Graph Meta Learning

G-Meta is broadly applicable, theoretically motivated, and scalable graph network framework for few-shot and meta learning.

Graph few-shot and meta learning

Prevailing methods for graphs require abundant label and edge information for learning, yet many real-world graphs only have a few labels available. This presents a new challenge: how to make accurate predictions in the low-data regimes?

When data for a new task are scarce, meta learning can learn from prior experiences and form much-needed inductive biases for fast adaptation to new tasks. However, a systematic way to formulate meta learning problems on graph-structured data is missing. In this work, we first formulate three important but distinct graph meta learning problems. The main idea is to adapt to the graph or label set of interest by learning from related graphs or label sets.

G-Meta algorithm

G-Meta is a meta learning algorithm that excels at all of the above meta learning problems. In contrast to the status quo that propagate messages through the entire graph, G-Meta uses local subgraphs to transfer subgraph-specific information and learn transferable knowledge faster via meta gradients.

Attractive properties of G-Meta

(1) Theoretically justified: We show theoretically that the evidence for a prediction can be found in the local subgraph surrounding the target node or edge.

(2) Inductive: As the input of GNN is a different subgraph for each propagation during meta-training, it can generalize to never-before-seen subgraphs, such as the ones in the meta-testing. This is in contrast to previous works where inductiveness means using the same weight generated from one single trained graph and applying it to a never-before-seen structurally different graph.

(3) Scalable: In a typical graph meta learning setting, we have many graphs and each have large amounts of nodes and edges. But each task is only looking at a few data points scattered across graphs. Previous works propagate through all of the graphs to generate embeddings for a few nodes, which is wasteful. In contrast, G-Meta simply extracts the small subgraphs around a few data points for every task, and is thus not restricted by any number of nodes, edges, and graphs.

(4) Broadly applicable: G-Meta uses an individual subgraph for each data point and thus breaks the dependency across graphs and labels. While previous works only excel at one of the graph meta learning problems for either node classification or link prediction tasks, G-Meta works for all of the three graph meta learning problems and both node and link prediction tasks.

G-Meta excels at graph meta learning

Empirically, experiments on seven datasets and nine baseline methods show that G-Meta outperforms existing methods by up to 16.3%. Unlike previous methods, G-Meta successfully learns in challenging, few-shot learning settings that require generalization to completely new graphs and never-before-seen labels. Finally, G-Meta scales to large graphs, which we demonstrate on a new Tree-of-Life dataset consisting of 1,840 graphs, a two-orders of magnitude increase in the number of graphs used in prior work.


Graph Meta Learning via Local Subgraphs
Kexin Huang, Marinka Zitnik
NeurIPS 2020 [arXiv] [poster]

  title={Graph Meta Learning via Local Subgraphs},
  author={Huang, Kexin and Zitnik, Marinka},
  booktitle={Proceedings of Neural Information Processing Systems, NeurIPS},


Source code is available in the GitHub repository.


ML-ready datasets used in the paper are provided in the HU data repository and, alternatively, the Microsoft repository.


Latest News

Feb 2024:   Kaneb Fellowship and Dean’s Innovation Award

Feb 2024:   NSF CAREER Award

The lab receives the NSF CAREER Award for our research in geometric deep learning to facilitate algorithmic and scientific advances in therapeutics.

Jan 2024:   AI's Prospects in Nature Machine Intelligence

We discussed AI’s 2024 prospects with Nature Machine Intelligence, covering LLM progress, multimodal AI, multi-task agents, and how to bridge the digital divide across communities and world regions.

Jan 2024:   Combinatorial Therapeutic Perturbations

New paper introducing PDGrapher for combinatorial prediction of chemical and genetic perturbations using causally-inspired neural networks.

Nov 2023:   Next Generation of Therapeutics Commons

Oct 2023:   Structure-Based Drug Design

Geometric deep learning has emerged as a valuable tool for structure-based drug design, to generate and refine biomolecules by leveraging detailed three-dimensional geometric and molecular interaction information.

Oct 2023:   Graph AI in Medicine

Graph AI models in medicine integrate diverse data modalities through pre-training, facilitate interactive feedback loops, and foster human-AI collaboration, paving the way to clinically meaningful predictions.

Sep 2023:   New papers accepted at NeurIPS

Sep 2023:   Future Directions in Network Biology

Excited to share our perspectives on current and future directions in network biology.

Aug 2023:   Scientific Discovery in the Age of AI

Jul 2023:   PINNACLE - Contextual AI protein model

PINNACLE is a contextual AI model for protein understanding that dynamically adjusts its outputs based on biological contexts in which it operates. Project website.

Jun 2023:   Our Group is Joining the Kempner Institute

Excited to join Kempner’s inaugural cohort of associate faculty to advance Kempner’s mission of studying the intersection of natural and artificial intelligence.

Jun 2023:   Welcoming a New Postdoctoral Fellow

An enthusiastic welcome to Shanghua Gao who is joining our group as a postdoctoral research fellow.

Jun 2023:   On Pretraining in Nature Machine Intelligence

May 2023:   Congratulations to Ada and Michelle

Congrats to PhD student Michelle on being selected as the 2023 Albert J. Ryan Fellow and also to participate in the Heidelberg Laureate Forum. Congratulations to PhD student Ada for being selected as the Kempner Institute Graduate Fellow!

Apr 2023:   Universal Domain Adaptation at ICML 2023

New paper introducing the first model for closed-set and universal domain adaptation on time series accepted at ICML 2023. Raincoat addresses feature and label shifts and can detect private labels. Project website.

Apr 2023:   Celebrating Achievements of Our Undergrads

Undergraduate researchers Ziyuan, Nick, Yepeng, Jiali, Julia, and Marissa are moving onto their PhD research in Computer Science, Systems Biology, Neuroscience, and Biological & Medical Sciences at Harvard, MIT, Carnegie Mellon University, and UMass Lowell. We are excited for the bright future they created for themselves.

Apr 2023:   Welcoming a New Postdoctoral Fellow

An enthusiastic welcome to Tianlong Chen, our newly appointed postdoctoral fellow.

Apr 2023:   New Study in Nature Machine Intelligence

New paper in Nature Machine Intelligence introducing the blueprint for multimodal learning with graphs.

Mar 2023:   Precision Health in Nature Machine Intelligence

New paper with NASA in Nature Machine Intelligence on biomonitoring and precision health in deep space supported by artificial intelligence.

Zitnik Lab  ·  Artificial Intelligence in Medicine and Science  ·  Harvard  ·  Department of Biomedical Informatics