Precision Medicine Oriented Knowledge Graph

Developing personalized diagnostic strategies and targeted treatments requires a deep understanding of disease biology and the ability to dissect the relationship between molecular and genetic factors and their phenotypic consequences. However, such knowledge is fragmented across publications, non-standardized research repositories, and evolving ontologies describing various scales of biological organization between genotypes and clinical phenotypes.

We introduce PrimeKG, a precision medicine-oriented knowledge graph that provides a holistic view of diseases. PrimeKG integrates 20 high-quality resources to describe 17,080 diseases with 4,050,249 relationships representing ten major biological scales, including disease-associated protein perturbations, biological processes and pathways, anatomical and phenotypic scale, and the entire range of approved and experimental drugs with their therapeutic action, considerably expanding previous efforts in disease-rooted knowledge graphs.

PrimeKG supports drug-disease prediction by including an abundance of ’indications’, ’contradictions’ and ’off-label use’ edges, which are usually missing in other knowledge graphs. We accompany PrimeKG's graph structure with text descriptions of clinical guidelines for drugs and diseases to enable multi-modal analyses.

The figure below provides an overview of PrimeKG. Panel a shows a schematic overview of the various types of nodes in PrimeKG and the relationships they have with other nodes in the graph.

Panel b shows all disease nodes in PrimeKG visualized in a circular layout together with disease-associated information. Shown are relationships between disease nodes and any other node type. Disease nodes are densely connected to four other node types in PrimeKG through seven types of relations.

Panel c shows an example of paths in PrimeKG between the disease node ‘Autism’ and the drug node ‘Risperidone’. Intermediate nodes are colored by their node type from panel a. We also display snippets of text features for both nodes to demonstrate the multimodal nature of PrimeKG.

Abbreviations - MF: molecular function, BP: biological process, CC: cellular component, APZ: Apiprazole, EPI: epilepsy, ABP: abdominal pain, + / - associations: positive and negative associations.

Publication

Building a knowledge graph to enable precision medicine
Payal Chandak*, Kexin Huang*, and Marinka Zitnik
Scientific Data 2023 [bioRxiv]

@article{chandak2023building,
  title={Building a knowledge graph to enable precision medicine},
  author={Chandak, Payal and Huang, Kexin and Zitnik, Marinka},
  journal={Scientific Data},
  volume={10},
  number={1},
  pages={67},
  url={https://doi.org/10.1038/s41597-023-01960-3},
  year={2023},
  publisher={Nature Publishing Group}
}

Code

The code to reproduce results, together with documentation and tutorials, is available in PrimeKG’s Github repository.

Data availability

PrimeKG is hosted on Harvard Dataverse. We deposited the knowledge graph along with all relevant intermediate files at this repository.

Authors

Latest News

Apr 2024:   Biomedical AI Agents

Mar 2024:   Efficient ML Seminar Series

We started a Harvard University Efficient ML Seminar Series. Congrats to Jonathan for spearheading this initiative. Harvard Magazine covered the first meeting focusing on LLMs.

Mar 2024:   UniTS - Unified Time Series Model

UniTS is a unified time series model that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. Project website.

Mar 2024:   Weintraub Graduate Student Award

Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. News Story. Congratulations!

Mar 2024:   PocketGen - Generating Full-Atom Ligand-Binding Protein Pockets

PocketGen is a deep generative model that generates residue sequence and full-atom structure of protein pockets, maximizing binding to ligands. Project website.

Feb 2024:   SPECTRA - Generalizability of Molecular AI

Feb 2024:   Kaneb Fellowship Award

The lab receives the John and Virginia Kaneb Fellowship Award at Harvard Medical School to enhance research progress in the lab.

Feb 2024:   NSF CAREER Award

The lab receives the NSF CAREER Award for our research in geometric deep learning to facilitate algorithmic and scientific advances in therapeutics.

Feb 2024:   Dean’s Innovation Award in AI

Jan 2024:   AI's Prospects in Nature Machine Intelligence

We discussed AI’s 2024 prospects with Nature Machine Intelligence, covering LLM progress, multimodal AI, multi-task agents, and how to bridge the digital divide across communities and world regions.

Jan 2024:   Combinatorial Therapeutic Perturbations

New paper introducing PDGrapher for combinatorial prediction of chemical and genetic perturbations using causally-inspired neural networks.

Nov 2023:   Next Generation of Therapeutics Commons

Oct 2023:   Structure-Based Drug Design

Geometric deep learning has emerged as a valuable tool for structure-based drug design, to generate and refine biomolecules by leveraging detailed three-dimensional geometric and molecular interaction information.

Oct 2023:   Graph AI in Medicine

Graph AI models in medicine integrate diverse data modalities through pre-training, facilitate interactive feedback loops, and foster human-AI collaboration, paving the way to clinically meaningful predictions.

Sep 2023:   New papers accepted at NeurIPS

Sep 2023:   Future Directions in Network Biology

Excited to share our perspectives on current and future directions in network biology.

Aug 2023:   Scientific Discovery in the Age of AI

Jul 2023:   PINNACLE - Contextual AI protein model

PINNACLE is a contextual AI model for protein understanding that dynamically adjusts its outputs based on biological contexts in which it operates. Project website.

Jun 2023:   Our Group is Joining the Kempner Institute

Excited to join Kempner’s inaugural cohort of associate faculty to advance Kempner’s mission of studying the intersection of natural and artificial intelligence.

Zitnik Lab  ·  Artificial Intelligence in Medicine and Science  ·  Harvard  ·  Department of Biomedical Informatics