scCIPHER - Contextual Deep Learning on Single-Cell Knowledge Graphs for Precision Medicine in Neurological Disorders

Neurological disorders are the leading driver of global disability and cause 16.8% of global mortality. Unfortunately, most lack disease-modifying treatments or cures. To address disease complexity and heterogeneity in neurological disease, we developed scCIPHER, an AI approach for Contextually Informed Precision HEalthcaRe using deep learning on single-cell knowledge graphs.

We constructed the Neurological Disease Knowledge Graph (NeuroKG), a neurobiological knowledge graph with 132K nodes and 3.98 million edges, by integrating 20 high-quality primary data sources with single-cell RNA-sequencing data from 3.37 million cells across 106 regions of the adult human brain. Next, we pre-trained a heterogeneous graph transformer on NeuroKG to create scCIPHER.

We leverage scCIPHER to make precision medicine-based predictions in neurological disorders across patient phenotyping, therapeutic response prediction, and causal gene discovery tasks, with validation in large-scale patient cohorts.

Publication

This is an ongoing research project.

Code Availability

Pytorch implementation of scCIPHER is available in the GitHub repository.

Authors

We are grateful to our collaborators, including Noa Dagan (Clalit Research Institute), Valentina Giunchiglia (Harvard Medical School), the Khurana Laboratory (Brigham and Women’s Hospital), and the Church Laboratory (Wyss Institute for Biologically Inspired Engineering).

Latest News

Aug 2024:   Graph AI in Medicine

Excited to share a new perspective on Graph Artificial Intelligence in Medicine in Annual Reviews.

Aug 2024:   How Proteins Behave in Context

Harvard Medicine News on our new AI tool that captures how proteins behave in context. Kempner Institute on how context matters for foundation models in biology.

Jul 2024:   PINNACLE in Nature Methods

PINNACLE contextual AI model is published in Nature Methods. Paper. Research Briefing. Project website.

Jul 2024:   Digital Twins as Global Health and Disease Models of Individuals

Paper on digitial twins outlining strategies to leverage molecular and computational techniques to construct dynamic digital twins on the scale of populations to individuals.

Jul 2024:   Three Papers: TrialBench, 3D Structure Design, LLM Editing

Jun 2024:   TDC-2: Multimodal Foundation for Therapeutics

The Commons 2.0 (TDC-2) is an overhaul of Therapeutic Data Commons to catalyze research in multimodal models for drug discovery by unifying single-cell biology of diseases, biochemistry of molecules, and effects of drugs through multimodal datasets, AI-powered API endpoints, new tasks and benchmarks. Our paper.

May 2024:   Broad MIA: Protein Language Models

Apr 2024:   Biomedical AI Agents

Mar 2024:   Efficient ML Seminar Series

We started a Harvard University Efficient ML Seminar Series. Congrats to Jonathan for spearheading this initiative. Harvard Magazine covered the first meeting focusing on LLMs.

Mar 2024:   UniTS - Unified Time Series Model

UniTS is a unified time series model that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. Project website.

Mar 2024:   Weintraub Graduate Student Award

Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. News Story. Congratulations!

Mar 2024:   PocketGen - Generating Full-Atom Ligand-Binding Protein Pockets

PocketGen is a deep generative model that generates residue sequence and full-atom structure of protein pockets, maximizing binding to ligands. Project website.

Feb 2024:   SPECTRA - Generalizability of Molecular AI

Feb 2024:   Kaneb Fellowship Award

The lab receives the John and Virginia Kaneb Fellowship Award at Harvard Medical School to enhance research progress in the lab.

Feb 2024:   NSF CAREER Award

The lab receives the NSF CAREER Award for our research in geometric deep learning to facilitate algorithmic and scientific advances in therapeutics.

Feb 2024:   Dean’s Innovation Award in AI

Jan 2024:   AI's Prospects in Nature Machine Intelligence

We discussed AI’s 2024 prospects with Nature Machine Intelligence, covering LLM progress, multimodal AI, multi-task agents, and how to bridge the digital divide across communities and world regions.

Jan 2024:   Combinatorial Therapeutic Perturbations

New paper introducing PDGrapher for combinatorial prediction of chemical and genetic perturbations using causally-inspired neural networks.

Zitnik Lab  ·  Artificial Intelligence in Medicine and Science  ·  Harvard  ·  Department of Biomedical Informatics