Postdoctoral Research Fellow in AI/ML


Prof. Marinka Zitnik invites applications for a Postdoctoral Research Fellowship position at Harvard University.

The selected candidate will be expected to lead research in novel methods in the broad area of deep learning for graphs, with a particular focus on knowledge graphs, transfer learning, few-shot learning, graph representation learning architectures, image-intensive graphs, and text/language-intensive graphs. In addition, the candidate will also devise novel actionable algorithms and use them for applications in biomedical discovery, drug discovery and development, and therapeutics, all in partnership with collaborators.


We seek highly-motivated applicants with background in one or more of the following areas: machine learning, explainable AI/ML, computational healthcare, and network science. Successful applicants will be strong technically as well as have an inclination towards real-world problems.

We are looking for applicants with demonstrably strong research skills, ideally, with multiple publications in top venues in machine learning, artificial intelligence, and data mining (e.g., ICML, NeurIPS, ICLR, KDD, AAAI, IJCAI, UAI), and/or top-tier interdisciplinary journals (e.g., Nature family of journals, PNAS).

Candidates must have a Ph.D. or equivalent degree in computer science, statistics, or a closely related field. Strong programming skills and experience with machine learning and/or its applications to biology and medicine are required.

Application process

The position is available immediately and can be renewed annually. Interested applicants should submit the following documents via email to Prof. Zitnik and use the subject line “Postdoctoral Fellowship Application in AI/ML”:

  • Curriculum Vitae (please include links to your academic webpage and any software you developed, e.g., GitHub repositories)
  • Two representative publications (preprints are acceptable)
  • Statement of Research (2 pages) describing prior research experience and future research plans
  • Three letters of recommendation (will be solicited after the initial review)

We are currently reviewing applications for this position. Interested candidates are encouraged to submit their applications as soon as possible.


Marinka Zitnik is an Assistant Professor at Harvard University with appointments in the Department of Biomedical Informatics, Broad Institute of MIT and Harvard, and Harvard Data Science. Dr. Zitnik is a computer scientist studying machine learning, focusing on challenges brought forward by data in science, medicine, and health. Before Harvard, she was a postdoctoral fellow in Computer Science at Stanford and also a member of the Chan Zuckerberg Biohub.

Dr. Zitnik has published extensively in top ML venues (e.g., NeurIPS, ICLR, ICML) and leading interdisciplinary journals (e.g., Nature Methods, Nature Communications, PNAS). She has organized numerous workshops and tutorials in the nexus of AI, deep learning, drug discovery, and medical AI at leading conferences (NeurIPS, ICLR, ICML, ISMB, AAAI, WWW), where she is also in the organizing committees. She also organized the National Symposium on drugs for future pandemics on behalf of the NSF.

Dr. Zitnik’s algorithms have had a tangible impact, which has garnered the interests of government, academic, and industry researchers and has put new tools in the hands of practitioners. Her methods are used by major institutions, including Baylor College of Medicine, Karolinska Institute, Stanford Medical School, Massachusetts General Hospital, and the pharmaceutical industry.

Dr. Zitnik’s research recently won best paper and research awards from the International Society for Computational Biology, Bayer Early Excellence in Science Award, Amazon Faculty Research Award, a Rising Star Award in EECS, and a Next Generation Recognition in Biomedicine, being the only young scientist who received such recognition in both EECS and Biomedicine.

Harvard is an Equal Opportunity/Affirmative Action Employer. Women and minorities are especially encouraged to apply.

Latest News

Sep 2022:   New Paper in Nature Chemical Biology

Our paper on artificial intelligence foundation for therapeutic science is published in Nature Chemical Biology.

Sep 2022:   Self-Supervised Pre-Training at NeurIPS 2022

New paper on self-supervised contrastive pre-training accepted at NeurIPS 2022. Project page. Thankful for this collaboration with the Lincoln National Laboratory.

Sep 2022:   Best Paper Honorable Mention Award at IEEE VIS

Our paper on user-centric AI of drug repurposing received the Best Paper Honorable Mention Award at IEEE VIS 2022. Thankful for this collaboration with Gehlenborg Lab.

Sep 2022:   Multimodal Representation Learning with Graphs

Aug 2022:   On Graph AI for Precision Medicine

The recording of our tutorial on using graph AI to advance precision medicine is available. Tune into four hours of interactive lectures about state-of-the-art graph AI methods and applications in precision medicine.

Aug 2022:   Evaluating Explainability for GNNs

New preprint! We introduce a resource for broad evaluation of the quality and reliability of GNN explanations, addressing challenges and providing solutions for GNN explainability. Project website.

Jul 2022:   New Frontiers in Graph Learning at NeurIPS

Excited to organize the New Frontiers in Graph Learning workshop at NeurIPS.

Jul 2022:   AI4Science at NeurIPS

We are excited to host the AI4Science meeting at NeurIPS discussing AI-driven scientific discovery, implementation and verification of AI in science, the influence AI has on the conduct of science, and more.

Jul 2022:   Graph AI for Precision Medicine at ISMB

Jul 2022:   Welcoming Fellows and Summer Students

Welcoming a research fellow Julia Balla and three Summer students, Nicholas Ho, Satvik Tripathi, and Isuru Herath.

Jun 2022:   Broadly Generalizable Pre-Training Approach

Excited to share a preprint on self-supervised method for pre-training. Project website with evaluation on eight datasets, including electrodiagnostic testing, human daily activity recognition, and health state monitoring.

Jun 2022:   Welcoming New Postdocs

Excited to welcome George Dasoulas and Huan He, new postdocs joining us this Summer.

May 2022:   George Named the 2022 Wojcicki Troper Fellow

May 2022:   New preprint on PrimeKG

New preprint on building knowledge graphs to enable precision medicine applications.

May 2022:   Building KGs to Support Precision Medicine

Apr 2022:   Webster on the Cover of Cell Systems

Webster is on the cover of April issue of Cell Systems. Webster uses cell viability changes following gene perturbation to automatically learn cellular functions and pathways from data.

Apr 2022:   NASA Space Biology

Dr. Zitnik will serve on the Science Working Group at NASA Space Biology.

Mar 2022:   Yasha's Graduate Research Fellowship

Yasha won the National Defense Science and Engineering Graduate (NDSEG) Fellowship. Congratulations!

Mar 2022:   AI4Science at ICML 2022

We are excited to be selected to organize the AI4Science meeting at ICML 2022. Stay tuned for details.

Mar 2022:   Graph Algorithms in Biomedicine at PSB 2023

Excited to be organizing a session on Graph Algorithms at PSB 2023. Stay tuned for details.

Zitnik Lab  ·  Artificial Intelligence in Medicine and Science  ·  Harvard  ·  Department of Biomedical Informatics