Precision Medicine Oriented Knowledge Graph

Developing personalized diagnostic strategies and targeted treatments requires a deep understanding of disease biology and the ability to dissect the relationship between molecular and genetic factors and their phenotypic consequences. However, such knowledge is fragmented across publications, non-standardized research repositories, and evolving ontologies describing various scales of biological organization between genotypes and clinical phenotypes.

We introduce PrimeKG, a precision medicine-oriented knowledge graph that provides a holistic view of diseases. PrimeKG integrates 20 high-quality resources to describe 17,080 diseases with 4,050,249 relationships representing ten major biological scales, including disease-associated protein perturbations, biological processes and pathways, anatomical and phenotypic scale, and the entire range of approved and experimental drugs with their therapeutic action, considerably expanding previous efforts in disease-rooted knowledge graphs.

PrimeKG supports drug-disease prediction by including an abundance of ’indications’, ’contradictions’ and ’off-label use’ edges, which are usually missing in other knowledge graphs. We accompany PrimeKG's graph structure with text descriptions of clinical guidelines for drugs and diseases to enable multi-modal analyses.

The figure below provides an overview of PrimeKG. Panel a shows a schematic overview of the various types of nodes in PrimeKG and the relationships they have with other nodes in the graph.

Panel b shows all disease nodes in PrimeKG visualized in a circular layout together with disease-associated information. Shown are relationships between disease nodes and any other node type. Disease nodes are densely connected to four other node types in PrimeKG through seven types of relations.

Panel c shows an example of paths in PrimeKG between the disease node ‘Autism’ and the drug node ‘Risperidone’. Intermediate nodes are colored by their node type from panel a. We also display snippets of text features for both nodes to demonstrate the multimodal nature of PrimeKG.

Abbreviations - MF: molecular function, BP: biological process, CC: cellular component, APZ: Apiprazole, EPI: epilepsy, ABP: abdominal pain, + / - associations: positive and negative associations.

Publication

Building a knowledge graph to enable precision medicine
Payal Chandak*, Kexin Huang*, and Marinka Zitnik
Scientific Data 2023 [bioRxiv]

@article{chandak2023building,
  title={Building a knowledge graph to enable precision medicine},
  author={Chandak, Payal and Huang, Kexin and Zitnik, Marinka},
  journal={Scientific Data},
  volume={10},
  number={1},
  pages={67},
  url={https://doi.org/10.1038/s41597-023-01960-3},
  year={2023},
  publisher={Nature Publishing Group}
}

Code

The code to reproduce results, together with documentation and tutorials, is available in PrimeKG’s Github repository.

Data availability

PrimeKG is hosted on Harvard Dataverse. We deposited the knowledge graph along with all relevant intermediate files at this repository.

Authors

Latest News

Mar 2025:   Multimodal AI predicts clinical outcomes of drug combinations from preclinical data

Mar 2025:   KGARevion: AI Agent for Knowledge-Intensive Biomedical QA

KGARevion is an AI agent designed for complex biomedical QA that integrates the non-codified knowledge of LLMs with the structured, codified knowledge found in knowledge graphs. [ICLR 2025 publication]

Feb 2025:   MedTok: Unlocking Medical Codes for GenAI

Meet MedTok, a multimodal medical code tokenizer that transforms how AI understands structured medical data. By integrating textual descriptions and relational contexts, MedTok enhances tokenization for transformer-based models—powering everything from EHR foundation models to medical QA. [Project website]

Feb 2025:   What If You Could Rewrite Biology? Meet CLEF

What if we could anticipate molecular and medical changes before they happen? Introducing CLEF, an approach for counterfactual generation in biological and medical sequence models. [Project website]

Feb 2025:   Digital Twins as Global Health and Disease Models

Jan 2025:   LLM and KG+LLM agent papers at ICLR

Jan 2025:   Artificial Intelligence in Medicine 2

Excited to share our new graduate course on Artificial Intelligence in Medicine 2.

Jan 2025:   ProCyon AI Highlighted by Kempner

Thanks to Kempner Institute for highlighting our latest research, ProCyon, our protein-text foundation model for modeling protein functions.

Jan 2025:   AI Design of Proteins for Therapeutics

Dec 2024:   Unified Clinical Vocabulary Embeddings

New paper: A unified resource provides a new representation of clinical knowledge by unifying medical vocabularies. (1) Phenotype risk score analysis across 4.57 million patients, (2) Inter-institutional clinician panels evaluate alignment with clinical knowledge across 90 diseases and 3,000 clinical codes.

Dec 2024:   SPECTRA in Nature Machine Intelligence

Are biomedical AI models truly as smart as they seem? SPECTRA is a framework that evaluates models by considering the full spectrum of cross-split overlap: train-test similarity. SPECTRA reveals gaps in benchmarks for molecular sequence data across 19 models, including LLMs, GNNs, diffusion models, and conv nets.

Nov 2024:   Ayush Noori Selected as a Rhodes Scholar

Congratulations to Ayush Noori on being named a Rhodes Scholar! Such an incredible achievement!

Nov 2024:   PocketGen in Nature Machine Intelligence

Oct 2024:   Activity Cliffs in Molecular Properties

Oct 2024:   Knowledge Graph Agent for Medical Reasoning

Sep 2024:   Three Papers Accepted to NeurIPS

Exciting projects include a unified multi-task time series model, a flow-matching approach for generating protein pockets using geometric priors, and a tokenization method that produces invariant molecular representations for integration into large language models.

Sep 2024:   TxGNN Published in Nature Medicine

Aug 2024:   Graph AI in Medicine

Excited to share a new perspective on Graph Artificial Intelligence in Medicine in Annual Reviews.

Zitnik Lab  ·  Artificial Intelligence in Medicine and Science  ·  Harvard  ·  Department of Biomedical Informatics