Zero-shot Prediction of Therapeutic Use with Geometric Deep Learning and Clinician Centered Design

Of the several thousand diseases that affect humans, only about 500 have treatments approved by the U.S. Food and Drug Administration. Even for those with approved treatments, discovering new drugs can offer alternative options that cause fewer side effects and replace drugs that are ineffective for certain patient groups. However, identifying new therapeutic opportunities for diseases with limited treatment options remains a challenge, as existing algorithms often perform poorly.

Here, we leverage recent advances in geometric deep learning and human-centered AI to introduce TxGNN, a model for identifying therapeutic opportunities for diseases with limited treatment options and minimal molecular understanding. TxGNN is a graph neural network pre-trained on a comprehensive knowledge graph of 17,080 clinically-recognized diseases and 7,957 therapeutic candidates. The model can process various therapeutic tasks, such as indication and contraindication prediction, in a unified formulation. Once trained, we show that TxGNN can perform zero-shot inference on new diseases without additional parameters or fine-tuning on ground truth labels.

Evaluation of TxGNN shows significant improvements over existing methods, with up to 49.2% higher accuracy in indication tasks and 35.1% higher accuracy in contraindication tasks. TxGNN can also predict therapeutic use for new drugs developed since June 2021. To facilitate interpretation and analysis of the model's predictions by clinicians, we develop a human-AI explorer for TxGNN and evaluate its usability with medical experts. Finally, we demonstrate that TxGNN's novel predictions are consistent with off-label prescription decisions made by clinicians in a large healthcare system.

These label-efficient and clinician-centered learning systems pave the way for improvements for many therapeutic tasks.


Publication

Zero-shot Prediction of Therapeutic Use with Geometric Deep Learning and Clinician Centered Design
Kexin Huang*, Payal Chandak*, Qianwen Wang, Shreyas Havaldar, Akhil Vaid, Jure Leskovec, Girish Nadkarni, Benjamin S. Glicksberg, Nils Gehlenborg and Marinka Zitnik
In Review 2023 [medRxiv]

@article{huang2023zeroshot,
  title={Zero-shot Prediction of Therapeutic Use with Geometric Deep Learning and Clinician Centered Design},
  author={Huang, Kexin and Chandak, Payal and Wang, Qianwen and Havaldar, Shreyas and Vaid, Akhil and Leskovec, Jure and Nadkarni, Girish and Glicksberg, Benjamin and Gehlenborg, Nils and Zitnik, Marinka},
  journal = {medRxiv},
  doi = {10.1101/2023.03.19.23287458},
  volume={},
  number={},
  pages={},
  year={2023},
  publisher={}
}

Code

PyTorch implementation together with documentation and examples of usage is available in the GitHub repository.

Human-AI Explorer for TxGNN

To facilitate interpretation and analysis of the model’s predictions by clinicians, we develop a human-AI explorer for TxGNN and evaluate its usability with medical experts. The TxGNN explorer is available at http://txgnn.org.

Authors

Latest News

Sep 2023:   New papers accepted at NeurIPS

Congratulations to Owen and Zaixi for having their papers accepted as spotlights at NeurIPS! These papers, which are among the top 3% of all submissions, focus on explaining sequence models through self-supervised learning and the full-atom design of protein pockets.

Sep 2023:   Future Directions in Network Biology

Excited to share our perspectives on current and future directions in network biology.

Aug 2023:   Scientific Discovery in the Age of AI

Jul 2023:   PINNACLE - Contextual AI protein model

PINNACLE is a contextual AI model for protein understanding that dynamically adjusts its outputs based on biological contexts in which it operates. Project website.

Jun 2023:   Our Group is Joining the Kempner Institute

Excited to join Kempner’s inaugural cohort of associate faculty to advance Kempner’s mission of studying the intersection of natural and artificial intelligence.

Jun 2023:   Welcoming a New Postdoctoral Fellow

An enthusiastic welcome to Shanghua Gao who is joining our group as a postdoctoral research fellow.

Jun 2023:   On Pretraining in Nature Machine Intelligence

May 2023:   Congratulations to Ada and Michelle

Congrats to PhD student Michelle on being selected as the 2023 Albert J. Ryan Fellow and also to participate in the Heidelberg Laureate Forum. Congratulations to PhD student Ada for being selected as the Kempner Institute Graduate Fellow!

Apr 2023:   Universal Domain Adaptation at ICML 2023

New paper introducing the first model for closed-set and universal domain adaptation on time series accepted at ICML 2023. Raincoat addresses feature and label shifts and can detect private labels. Project website.

Apr 2023:   Celebrating Achievements of Our Undergrads

Undergraduate researchers Ziyuan, Nick, Yepeng, Jiali, Julia, and Marissa are moving onto their PhD research in Computer Science, Systems Biology, Neuroscience, and Biological & Medical Sciences at Harvard, MIT, Carnegie Mellon University, and UMass Lowell. We are excited for the bright future they created for themselves.

Apr 2023:   Welcoming a New Postdoctoral Fellow

An enthusiastic welcome to Tianlong Chen, our newly appointed postdoctoral fellow.

Apr 2023:   New Study in Nature Machine Intelligence

New paper in Nature Machine Intelligence introducing the blueprint for multimodal learning with graphs.

Mar 2023:   Precision Health in Nature Machine Intelligence

New paper with NASA in Nature Machine Intelligence on biomonitoring and precision health in deep space supported by artificial intelligence.

Mar 2023:   Self-Driving Labs in Nature Machine Intelligence

Mar 2023:   TxGNN - Zero-shot prediction of therapeutic use

Mar 2023:   GraphXAI published in Scientific Data

Feb 2023:   Welcoming New Postdoctoral Fellows

A warm welcome to postdoctoral fellows Wanxiang Shen and Ruth Johnson. Congratulations to Ruthie for being named a Berkowitz Fellow.

Feb 2023:   New Preprint on Distribution Shifts

Feb 2023:   PrimeKG published in Scientific Data

Jan 2023:   GNNDelete published at ICLR 2023

Zitnik Lab  ·  Artificial Intelligence in Medicine and Science  ·  Harvard  ·  Department of Biomedical Informatics