Defending Graph Neural Networks against Adversarial Attacks

GNNGuard is a model-agnostic approach that can defend any Graph Neural Network against a variety of adversarial attacks.

Deep learning methods for graphs achieve remarkable performance on many tasks. However, despite the proliferation of such methods and their success, recent findings indicate that even the strongest and most popular Graph Neural Networks (GNNs) are highly vulnerable to adversarial attacks. Adversarial attacks mean that an attacker injects small but carefully-designed perturbations to the graph structures in order to degrade the performance of GNN classifiers.

The vulnerability is a significant issue preventing GNNs from being used in real-world applications. For example, under adversarial attack, small and unnoticeable perturbations of graph structure (e.g., adding two edges on the poisoned node) can catastrophically reduce performance (panel A in the figure).

We develop GNNGuard, a general algorithm to defend against a variety of training-time attacks that perturb the discrete graph structure. GNNGuard can be straightforwardly incorporated into any GNN. By integrating GNNGuard, the GNN classifier can make correct predictions even when trained on the attacked graph (panel B in the figure).

GNNGuard algorithm

Most damaging attacks add fake edges between nodes that have different features and labels. Because of that, the key idea of GNNGuard is to detect and quantify the relationship between the graph structure and node features, if one exists, and then exploit that relationship to mitigate negative effects of the attack. GNNGuard learns how to best assign higher weights to edges connecting similar nodes while pruning edges between unrelated nodes. In specific, instead of the neural message passing of a typical GNN (panel A in the figure), GNNGuard (panel B in the figure) controls the message stream, such as blocking the message from irrelevant neighbors while strengthening messages from highly-related ones.

Remarkably, GNNGuard can effectively restore state-of-the-art performance of GNNs in the face of various adversarial attacks, including targeted and non-targeted attacks, and can defend against attacks on both homophily and heterophily graphs.

Attractive properties of GNNGuard

  • Defense against a variety of attacks: GNNGuard is a general defense approach that is effective against a variety of training-time attacks, including directly targeted, influence, and non-targeted attacks.
  • Integrates with any GNNs: GNNGuard can defend any modern GNN architecture against adversarial attacks.
  • State-of-the-art performance on clean graphs: In real-world settings, we do not know whether a graph has been attacked or not. GNNGuard can restore state-of-the-art performance of a GNN when the graph is attached as well as sustain the original performance on non-attacked graphs.
  • Homophily and heterophily graphs: GNNGuard is the first technique that can defend GNNs against attacks on homophily and heterophily graphs. GNNGuard can be easily generalized to graphs with abundant structural equivalences, where connected nodes have different node features yet similar structural roles.

Publication

GNNGuard: Defending Graph Neural Networks against Adversarial Attacks
Xiang Zhang and Marinka Zitnik
NeurIPS 2020 [arXiv] [poster]

@inproceedings{zhang2020gnnguard,
title     = {GNNGuard: Defending Graph Neural Networks against Adversarial Attacks},
author    = {Zhang, Xiang and Zitnik, Marinka},
booktitle = {Proceedings of Neural Information Processing Systems, NeurIPS},
year      = {2020}
}

Code and datasets

Pytorch implementation of GNNGuard and all datasets are available in the GitHub repository.

Authors

Latest News

Aug 2024:   Graph AI in Medicine

Excited to share a new perspective on Graph Artificial Intelligence in Medicine in Annual Reviews.

Aug 2024:   How Proteins Behave in Context

Harvard Medicine News on our new AI tool that captures how proteins behave in context. Kempner Institute on how context matters for foundation models in biology.

Jul 2024:   PINNACLE in Nature Methods

PINNACLE contextual AI model is published in Nature Methods. Paper. Research Briefing. Project website.

Jul 2024:   Digital Twins as Global Health and Disease Models of Individuals

Paper on digitial twins outlining strategies to leverage molecular and computational techniques to construct dynamic digital twins on the scale of populations to individuals.

Jul 2024:   Three Papers: TrialBench, 3D Structure Design, LLM Editing

Jun 2024:   TDC-2: Multimodal Foundation for Therapeutics

The Commons 2.0 (TDC-2) is an overhaul of Therapeutic Data Commons to catalyze research in multimodal models for drug discovery by unifying single-cell biology of diseases, biochemistry of molecules, and effects of drugs through multimodal datasets, AI-powered API endpoints, new tasks and benchmarks. Our paper.

May 2024:   Broad MIA: Protein Language Models

Apr 2024:   Biomedical AI Agents

Mar 2024:   Efficient ML Seminar Series

We started a Harvard University Efficient ML Seminar Series. Congrats to Jonathan for spearheading this initiative. Harvard Magazine covered the first meeting focusing on LLMs.

Mar 2024:   UniTS - Unified Time Series Model

UniTS is a unified time series model that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. Project website.

Mar 2024:   Weintraub Graduate Student Award

Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. News Story. Congratulations!

Mar 2024:   PocketGen - Generating Full-Atom Ligand-Binding Protein Pockets

PocketGen is a deep generative model that generates residue sequence and full-atom structure of protein pockets, maximizing binding to ligands. Project website.

Feb 2024:   SPECTRA - Generalizability of Molecular AI

Feb 2024:   Kaneb Fellowship Award

The lab receives the John and Virginia Kaneb Fellowship Award at Harvard Medical School to enhance research progress in the lab.

Feb 2024:   NSF CAREER Award

The lab receives the NSF CAREER Award for our research in geometric deep learning to facilitate algorithmic and scientific advances in therapeutics.

Feb 2024:   Dean’s Innovation Award in AI

Jan 2024:   AI's Prospects in Nature Machine Intelligence

We discussed AI’s 2024 prospects with Nature Machine Intelligence, covering LLM progress, multimodal AI, multi-task agents, and how to bridge the digital divide across communities and world regions.

Jan 2024:   Combinatorial Therapeutic Perturbations

New paper introducing PDGrapher for combinatorial prediction of chemical and genetic perturbations using causally-inspired neural networks.

Zitnik Lab  ·  Artificial Intelligence in Medicine and Science  ·  Harvard  ·  Department of Biomedical Informatics