Precision Medicine Oriented Knowledge Graph

Developing personalized diagnostic strategies and targeted treatments requires a deep understanding of disease biology and the ability to dissect the relationship between molecular and genetic factors and their phenotypic consequences. However, such knowledge is fragmented across publications, non-standardized research repositories, and evolving ontologies describing various scales of biological organization between genotypes and clinical phenotypes.

We introduce PrimeKG, a precision medicine-oriented knowledge graph that provides a holistic view of diseases. PrimeKG integrates 20 high-quality resources to describe 17,080 diseases with 4,050,249 relationships representing ten major biological scales, including disease-associated protein perturbations, biological processes and pathways, anatomical and phenotypic scale, and the entire range of approved and experimental drugs with their therapeutic action, considerably expanding previous efforts in disease-rooted knowledge graphs.

PrimeKG supports drug-disease prediction by including an abundance of ’indications’, ’contradictions’ and ’off-label use’ edges, which are usually missing in other knowledge graphs. We accompany PrimeKG's graph structure with text descriptions of clinical guidelines for drugs and diseases to enable multi-modal analyses.

The figure below provides an overview of PrimeKG. Panel a shows a schematic overview of the various types of nodes in PrimeKG and the relationships they have with other nodes in the graph.

Panel b shows all disease nodes in PrimeKG visualized in a circular layout together with disease-associated information. Shown are relationships between disease nodes and any other node type. Disease nodes are densely connected to four other node types in PrimeKG through seven types of relations.

Panel c shows an example of paths in PrimeKG between the disease node ‘Autism’ and the drug node ‘Risperidone’. Intermediate nodes are colored by their node type from panel a. We also display snippets of text features for both nodes to demonstrate the multimodal nature of PrimeKG.

Abbreviations - MF: molecular function, BP: biological process, CC: cellular component, APZ: Apiprazole, EPI: epilepsy, ABP: abdominal pain, + / - associations: positive and negative associations.

Publication

Building a knowledge graph to enable precision medicine
Payal Chandak*, Kexin Huang*, and Marinka Zitnik
Scientific Data 2023 [bioRxiv]

@article{chandak2023building,
  title={Building a knowledge graph to enable precision medicine},
  author={Chandak, Payal and Huang, Kexin and Zitnik, Marinka},
  journal={Scientific Data},
  volume={10},
  number={1},
  pages={67},
  url={https://doi.org/10.1038/s41597-023-01960-3},
  year={2023},
  publisher={Nature Publishing Group}
}

Code

The code to reproduce results, together with documentation and tutorials, is available in PrimeKG’s Github repository.

Data availability

PrimeKG is hosted on Harvard Dataverse. We deposited the knowledge graph along with all relevant intermediate files at this repository.

Authors

Latest News

May 2023:   Congratulations to Ada and Michelle

Congrats to PhD student Michelle on being selected as the 2023 Albert J. Ryan Fellow and also to participate in the Heidelberg Laureate Forum. Congratulations to PhD student Ada for being selected as the Kempner Institute Graduate Fellow!

Apr 2023:   Universal Domain Adaptation at ICML 2023

New paper introducing the first model for closed-set and universal domain adaptation on time series accepted at ICML 2023. Raincoat addresses feature and label shifts and can detect private labels. Project website.

Apr 2023:   Celebrating Achievements of Our Undergrads

Undergraduate researchers Ziyuan, Nick, Yepeng, Jiali, Julia, and Marissa are moving onto their PhD research in Computer Science, Systems Biology, Neuroscience, and Biological & Medical Sciences at Harvard, MIT, Carnegie Mellon University, and UMass Lowell. We are excited for the bright future they created for themselves.

Apr 2023:   Welcoming a New Postdoctoral Fellow

An enthusiastic welcome to Tianlong Chen, our newly appointed postdoctoral fellow.

Apr 2023:   New Study in Nature Machine Intelligence

New paper in Nature Machine Intelligence introducing the blueprint for multimodal learning with graphs.

Mar 2023:   Precision Health in Nature Machine Intelligence

New paper with NASA in Nature Machine Intelligence on biomonitoring and precision health in deep space supported by artificial intelligence.

Mar 2023:   Self-Driving Labs in Nature Machine Intelligence

Mar 2023:   TxGNN - Zero-shot prediction of therapeutic use

Mar 2023:   GraphXAI published in Scientific Data

Feb 2023:   Welcoming New Postdoctoral Fellows

A warm welcome to postdoctoral fellows Wanxiang Shen and Ruth Johnson. Congratulations to Ruthie for being named a Berkowitz Fellow.

Feb 2023:   New Preprint on Distribution Shifts

Feb 2023:   PrimeKG published in Scientific Data

Jan 2023:   GNNDelete published at ICLR 2023

Jan 2023:   New Network Principle for Molecular Phenotypes

Dec 2022:   Can we shorten rare disease diagnostic odyssey?

New preprint! Geometric deep learning for diagnosing patients with rare genetic diseases. Implications for using deep learning on sparsely-labeled medical datasets. Thankful for this collaboration with Zak Lab. Project website.

Nov 2022:   Can AI transform the way we discover new drugs?

Our conversation with Harvard Medicine News highlights recent developments and new features in Therapeutics Data Commons.

Oct 2022:   New Paper in Nature Biomedical Engineering

New paper on graph representation learning in biomedicine and healthcare published in Nature Biomedical Engineering.

Sep 2022:   New Paper in Nature Chemical Biology

Our paper on artificial intelligence foundation for therapeutic science is published in Nature Chemical Biology.

Sep 2022:   Self-Supervised Pre-Training at NeurIPS 2022

New paper on self-supervised contrastive pre-training accepted at NeurIPS 2022. Project page. Thankful for this collaboration with the Lincoln National Laboratory.

Sep 2022:   Best Paper Honorable Mention Award at IEEE VIS

Our paper on user-centric AI of drug repurposing received the Best Paper Honorable Mention Award at IEEE VIS 2022. Thankful for this collaboration with Gehlenborg Lab.

Zitnik Lab  ·  Artificial Intelligence in Medicine and Science  ·  Harvard  ·  Department of Biomedical Informatics