Postdoctoral Research Fellow in AI for Cancer Drug Discovery


Prof. Marinka Zitnik invites applications for a Postdoctoral Research Fellowship position at Harvard University. The fellow will lead the design, development, and implementation of novel AI methods for the analysis of clinical and biomarker data in oncology.

Immuno-oncology therapies are revolutionary in the treatment of cancer. However, there is much that is not understood about the drivers of efficacy, response, and resistance. The fellow will develop novel approaches in deep learning, graph AI, and transfer learning that will have multiple applications, including cancer biomarker discovery, target identification, selection of drug combination partners, patient enrichment, and disease characterization.

Harvard offers an exceedingly rich environment for education and career development, with opportunities for collaboration and learning not only within the Harvard Medical School but also at many other Harvard schools, institutes, and centers.

Additionally, the fellow will benefit from close collaboration and mentorship by Roche computational and biomarker scientists through the “Roche Access to Distinguished Scientists Programme”. Roche is the world’s largest biotech company and has over 20 immunotherapy molecules in development. This collaboration opens the door to applying newly developed methods to patient data from ongoing clinical trials. Our vision is to combine machine learning research with unique clinical data assets to generate novel insights ensuring the right treatment for the right patient at the right time.


We seek highly-motivated applicants with background in one or more of the following areas: deep learning, computational biology, therapeutic science, cancer data science, and network science. Successful applicants will be critical thinkers and problem solvers with the drive and demonstrated ability to translate ideas to action and complete projects effectively.

Applicants must possess a PhD degree or equivalent or be nearing the date of their thesis defense in computational biology, biomedical informatics, computer science, statistics or a closely related field. Strong programming skills and experience with deep learning frameworks and its biomedical applications are required.

We value diligence, ingenuity, initiative, collegiality, and integrity. We are looking for applicants with demonstrably strong research skills, ideally, with multiple publications in top venues in data science, machine learning and computational biology. Strong analytical and oral communication skills and an ability to work both independently and as a cooperative member of a team are required. While accomplished candidates with expertise in various aspects of biomedical AI will be considered, those with a background in cancer data science or therapeutic science are especially encouraged to apply. A competitive salary and excellent benefits package are available.

Application process

The position is available immediately and can be renewed annually. Interested applicants should submit the following documents via email to Prof. Zitnik and use the subject line “Postdoctoral Fellowship in AI for Cancer Drug Discovery”:

  • Cover letter describing your interest in the position, relevant experience, and career goals
  • Curriculum Vitae (include link to your academic webpage and links to software you developed)
  • Two representative publications (e.g., published or unpublished manuscripts)
  • Names and email addresses of three references

We are currently reviewing applications for this position. Interested candidates are encouraged to submit their applications as soon as possible.

Faculty and mentors

Dr. Marinka Zitnik is an Assistant Professor at Harvard with appointments in the Department of Biomedical Informatics, Broad Institute of MIT and Harvard, and Harvard Data Science. Dr. Zitnik has published extensively in top ML venues and leading scientific journals. She has organized conferences and workshops in graph representation learning, drug discovery, and precision medicine at leading conferences (NeurIPS, ICLR, ICML, ISMB, AAAI, WWW), where she is also on the organizing committees. She is an ELLIS Scholar in the European Laboratory for Learning and Intelligent Systems (ELLIS) Society and a member of the Science Working Group at NASA Space Biology. Her research won paper and research awards from the International Society for Computational Biology, Bayer Early Excellence in Science, Amazon Faculty Research, Roche Alliance with Distinguished Scientists, Rising Star Award in Electrical Engineering and Computer Science, and Next Generation in Biomedicine Recognition, being the only young scientist with such recognition in both EECS and Biomedicine. She co-founded Therapeutics Data Commons and the AI for Science initiatives. Dr. Zitnik is the recipient of the 2022 Young Mentor Award at Harvard Medical School—this most prestigious award acknowledges her mentorship of the next generation of scientists who conduct research on artificial intelligence and biology.

Dr. Daniel Marbach, a computational biologist and Principal Scientist Bioinformatics at Roche, will serve as mentor for the fellow, together with his team of scientists. Dr. Marbach has long been engaged in open science collaborations involving academia and industry as an organizer of multiple DREAM Challenges, which included hundreds of participating teams and were published in leading journals. Dr. Marbach is an expert in computational network biology and advanced analytics in drug discovery.

Harvard is an Equal Opportunity Employer.

Latest News

Apr 2024:   Biomedical AI Agents

Mar 2024:   Efficient ML Seminar Series

We started a Harvard University Efficient ML Seminar Series. Congrats to Jonathan for spearheading this initiative. Harvard Magazine covered the first meeting focusing on LLMs.

Mar 2024:   UniTS - Unified Time Series Model

UniTS is a unified time series model that can process classification, forecasting, anomaly detection and imputation tasks within a single model with no task-specific modules. UniTS has zero-shot, few-shot, and prompt learning capabilities. Project website.

Mar 2024:   Weintraub Graduate Student Award

Michelle receives the 2024 Harold M. Weintraub Graduate Student Award. The award recognizes exceptional achievement in graduate studies in biological sciences. News Story. Congratulations!

Mar 2024:   PocketGen - Generating Full-Atom Ligand-Binding Protein Pockets

PocketGen is a deep generative model that generates residue sequence and full-atom structure of protein pockets, maximizing binding to ligands. Project website.

Feb 2024:   SPECTRA - Generalizability of Molecular AI

Feb 2024:   Kaneb Fellowship Award

The lab receives the John and Virginia Kaneb Fellowship Award at Harvard Medical School to enhance research progress in the lab.

Feb 2024:   NSF CAREER Award

The lab receives the NSF CAREER Award for our research in geometric deep learning to facilitate algorithmic and scientific advances in therapeutics.

Feb 2024:   Dean’s Innovation Award in AI

Jan 2024:   AI's Prospects in Nature Machine Intelligence

We discussed AI’s 2024 prospects with Nature Machine Intelligence, covering LLM progress, multimodal AI, multi-task agents, and how to bridge the digital divide across communities and world regions.

Jan 2024:   Combinatorial Therapeutic Perturbations

New paper introducing PDGrapher for combinatorial prediction of chemical and genetic perturbations using causally-inspired neural networks.

Nov 2023:   Next Generation of Therapeutics Commons

Oct 2023:   Structure-Based Drug Design

Geometric deep learning has emerged as a valuable tool for structure-based drug design, to generate and refine biomolecules by leveraging detailed three-dimensional geometric and molecular interaction information.

Oct 2023:   Graph AI in Medicine

Graph AI models in medicine integrate diverse data modalities through pre-training, facilitate interactive feedback loops, and foster human-AI collaboration, paving the way to clinically meaningful predictions.

Sep 2023:   New papers accepted at NeurIPS

Sep 2023:   Future Directions in Network Biology

Excited to share our perspectives on current and future directions in network biology.

Aug 2023:   Scientific Discovery in the Age of AI

Jul 2023:   PINNACLE - Contextual AI protein model

PINNACLE is a contextual AI model for protein understanding that dynamically adjusts its outputs based on biological contexts in which it operates. Project website.

Jun 2023:   Our Group is Joining the Kempner Institute

Excited to join Kempner’s inaugural cohort of associate faculty to advance Kempner’s mission of studying the intersection of natural and artificial intelligence.

Zitnik Lab  ·  Artificial Intelligence in Medicine and Science  ·  Harvard  ·  Department of Biomedical Informatics