Postdoctoral Research Fellows in Foundational AI


Prof. Marinka Zitnik invites applications for a Postdoctoral Research Fellowship position at Harvard University.

Selected candidates will be expected to lead research in novel methods in geometric deep learning, large-scale knowledge graphs, large language models, transfer learning, and generative AI. In addition, fellows will have opportunities to transition novel algorithms to applications in therapeutic science and precision medicine.

Interested candidates are invited to review our recent publications and research directions.


We seek highly-motivated applicants with background in one or more of the following areas: geometric deep learning, large-scale knowledge graphs, large language models, transfer learning, and generative AI. Successful applicants will be strong technically as well as have an inclination towards real-world problems.

We are looking for applicants with demonstrably strong research skills, ideally, with multiple publications in top venues in machine learning and artificial intelligence, and/or top-tier scientific journals.

Candidates must have a Ph.D. or equivalent degree in computer science, statistics, or a closely related field. Strong programming skills and practical experience with leading machine learning frameworks are required. Experience and/or interest in applications of AI to science, biology and medicine is a plus.

Application process

The position is available immediately and can be renewed annually. Interested applicants should submit the following documents via email to Prof. Zitnik and use the subject line “Postdoctoral Fellowship in Foundational AI”:

  • Curriculum Vitae (include links to your academic webpage and GitHub repositories for methods you developed)
  • Two representative publications (preprints are acceptable)
  • Statement of Research (2 pages) describing prior research experience and future research plans
  • Three letters of recommendation (will be solicited after the initial review)

We are currently reviewing applications for this position. Interested candidates are encouraged to submit their applications early.


Marinka Zitnik is an Assistant Professor at Harvard University with appointments in the Department of Biomedical Informatics, Broad Institute of MIT and Harvard, and Harvard Data Science. We investigate machine learning with a current focus on learning systems informed by geometry, structure, and symmetry and grounded in knowledge. This approach creates foundational models, including pre-trained, self-supervised, multi-purpose, and multi-modal models trained at scale to enable broad generalization. Our methods produce actionable outputs to advance biological problems past the state of the art and open up new opportunities.

Dr. Zitnik has published extensively in top ML venues, such as NeurIPS, ICLR, ICML, and leading scientific journals, including Nature, Nature Methods, Nature Communications, and PNAS. She has organized numerous workshops and tutorials in the nexus of AI, deep learning, AI4Science and AI4Medicine at leading conferences, where she is also in the organizing committees.

Her work received best paper and research awards from International Society for Computational Biology, Bayer Early Excellence in Science Award, Amazon Faculty Research Award, Roche Alliance with Distinguished Scientists Award, Rising Star Award in Electrical Engineering and Computer Science (EECS), and Next Generation Recognition in Biomedicine, being the only young scientist with such recognition in both EECS and Biomedicine. Dr. Zitnik was named Kavli Fellow 2023 by the National Academy of Sciences.

Dr. Zitnik is an ELLIS Scholar in the European Laboratory for Learning and Intelligent Systems (ELLIS) Society. She is a member of the Science Working Group at NASA Space Biology. Dr. Zitnik co-founded Therapeutics Data Commons and is the faculty lead of the AI4Science initiative. Dr. Zitnik is the recipient of the 2022 Young Mentor Award at Harvard Medical School.

Harvard is an Equal Opportunity Employer.

Latest News

May 2023:   Congratulations to Ada and Michelle

Congrats to PhD student Michelle on being selected as the 2023 Albert J. Ryan Fellow and also to participate in the Heidelberg Laureate Forum. Congratulations to PhD student Ada for being selected as the Kempner Institute Graduate Fellow!

Apr 2023:   Universal Domain Adaptation at ICML 2023

New paper introducing the first model for closed-set and universal domain adaptation on time series accepted at ICML 2023. Raincoat addresses feature and label shifts and can detect private labels. Project website.

Apr 2023:   Celebrating Achievements of Our Undergrads

Undergraduate researchers Ziyuan, Nick, Yepeng, Jiali, Julia, and Marissa are moving onto their PhD research in Computer Science, Systems Biology, Neuroscience, and Biological & Medical Sciences at Harvard, MIT, Carnegie Mellon University, and UMass Lowell. We are excited for the bright future they created for themselves.

Apr 2023:   Welcoming a New Postdoctoral Fellow

An enthusiastic welcome to Tianlong Chen, our newly appointed postdoctoral fellow.

Apr 2023:   New Study in Nature Machine Intelligence

New paper in Nature Machine Intelligence introducing the blueprint for multimodal learning with graphs.

Mar 2023:   Precision Health in Nature Machine Intelligence

New paper with NASA in Nature Machine Intelligence on biomonitoring and precision health in deep space supported by artificial intelligence.

Mar 2023:   Self-Driving Labs in Nature Machine Intelligence

Mar 2023:   TxGNN - Zero-shot prediction of therapeutic use

Mar 2023:   GraphXAI published in Scientific Data

Feb 2023:   Welcoming New Postdoctoral Fellows

A warm welcome to postdoctoral fellows Wanxiang Shen and Ruth Johnson. Congratulations to Ruthie for being named a Berkowitz Fellow.

Feb 2023:   New Preprint on Distribution Shifts

Feb 2023:   PrimeKG published in Scientific Data

Jan 2023:   GNNDelete published at ICLR 2023

Jan 2023:   New Network Principle for Molecular Phenotypes

Dec 2022:   Can we shorten rare disease diagnostic odyssey?

New preprint! Geometric deep learning for diagnosing patients with rare genetic diseases. Implications for using deep learning on sparsely-labeled medical datasets. Thankful for this collaboration with Zak Lab. Project website.

Nov 2022:   Can AI transform the way we discover new drugs?

Our conversation with Harvard Medicine News highlights recent developments and new features in Therapeutics Data Commons.

Oct 2022:   New Paper in Nature Biomedical Engineering

New paper on graph representation learning in biomedicine and healthcare published in Nature Biomedical Engineering.

Sep 2022:   New Paper in Nature Chemical Biology

Our paper on artificial intelligence foundation for therapeutic science is published in Nature Chemical Biology.

Sep 2022:   Self-Supervised Pre-Training at NeurIPS 2022

New paper on self-supervised contrastive pre-training accepted at NeurIPS 2022. Project page. Thankful for this collaboration with the Lincoln National Laboratory.

Sep 2022:   Best Paper Honorable Mention Award at IEEE VIS

Our paper on user-centric AI of drug repurposing received the Best Paper Honorable Mention Award at IEEE VIS 2022. Thankful for this collaboration with Gehlenborg Lab.

Zitnik Lab  ·  Artificial Intelligence in Medicine and Science  ·  Harvard  ·  Department of Biomedical Informatics