Graph Meta Learning

G-Meta is broadly applicable, theoretically motivated, and scalable graph network framework for few-shot and meta learning.

Graph few-shot and meta learning

Prevailing methods for graphs require abundant label and edge information for learning, yet many real-world graphs only have a few labels available. This presents a new challenge: how to make accurate predictions in the low-data regimes?

When data for a new task are scarce, meta learning can learn from prior experiences and form much-needed inductive biases for fast adaptation to new tasks. However, a systematic way to formulate meta learning problems on graph-structured data is missing. In this work, we first formulate three important but distinct graph meta learning problems. The main idea is to adapt to the graph or label set of interest by learning from related graphs or label sets.

G-Meta algorithm

G-Meta is a meta learning algorithm that excels at all of the above meta learning problems. In contrast to the status quo that propagate messages through the entire graph, G-Meta uses local subgraphs to transfer subgraph-specific information and learn transferable knowledge faster via meta gradients.

Attractive properties of G-Meta

(1) Theoretically justified: We show theoretically that the evidence for a prediction can be found in the local subgraph surrounding the target node or edge.

(2) Inductive: As the input of GNN is a different subgraph for each propagation during meta-training, it can generalize to never-before-seen subgraphs, such as the ones in the meta-testing. This is in contrast to previous works where inductiveness means using the same weight generated from one single trained graph and applying it to a never-before-seen structurally different graph.

(3) Scalable: In a typical graph meta learning setting, we have many graphs and each have large amounts of nodes and edges. But each task is only looking at a few data points scattered across graphs. Previous works propagate through all of the graphs to generate embeddings for a few nodes, which is wasteful. In contrast, G-Meta simply extracts the small subgraphs around a few data points for every task, and is thus not restricted by any number of nodes, edges, and graphs.

(4) Broadly applicable: G-Meta uses an individual subgraph for each data point and thus breaks the dependency across graphs and labels. While previous works only excel at one of the graph meta learning problems for either node classification or link prediction tasks, G-Meta works for all of the three graph meta learning problems and both node and link prediction tasks.

G-Meta excels at graph meta learning

Empirically, experiments on seven datasets and nine baseline methods show that G-Meta outperforms existing methods by up to 16.3%. Unlike previous methods, G-Meta successfully learns in challenging, few-shot learning settings that require generalization to completely new graphs and never-before-seen labels. Finally, G-Meta scales to large graphs, which we demonstrate on a new Tree-of-Life dataset consisting of 1,840 graphs, a two-orders of magnitude increase in the number of graphs used in prior work.

Publication

Graph Meta Learning via Local Subgraphs
Kexin Huang, Marinka Zitnik
NeurIPS 2020 [arXiv] [poster]

@inproceedings{huangG-Meta2020,
  title={Graph Meta Learning via Local Subgraphs},
  author={Huang, Kexin and Zitnik, Marinka},
  booktitle={Proceedings of Neural Information Processing Systems, NeurIPS},
  year={2020}
}

Code

Source code is available in the GitHub repository.

Datasets

ML-ready datasets used in the paper are provided in the HU data repository and, alternatively, the Microsoft repository.

Authors

Latest News

Mar 2023:   New Paper in Nature Machine Intelligence

New paper with NASA in Nature Machine Intelligence on biomonitoring and precision health in deep space supported by artificial intelligence.

Mar 2023:   New Paper in Nature Machine Intelligence

Mar 2023:   TxGNN - Zero-shot prediction of therapeutic use

Mar 2023:   GraphXAI published in Scientific Data

Feb 2023:   Welcoming New Postdoctoral Fellows

A warm welcome to postdoctoral fellows Ruth Johnson and Wanxiang Shen. We are thrilled to have them joining us soon and look forward to working together.

Feb 2023:   New Preprint on Distribution Shifts

Feb 2023:   PrimeKG published in Scientific Data

Jan 2023:   GNNDelete published at ICLR 2023

Jan 2023:   New Network Principle for Molecular Phenotypes

Dec 2022:   Can we shorten rare disease diagnostic odyssey?

New preprint! Geometric deep learning for diagnosing patients with rare genetic diseases. Implications for using deep learning on sparsely-labeled medical datasets. Thankful for this collaboration with Zak Lab. Project website.

Nov 2022:   Can AI transform the way we discover new drugs?

Our conversation with Harvard Medicine News highlights recent developments and new features in Therapeutics Data Commons.

Oct 2022:   New Paper in Nature Biomedical Engineering

New paper on graph representation learning in biomedicine and healthcare published in Nature Biomedical Engineering.

Sep 2022:   New Paper in Nature Chemical Biology

Our paper on artificial intelligence foundation for therapeutic science is published in Nature Chemical Biology.

Sep 2022:   Self-Supervised Pre-Training at NeurIPS 2022

New paper on self-supervised contrastive pre-training accepted at NeurIPS 2022. Project page. Thankful for this collaboration with the Lincoln National Laboratory.

Sep 2022:   Best Paper Honorable Mention Award at IEEE VIS

Our paper on user-centric AI of drug repurposing received the Best Paper Honorable Mention Award at IEEE VIS 2022. Thankful for this collaboration with Gehlenborg Lab.

Sep 2022:   Multimodal Representation Learning with Graphs

Aug 2022:   On Graph AI for Precision Medicine

The recording of our tutorial on using graph AI to advance precision medicine is available. Tune into four hours of interactive lectures about state-of-the-art graph AI methods and applications in precision medicine.

Aug 2022:   Evaluating Explainability for GNNs

New preprint! We introduce a resource for broad evaluation of the quality and reliability of GNN explanations, addressing challenges and providing solutions for GNN explainability. Project website.

Jul 2022:   New Frontiers in Graph Learning at NeurIPS

Excited to organize the New Frontiers in Graph Learning workshop at NeurIPS.

Jul 2022:   AI4Science at NeurIPS

We are excited to host the AI4Science meeting at NeurIPS discussing AI-driven scientific discovery, implementation and verification of AI in science, the influence AI has on the conduct of science, and more.

Zitnik Lab  ·  Artificial Intelligence in Medicine and Science  ·  Harvard  ·  Department of Biomedical Informatics