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How to adapt to a never-before-seen graph or a label set with only a handful of labels?
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Learning from related tasks”? Obtain the learning ability to
quickly adapt using a few data (meta learning)!

Status Quo: Majority of message-
passing are wasted!
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G-Meta: only use the local subgraphs of
these 3 x 3 nodes for the task!
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Datasets

Table 1: Dataset statistics. Fold-PPI and Tree-of-Life are new datasets introduced in this study.
Dataset | Task | # Graphs # Nodes # Edges  #Features # Labels

Synthetic Cycle Node 10 11,476 19,687 N/A 17
Synthetic BA Node 10 2,000 7,647 N/A 10
ogbn-arxiv Node 1 169,343 1,166,243 128 40
Tissue-PPI Node 24 51,194 1,350,412 50 10
FirstMM-DB Link 41 56,468 126,024 5 2

Fold-PPI Node 144 274,606 3,666,563 512 29
Tree-of-Life Link 1,840 1,450,633 8,762,166 N/A 2
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, unseen label set by unseen graph by learning
| observing other label from other graphs with

| Sets in the same graph. the same label set

:Analysis: Subgraph formulation 1. captures
local graph structures; 2. preserves features; 3.
'allows metric learning on labels.

Results

! Graph Meta- Single graph | Multiple graphs | Multiple graphs | Multiple graphs | Multiple graphs
n Learning Problem | Disjoint labels | Shared labels Disjoint labels Shared labels Shared labels

Prediction Task | Node | Node | Node | Link | Link
Dataset | Tissue-PPI | Fold-PPI | FirstMM-DB | Tree-of-Life
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Project Website: zitniklab.hms.harvard.edu/projects/G-Meta

Meta-learner classifies
unseen label set by learning
from other label sets across
multiple graphs.
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GitHub: https://github.com/mims-harvard/G-Meta

| G-META (Ours)
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* G-Meta can successfully learn in challenging, few-shot
learning settings: up to 29.9 % over previous works

and 16.3 % over other meta learning methods!

« G-Meta scales to large graphs: on our new Tree-of-
Life dataset comprising of 1,840 graphs!

arXiv Paper: arxiv.org/albs/2006.07889




