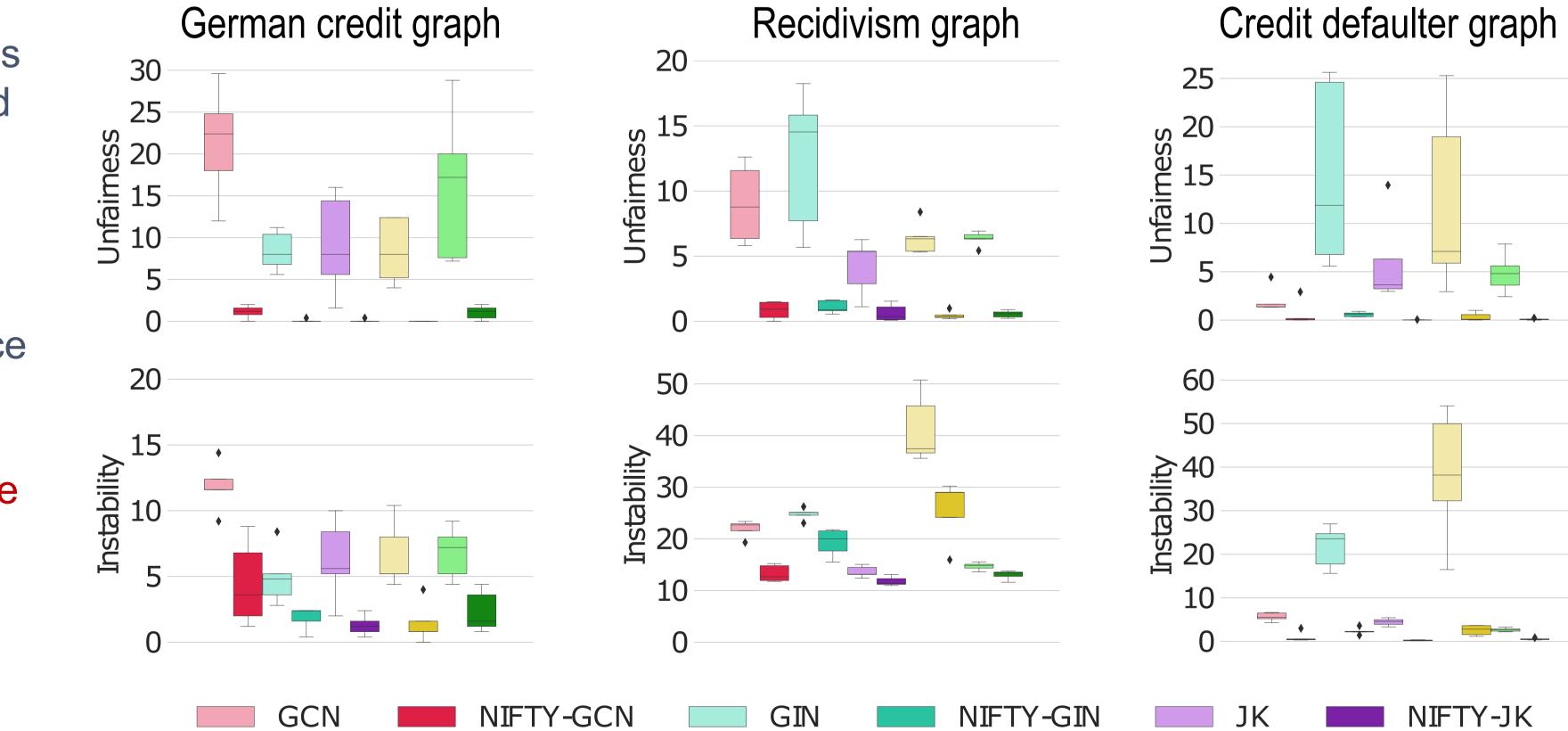
$$\begin{split} \tilde{\mathbf{W}}_a^k &= \mathbf{W}_a^k / \sigma(\mathbf{W}_a^k) \\ \mathbf{h}_u^k &= \sigma(\tilde{\mathbf{W}}_a^k \mathbf{h}_u^{k-1} + \mathbf{W}_n^k \sum_{v \in \mathcal{N}(u)} \mathbf{h}_v^{k-1}). \end{split}$$



maximize similarity between representations of u, \tilde{u} , and \tilde{u}^s

Improved Fairness and Stability across 3 datasets and 5 GNNs

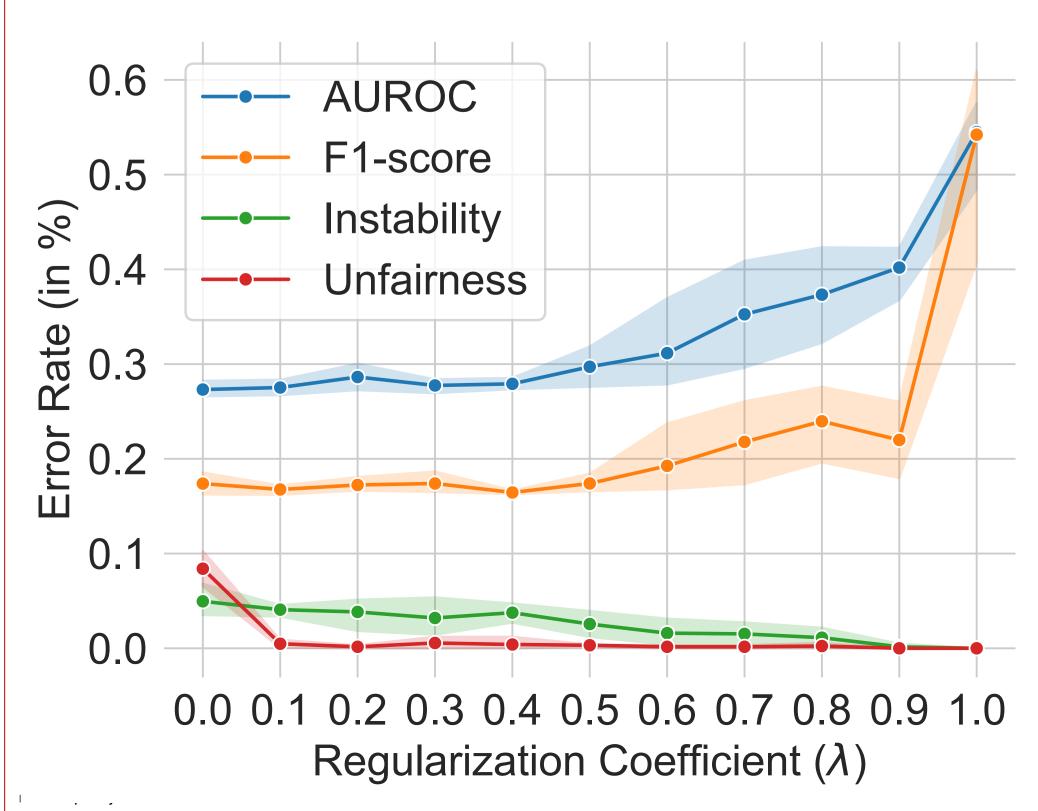
- 3 new graph datasets comprising of high-stakes decisions in criminal justice and financial lending domains designed to analyze fairness and stability properties of GNNs
- Across 3 datasets and 5 GNNs, NIFTY improves stability and fairness of GNNs by 60.87% and 92.01%, respectively, without sacrificing the predictive performance
- Enforcing fairness and stability both using the objective function and layer-wise normalization of GNN architecture using the Lipschitz constant are important
- We observe that increasing regularization coefficient λ in NIFTY decreases the error rates for counterfactual fairpage and atability atagdily.



INFOMAX

NIFTY-INFOMAX

fairness and stability steadily



blation study						
Method	AUROC (\uparrow)	F1-score (†)	Unfairness (↓)	Instability (\downarrow)	$\Delta_{SP}(\downarrow)$	$\Delta_{EO}(\downarrow)$
GCN [Kipf and Welling, 2017]	$86.52{\scriptstyle\pm0.42}$	$77.50 {\pm} 0.87$	9.02 ± 3.04	21.97 ± 1.63	$8.49{\scriptstyle\pm0.73}$	$5.93{\scriptstyle\pm0.56}$
NIFTY-GCN w/o obj. changes (Sec. 4.1)	80.02 ± 0.20	67.51 ± 0.23	$2.61 {\pm} 0.64$	$13.69 {\pm} 0.60$	$5.86{\scriptstyle \pm 0.85}$	$4.65{\scriptstyle\pm0.49}$
NIFTY-GCN w/o arch. changes (Sec. 4.2)	84.83 ± 2.85	76.15 ± 5.74	1.64 ± 1.58	13.98 ± 1.38	4.29 ± 1.32	3.48 ± 1.37
NIFTY-GCN	81.40 ± 0.89	$69.24{\scriptstyle\pm0.70}$	0.84 ± 0.68	13.28 ± 1.62	$3.16{\scriptstyle \pm 0.60}$	$\pmb{2.99}{\scriptstyle\pm 0.40}$
	41 1					

NIFTY-SAGE

Comparison of NIFTY to baseline methods

SAGE

Dataset	Method	AUROC (†)	F1-score (†)	Unfairness (↓)	Instability (\downarrow)	$\Delta_{SP}(\downarrow)$	$\Delta_{EO} (\downarrow)$
German credit graph	FairGCN RobustGCN NIFTY-GCN	$\begin{array}{c} 75.21 {\pm} 0.36 \\ 71.06 {\pm} 1.48 \\ 70.32 {\pm} 4.42 \end{array}$	$\substack{81.52 \pm 0.68 \\ 78.85 \pm 6.39 \\ 81.98 \pm 0.82 }$	N/A 7.68±4.69 1.12 ±0.77	$7.84{\pm}2.20 \\ 4.48{\pm}1.07 \\ \textbf{4.48}{\pm}3.23$	38.12 ± 4.87 25.78 ± 10.92 15.08 ± 8.22	$\begin{array}{c} 26.70 {\pm} 4.27 \\ 18.47 {\pm} 9.87 \\ \textbf{12.56} {\pm} 8.60 \end{array}$
Recidivism graph	FairGCN RobustGCN NIFTY-GCN	$\begin{array}{c} 87.55 {\pm} 0.60 \\ 87.25 {\pm} 1.67 \\ 81.40 {\pm} 0.89 \end{array}$	$78.14{\scriptstyle\pm0.94}\\79.02{\scriptstyle\pm2.84}\\69.24{\scriptstyle\pm0.70}$	N/A 2.61±1.58 0.84 ±0.68	$\begin{array}{c} 24.37 {\pm} 2.33 \\ \textbf{13.02} {\pm} 6.06 \\ 13.28 {\pm} 1.62 \end{array}$	$\begin{array}{c} 6.51{\pm}0.77\\ 5.36{\pm}1.28\\ \textbf{3.16}{\pm}0.60\end{array}$	$\begin{array}{c} 4.51 {\pm} 1.10 \\ 4.20 {\pm} 1.88 \\ \textbf{2.99} {\pm} 0.40 \end{array}$
Credit defaulter graph	FairGCN RobustGCN NIFTY-GCN	$\begin{array}{c} 72.69 {\pm} 1.23 \\ 72.98 {\pm} 0.26 \\ 71.92 {\pm} 0.19 \end{array}$	$\begin{array}{c} 80.16 {\pm} 2.03 \\ 81.79 {\pm} 0.60 \\ 81.99 {\pm} 0.63 \end{array}$	N/A 0.94±0.60 0.63 ±1.28	5.73 ± 0.60 1.68 ± 0.83 0.95 ± 1.16	$\begin{array}{c} 15.86{\pm}5.16\\ 12.41{\pm}0.54\\ \textbf{12.40}{\pm}1.62\end{array}$	$\begin{array}{c} 14.43 {\pm} 6.06 \\ 10.16 {\pm} 0.49 \\ \textbf{10.09} {\pm} 1.55 \end{array}$