DepMap Gene Correlation Analysis Tool - MCP ServerΒΆ
A MCP tool from Prism ToolSpace for analyzing gene-gene correlations from the DepMap (Dependency Map) CRISPR knockout screening dataset. This tool processes systematic CRISPR-Cas9 knockout data from over 1,320 cancer cell lines from DepMap 24Q2 to identify genetic dependencies and co-essential gene pairs.
PrerequisitesΒΆ
1. Install Required DependenciesΒΆ
Install the required Python packages for the DepMap correlation analysis:
# Create a virtual environment for DepMap setup
uv venv depmap --python 3.10
source depmap/bin/activate
uv pip install -r requirements.txt
Data SetupΒΆ
1. Download DepMap 24Q2 DatasetΒΆ
Download the preprocessed DepMap correlation data from the Prism ToolSpace or prepare your own correlation matrices:
# Install CLI if not already
uvx --from huggingface_hub hf
# Download only the depmap_24q2 folder
uvx --from huggingface_hub hf download mims-harvard/ToolSpace \
--repo-type dataset \
--include "depmap_24q2/*" \
--local-dir ./path/to/your/depmap/
Required Files:
Gene correlation matrix - Pairwise correlations between genes
P-value matrix - Statistical significance of correlations
Gene index - Mapping of gene symbols to matrix indices
Adjusted p-values (optional) - FDR-corrected p-values
Data Sources:
DepMap Portal: https://depmap.org/portal/download/
DepMap 24Q2 Release: Contains CRISPR knockout data for 1,320+ cell lines
CERES Algorithm: Standardized gene effect scores for dependency analysis
2. Directory Structure SetupΒΆ
Create the following directory structure for your DepMap data:
/path/to/your/depmap/
βββ depmap_24q2/ # DepMap data directory
β βββ corr_matrix.npy # Gene correlation matrix (dense format)
β βββ p_val_matrix.npy # P-value matrix (dense format)
β βββ p_adj_matrix.npy # Adjusted p-values (optional)
β βββ gene_idx_array.npy # Gene symbol index array
β βββ gene_names.txt # Gene symbols (alternative format)
β
β # Alternative sparse format for large datasets:
β βββ gene_correlations.h5 # HDF5 sparse matrices
3. Set Environment VariableΒΆ
Set the DEPMAP_DATA_PATH
environment variable to point to your DepMap installation:
# Add to your ~/.bashrc or ~/.zshrc
export DEPMAP_DATA_PATH="/path/to/your/depmap"
Input and Output SpecificationsΒΆ
Input FormatΒΆ
The tool accepts gene symbol pairs for correlation analysis:
Gene Symbols: Standard HUGO gene nomenclature (e.g., βBRAFβ, βTP53β, βMAPK1β)
Case Insensitive: Tool automatically standardizes gene symbols
Validation: Checks gene availability in the correlation matrix
Output FormatΒΆ
The tool returns a structured JSON response with comprehensive correlation analysis:
{
"correlation_data": {
"correlation": 0.756,
"p_value": 1.23e-15,
"adjusted_p_value": 4.56e-12
},
"interpretation": {
"strength": "strong",
"significance": "significant (FDR corrected)",
"direction": "similar",
"biological_relationship": "co-dependent relationship (shared essential functions)",
"summary": "DepMap analysis reveals a strong, similar correlation (r=0.756) in knockout effects between BRAF and MAPK1, suggesting co-dependent relationship (shared essential functions). This finding is significant (FDR corrected)."
},
...
}
Output Fields:
correlation_data
(dict): Statistical measurescorrelation
(float): Pearson correlation coefficient (-1.0 to 1.0)p_value
(float): Statistical significance of correlationadjusted_p_value
(float, optional): FDR-corrected p-value
interpretation
(dict): Biological and statistical contextstrength
(str): Correlation strength classificationsignificance
(str): Statistical significance interpretationdirection
(str): Relationship type (similar vs opposing effects)biological_relationship
(str): Biological interpretationsummary
(str): Comprehensive analysis summary
context_info
(list): Analysis metadata and messageserror
(str, optional): Error description if analysis failed
Running the MCP ServerΒΆ
1. Start the ServerΒΆ
# Activate the virtual environment
source depmap/bin/activate
# Set environment variable (if not in bashrc)
export DEPMAP_DATA_PATH="/path/to/your/depmap"
# Run the MCP server
python depmap_24q2_mcp_tool.py
2. Server ConfigurationΒΆ
The server runs with the following default settings:
Host:
0.0.0.0
(accepts connections from any IP)Port:
7002
(configured to avoid conflicts)Transport:
streamable-http
Mode: Stateless HTTP
Common IssuesΒΆ
Data Directory Not Found
FileNotFoundError: DepMap data directory not found at /path/to/data
Ensure
DEPMAP_DATA_PATH
is set correctlyVerify the
depmap_24q2/
subdirectory existsCheck that correlation matrices are properly downloaded
Gene Symbol Not Found
KeyError: Gene 'INVALID' not available in the DepMap correlation matrix
Verify gene symbol spelling (use standard HUGO nomenclature)
Check if gene is present in the DepMap 24Q2 dataset
Try alternative gene symbols or aliases
Missing Correlation Data
FileNotFoundError: No correlation data found in directory
Ensure correlation matrices are in the correct format (.npy or .h5)
Verify gene index files are present (
gene_idx_array.npy
orgene_names.txt
)Check file permissions and accessibility
ReferencesΒΆ
DepMap Project: Broad Institute DepMap Portal
DepMap Paper: Mapping the Cancer Dependency Map
CERES Algorithm: Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells
Data Portal: https://depmap.org/portal/download/