Agentic Tools¶
Configuration File: agentic_tools.json
Tool Type: Local
Tools Count: 33
This page contains all tools defined in the agentic_tools.json
configuration file.
Available Tools¶
AdvancedCodeQualityAnalyzer (Type: AgenticTool)¶
Performs deep analysis of code quality including complexity, security, performance, and maintaina…
AdvancedCodeQualityAnalyzer tool specification
Tool Information:
Name:
AdvancedCodeQualityAnalyzer
Type:
AgenticTool
Description: Performs deep analysis of code quality including complexity, security, performance, and maintainability metrics with domain-specific expertise
Parameters:
source_code
(string) (required) The source code to analyze for quality assessmentlanguage
(string) (optional) Programming language (python, javascript, etc.)analysis_depth
(string) (optional) Level of analysis depth to performdomain_context
(string) (optional) Domain context for specialized analysis (e.g., bioinformatics, web development)
Example Usage:
query = {
"name": "AdvancedCodeQualityAnalyzer",
"arguments": {
"source_code": "example_value"
}
}
result = tu.run(query)
ArgumentDescriptionOptimizer (Type: AgenticTool)¶
Optimizes the descriptions of tool arguments/parameters based on test case results and actual usa…
ArgumentDescriptionOptimizer tool specification
Tool Information:
Name:
ArgumentDescriptionOptimizer
Type:
AgenticTool
Description: Optimizes the descriptions of tool arguments/parameters based on test case results and actual usage patterns. Provides improved descriptions that are more accurate and user-friendly.
Parameters:
parameter_schema
(string) (required) JSON string of the original parameter schema with properties and descriptions.test_results
(string) (required) A JSON string containing test case input/output pairs showing parameter usage.
Example Usage:
query = {
"name": "ArgumentDescriptionOptimizer",
"arguments": {
"parameter_schema": "example_value",
"test_results": "example_value"
}
}
result = tu.run(query)
CodeOptimizer (Type: AgenticTool)¶
Optimizes code implementation for tools based on quality evaluation. Takes tool configuration and…
CodeOptimizer tool specification
Tool Information:
Name:
CodeOptimizer
Type:
AgenticTool
Description: Optimizes code implementation for tools based on quality evaluation. Takes tool configuration and quality evaluation results to produce improved source code.
Parameters:
tool_config
(string) (required) JSON string containing the complete tool configuration including current implementationquality_evaluation
(string) (required) JSON string containing quality evaluation results and feedback
Example Usage:
query = {
"name": "CodeOptimizer",
"arguments": {
"tool_config": "example_value",
"quality_evaluation": "example_value"
}
}
result = tu.run(query)
CodeQualityAnalyzer (Type: AgenticTool)¶
Analyzes code quality from multiple dimensions including algorithmic correctness, functional impl…
CodeQualityAnalyzer tool specification
Tool Information:
Name:
CodeQualityAnalyzer
Type:
AgenticTool
Description: Analyzes code quality from multiple dimensions including algorithmic correctness, functional implementation capability, performance characteristics, and best practices. Provides detailed feedback and improvement suggestions.
Parameters:
tool_name
(string) (required) Name of the tool being analyzedtool_description
(string) (required) Description of what the tool is supposed to dotool_parameters
(string) (required) JSON string of tool parameters and their typesimplementation_code
(string) (required) The actual implementation code to analyzetest_cases
(string) (required) JSON string of test cases for the tooltest_execution_results
(string) (optional) JSON string of test execution results including pass/fail status and actual outputs
Example Usage:
query = {
"name": "CodeQualityAnalyzer",
"arguments": {
"tool_name": "example_value",
"tool_description": "example_value",
"tool_parameters": "example_value",
"implementation_code": "example_value",
"test_cases": "example_value"
}
}
result = tu.run(query)
DataAnalysisValidityReviewer (Type: AgenticTool)¶
Checks statistical choices, assumption testing, and reporting transparency.
DataAnalysisValidityReviewer tool specification
Tool Information:
Name:
DataAnalysisValidityReviewer
Type:
AgenticTool
Description: Checks statistical choices, assumption testing, and reporting transparency.
Parameters:
analysis_section
(string) (required) No description
Example Usage:
query = {
"name": "DataAnalysisValidityReviewer",
"arguments": {
"analysis_section": "example_value"
}
}
result = tu.run(query)
DescriptionAnalyzer (Type: AgenticTool)¶
Analyzes a tool’s original description and the results of multiple test cases, then suggests an i…
DescriptionAnalyzer tool specification
Tool Information:
Name:
DescriptionAnalyzer
Type:
AgenticTool
Description: Analyzes a tool’s original description and the results of multiple test cases, then suggests an improved description that is more accurate, comprehensive, and user-friendly. Optionally provides a rationale for the changes.
Parameters:
original_description
(string) (required) The original description of the tool.test_results
(string) (required) A JSON string containing a list of test case input/output pairs.
Example Usage:
query = {
"name": "DescriptionAnalyzer",
"arguments": {
"original_description": "example_value",
"test_results": "example_value"
}
}
result = tu.run(query)
DescriptionQualityEvaluator (Type: AgenticTool)¶
Evaluates the quality of tool descriptions and parameter descriptions, providing a score and spec…
DescriptionQualityEvaluator tool specification
Tool Information:
Name:
DescriptionQualityEvaluator
Type:
AgenticTool
Description: Evaluates the quality of tool descriptions and parameter descriptions, providing a score and specific feedback for improvements.
Parameters:
tool_description
(string) (required) The tool description to evaluate.parameter_descriptions
(string) (required) JSON string of parameter names and their descriptions.test_results
(string) (required) JSON string containing test case results.
Example Usage:
query = {
"name": "DescriptionQualityEvaluator",
"arguments": {
"tool_description": "example_value",
"parameter_descriptions": "example_value",
"test_results": "example_value"
}
}
result = tu.run(query)
DomainExpertValidator (Type: AgenticTool)¶
Provides domain-specific validation and expert recommendations for tools with deep expertise acro…
DomainExpertValidator tool specification
Tool Information:
Name:
DomainExpertValidator
Type:
AgenticTool
Description: Provides domain-specific validation and expert recommendations for tools with deep expertise across scientific and technical domains
Parameters:
tool_config
(string) (required) JSON string of tool configuration to validatedomain
(string) (required) Domain expertise area for validationvalidation_aspects
(string) (optional) JSON array string of specific aspects to validateimplementation_code
(string) (optional) Implementation code to validate (optional)
Example Usage:
query = {
"name": "DomainExpertValidator",
"arguments": {
"tool_config": "example_value",
"domain": "example_value"
}
}
result = tu.run(query)
EthicalComplianceReviewer (Type: AgenticTool)¶
Checks adherence to ethical standards and disclosure practices.
EthicalComplianceReviewer tool specification
Tool Information:
Name:
EthicalComplianceReviewer
Type:
AgenticTool
Description: Checks adherence to ethical standards and disclosure practices.
Parameters:
ethics_section
(string) (required) No description
Example Usage:
query = {
"name": "EthicalComplianceReviewer",
"arguments": {
"ethics_section": "example_value"
}
}
result = tu.run(query)
ExperimentalDesignScorer (Type: AgenticTool)¶
Assesses a proposed experimental design by assigning scores and structured feedback on hypothesis…
ExperimentalDesignScorer tool specification
Tool Information:
Name:
ExperimentalDesignScorer
Type:
AgenticTool
Description: Assesses a proposed experimental design by assigning scores and structured feedback on hypothesis clarity, variable definitions, sample size, controls, randomization, measurement methods, statistical analysis, bias mitigation, ethical considerations, and overall feasibility.
Parameters:
hypothesis
(string) (required) A clear statement of the research hypothesis to be tested.design_description
(string) (required) A detailed description of the proposed experimental design, including variables, methods, sample details, and planned analyses.
Example Usage:
query = {
"name": "ExperimentalDesignScorer",
"arguments": {
"hypothesis": "example_value",
"design_description": "example_value"
}
}
result = tu.run(query)
HypothesisGenerator (Type: AgenticTool)¶
Generates research hypotheses based on provided background context, domain, and desired format. U…
HypothesisGenerator tool specification
Tool Information:
Name:
HypothesisGenerator
Type:
AgenticTool
Description: Generates research hypotheses based on provided background context, domain, and desired format. Uses AI to propose novel, testable hypotheses for scientific exploration.
Parameters:
context
(string) (required) Background information, observations, or data description from which to derive hypotheses.domain
(string) (required) Field of study or research area (e.g., ‘neuroscience’, ‘ecology’, ‘materials science’).number_of_hypotheses
(string) (required) Number of hypotheses to generate (e.g., ‘3’, ‘5’).hypothesis_format
(string) (optional) Optional directive on how to structure each hypothesis. Choose from one of the following formats:
If–Then Statements: “If [independent variable condition], then [expected outcome].”
Null and Alternative (Statistical): • H₀ (Null): “There is no difference/effect/association between X and Y.” • H₁ (Alt): “There is a difference/effect/association between X and Y.”
Associative (Correlation-Focused): “There is a relationship/association between [Variable A] and [Variable B].”
Directional (Non-If–Then): “Increasing/decreasing [Variable A] will lead to [directional change] in [Variable B].”
Comparative (Group Comparison): “Group A will show higher/lower [dependent measure] compared to Group B under [condition].”
Mechanistic: “Because [mechanism or process], [Variable A] will cause [Variable B].”
Descriptive (Exploratory/Pattern-Oriented): “Population X exhibits pattern Y in context Z.”
If omitted, defaults to concise declarative sentences.
Example Usage:
query = { "name": "HypothesisGenerator", "arguments": { "context": "example_value", "domain": "example_value", "number_of_hypotheses": "example_value" } } result = tu.run(query)
LabelGenerator (Type: AgenticTool)¶
Generates relevant keyword labels for tools based on their name, description, parameters, and cat…
LabelGenerator tool specification
Tool Information:
Name:
LabelGenerator
Type:
AgenticTool
Description: Generates relevant keyword labels for tools based on their name, description, parameters, and category. Creates a comprehensive list of tags for tool discovery and categorization.
Parameters:
tool_name
(string) (required) The name of the tooltool_description
(string) (required) Detailed description of what the tool doestool_parameters
(string) (required) JSON string describing the tool’s input parameters and their typescategory
(string) (required) The general category or domain the tool belongs toexisting_labels
(string) (optional) JSON array string of existing labels to consider reusing (optional)
Example Usage:
query = {
"name": "LabelGenerator",
"arguments": {
"tool_name": "example_value",
"tool_description": "example_value",
"tool_parameters": "example_value",
"category": "example_value"
}
}
result = tu.run(query)
LiteratureContextReviewer (Type: AgenticTool)¶
Reviews coverage, relevance, and critical synthesis of prior scholarship.
LiteratureContextReviewer tool specification
Tool Information:
Name:
LiteratureContextReviewer
Type:
AgenticTool
Description: Reviews coverage, relevance, and critical synthesis of prior scholarship.
Parameters:
paper_title
(string) (required) No descriptionliterature_review
(string) (required) Full literature-review text
Example Usage:
query = {
"name": "LiteratureContextReviewer",
"arguments": {
"paper_title": "example_value",
"literature_review": "example_value"
}
}
result = tu.run(query)
MedicalLiteratureReviewer (Type: AgenticTool)¶
Conducts systematic reviews of medical literature on specific topics. Synthesizes findings from m…
MedicalLiteratureReviewer tool specification
Tool Information:
Name:
MedicalLiteratureReviewer
Type:
AgenticTool
Description: Conducts systematic reviews of medical literature on specific topics. Synthesizes findings from multiple studies and provides evidence-based conclusions with structured analysis and quality assessment.
Parameters:
research_topic
(string) (required) The specific medical/research topic for literature review (e.g., ‘efficacy of drug X in treating condition Y’).literature_content
(string) (required) The literature content, abstracts, full studies, or research papers to review and synthesize.focus_area
(string) (required) Primary focus area for the review (e.g., ‘therapeutic efficacy’, ‘safety profile’, ‘diagnostic accuracy’, ‘biomarker validation’).study_types
(string) (required) Types of studies to prioritize in the analysis (e.g., ‘randomized controlled trials’, ‘meta-analyses’, ‘cohort studies’, ‘case-control studies’).quality_level
(string) (required) Minimum evidence quality level to include (e.g., ‘high quality only’, ‘moderate and above’, ‘all available evidence’).review_scope
(string) (required) Scope of the review (e.g., ‘comprehensive systematic review’, ‘rapid review’, ‘scoping review’, ‘narrative review’).
Example Usage:
query = {
"name": "MedicalLiteratureReviewer",
"arguments": {
"research_topic": "example_value",
"literature_content": "example_value",
"focus_area": "example_value",
"study_types": "example_value",
"quality_level": "example_value",
"review_scope": "example_value"
}
}
result = tu.run(query)
MedicalTermNormalizer (Type: AgenticTool)¶
Identifies and corrects misspelled drug or disease names, returning a list of plausible standardi…
MedicalTermNormalizer tool specification
Tool Information:
Name:
MedicalTermNormalizer
Type:
AgenticTool
Description: Identifies and corrects misspelled drug or disease names, returning a list of plausible standardized terms.
Parameters:
raw_terms
(string) (required) A comma- or whitespace-separated string containing one misspelled drug or disease name.
Example Usage:
query = {
"name": "MedicalTermNormalizer",
"arguments": {
"raw_terms": "example_value"
}
}
result = tu.run(query)
MethodologyRigorReviewer (Type: AgenticTool)¶
Evaluates design appropriateness, sampling, and procedural transparency.
MethodologyRigorReviewer tool specification
Tool Information:
Name:
MethodologyRigorReviewer
Type:
AgenticTool
Description: Evaluates design appropriateness, sampling, and procedural transparency.
Parameters:
methods_section
(string) (required) Full Methods text
Example Usage:
query = {
"name": "MethodologyRigorReviewer",
"arguments": {
"methods_section": "example_value"
}
}
result = tu.run(query)
NoveltySignificanceReviewer (Type: AgenticTool)¶
Provides a structured peer-review of the work’s originality and potential impact.
NoveltySignificanceReviewer tool specification
Tool Information:
Name:
NoveltySignificanceReviewer
Type:
AgenticTool
Description: Provides a structured peer-review of the work’s originality and potential impact.
Parameters:
paper_title
(string) (required) Manuscript titleabstract
(string) (required) Manuscript abstractmanuscript_text
(string) (required) Full manuscript text
Example Usage:
query = {
"name": "NoveltySignificanceReviewer",
"arguments": {
"paper_title": "example_value",
"abstract": "example_value",
"manuscript_text": "example_value"
}
}
result = tu.run(query)
ProtocolOptimizer (Type: AgenticTool)¶
Reviews an initial protocol and delivers targeted revisions that improve clarity, feasibility, ri…
ProtocolOptimizer tool specification
Tool Information:
Name:
ProtocolOptimizer
Type:
AgenticTool
Description: Reviews an initial protocol and delivers targeted revisions that improve clarity, feasibility, risk-management, and evaluation rigor.
Parameters:
initial_protocol
(string) (required) No description
Example Usage:
query = {
"name": "ProtocolOptimizer",
"arguments": {
"initial_protocol": "example_value"
}
}
result = tu.run(query)
QuestionRephraser (Type: AgenticTool)¶
Generates three distinct paraphrases of a given question while ensuring answer options remain val…
QuestionRephraser tool specification
Tool Information:
Name:
QuestionRephraser
Type:
AgenticTool
Description: Generates three distinct paraphrases of a given question while ensuring answer options remain valid and applicable.
Parameters:
question
(string) (required) The original question text to be rephrasedoptions
(string) (optional) Answer options (e.g., multiple choice options) that should remain valid for the rephrased questions. Leave empty if no options are provided.
Example Usage:
query = {
"name": "QuestionRephraser",
"arguments": {
"question": "example_value"
}
}
result = tu.run(query)
ReproducibilityTransparencyReviewer (Type: AgenticTool)¶
Evaluates data, code, and protocol availability for replication.
ReproducibilityTransparencyReviewer tool specification
Tool Information:
Name:
ReproducibilityTransparencyReviewer
Type:
AgenticTool
Description: Evaluates data, code, and protocol availability for replication.
Parameters:
availability_statement
(string) (required) No description
Example Usage:
query = {
"name": "ReproducibilityTransparencyReviewer",
"arguments": {
"availability_statement": "example_value"
}
}
result = tu.run(query)
ResultsInterpretationReviewer (Type: AgenticTool)¶
Judges whether conclusions are data-justified and limitations addressed.
ResultsInterpretationReviewer tool specification
Tool Information:
Name:
ResultsInterpretationReviewer
Type:
AgenticTool
Description: Judges whether conclusions are data-justified and limitations addressed.
Parameters:
results_section
(string) (required) No descriptiondiscussion_section
(string) (required) No description
Example Usage:
query = {
"name": "ResultsInterpretationReviewer",
"arguments": {
"results_section": "example_value",
"discussion_section": "example_value"
}
}
result = tu.run(query)
ScientificTextSummarizer (Type: AgenticTool)¶
Summarizes biomedical research texts, abstracts, or papers with specified length and focus areas….
ScientificTextSummarizer tool specification
Tool Information:
Name:
ScientificTextSummarizer
Type:
AgenticTool
Description: Summarizes biomedical research texts, abstracts, or papers with specified length and focus areas. Uses AI to extract key findings, methodology, and conclusions from complex biomedical literature.
Parameters:
text
(string) (required) The biomedical text, abstract, or paper content to be summarized.summary_length
(string) (required) Desired length of summary (e.g., ‘50’, ‘100’, ‘200 words’).focus_area
(string) (required) What to focus on in the summary (e.g., ‘methodology’, ‘results’, ‘clinical implications’, ‘drug interactions’).
Example Usage:
query = {
"name": "ScientificTextSummarizer",
"arguments": {
"text": "example_value",
"summary_length": "example_value",
"focus_area": "example_value"
}
}
result = tu.run(query)
TestCaseGenerator (Type: AgenticTool)¶
Generates diverse and representative ToolUniverse tool call dictionaries for a given tool based o…
TestCaseGenerator tool specification
Tool Information:
Name:
TestCaseGenerator
Type:
AgenticTool
Description: Generates diverse and representative ToolUniverse tool call dictionaries for a given tool based on its parameter schema. Each tool call should be a JSON object with ‘name’ (the tool’s name) and ‘arguments’ (a dict of input arguments), covering different parameter combinations, edge cases, and typical usage. Can generate targeted test cases based on previous optimization feedback.
Parameters:
tool_config
(object) (required) The full configuration of the tool to generate test cases for. May include ‘_optimization_feedback’ and ‘_iteration’ fields for feedback-driven test generation.
Example Usage:
query = {
"name": "TestCaseGenerator",
"arguments": {
"tool_config": "example_value"
}
}
result = tu.run(query)
ToolImplementationGenerator (Type: AgenticTool)¶
Generates domain-specific, functional code implementations based on tool descriptions and require…
ToolImplementationGenerator tool specification
Tool Information:
Name:
ToolImplementationGenerator
Type:
AgenticTool
Description: Generates domain-specific, functional code implementations based on tool descriptions and requirements with intelligent algorithm selection
Parameters:
tool_description
(string) (required) Detailed description of what the tool should accomplishtool_parameters
(string) (required) JSON string of parameter schema for the tooldomain
(string) (optional) Domain area for specialized implementationcomplexity_level
(string) (optional) Desired complexity level of implementationperformance_requirements
(string) (optional) Performance requirements or constraints
Example Usage:
query = {
"name": "ToolImplementationGenerator",
"arguments": {
"tool_description": "example_value",
"tool_parameters": "example_value"
}
}
result = tu.run(query)
ToolMetadataGenerator (Type: AgenticTool)¶
Generates a JSON structure with the metadata of a tool in ToolUniverse, given the JSON configurat…
ToolMetadataGenerator tool specification
Tool Information:
Name:
ToolMetadataGenerator
Type:
AgenticTool
Description: Generates a JSON structure with the metadata of a tool in ToolUniverse, given the JSON configuration of the tool.
Parameters:
tool_config
(string) (required) JSON string of the tool configuration to extract metadata fromtool_type_mappings
(object) (optional) A mapping from a simplified toolType to a list of tool_config.type that fall under the toolType (e.g., {‘Databases’: [‘XMLTool’]})
Example Usage:
query = {
"name": "ToolMetadataGenerator",
"arguments": {
"tool_config": "example_value"
}
}
result = tu.run(query)
ToolMetadataStandardizer (Type: AgenticTool)¶
Standardizes and groups semantically equivalent metadata strings (e.g., sources, tags) into canon…
ToolMetadataStandardizer tool specification
Tool Information:
Name:
ToolMetadataStandardizer
Type:
AgenticTool
Description: Standardizes and groups semantically equivalent metadata strings (e.g., sources, tags) into canonical forms for consistent downstream usage.
Parameters:
metadata_list
(array) (required) List of raw metadata strings (e.g., sources, tags) to standardize and group.limit
(integer) (optional) If provided, the maximum number of canonical strings to return. The LLM will group terms more aggressively to meet this limit, ensuring all raw strings are mapped.
Example Usage:
query = {
"name": "ToolMetadataStandardizer",
"arguments": {
"metadata_list": ["item1", "item2"]
}
}
result = tu.run(query)
ToolOptimizer (Type: AgenticTool)¶
Optimizes tool configurations based on quality feedback. Improves tool specifications and impleme…
ToolOptimizer tool specification
Tool Information:
Name:
ToolOptimizer
Type:
AgenticTool
Description: Optimizes tool configurations based on quality feedback. Improves tool specifications and implementations to address identified issues.
Parameters:
tool_config
(string) (required) JSON string of the original tool configurationquality_feedback
(string) (required) JSON string of quality evaluation feedbackoptimization_target
(string) (optional) What to optimize for (improve_quality, enhance_performance, etc.)
Example Usage:
query = {
"name": "ToolOptimizer",
"arguments": {
"tool_config": "example_value",
"quality_feedback": "example_value"
}
}
result = tu.run(query)
ToolQualityEvaluator (Type: AgenticTool)¶
Evaluates the quality of tool configurations and implementations. Provides detailed scoring and f…
ToolQualityEvaluator tool specification
Tool Information:
Name:
ToolQualityEvaluator
Type:
AgenticTool
Description: Evaluates the quality of tool configurations and implementations. Provides detailed scoring and feedback for improvement.
Parameters:
tool_config
(string) (required) JSON string of the tool configurationtest_cases
(string) (optional) JSON string of test casesevaluation_aspects
(array) (optional) Aspects to evaluate (functionality, usability, completeness, best_practices)
Example Usage:
query = {
"name": "ToolQualityEvaluator",
"arguments": {
"tool_config": "example_value"
}
}
result = tu.run(query)
ToolRelationshipDetector (Type: AgenticTool)¶
Analyzes a primary tool against a list of other tools to identify meaningful, directional data fl…
ToolRelationshipDetector tool specification
Tool Information:
Name:
ToolRelationshipDetector
Type:
AgenticTool
Description: Analyzes a primary tool against a list of other tools to identify meaningful, directional data flow compatibilities for scientific workflows. Returns a list of compatible pairs with direction and rationale.
Parameters:
tool_a
(string) (required) JSON string for the primary tool configuration (Tool A).other_tools
(string) (required) JSON string of a list of other tool configurations to compare against Tool A.
Example Usage:
query = {
"name": "ToolRelationshipDetector",
"arguments": {
"tool_a": "example_value",
"other_tools": "example_value"
}
}
result = tu.run(query)
ToolSpecificationGenerator (Type: AgenticTool)¶
Generates complete ToolUniverse-compliant tool specifications based on a description and analysis…
ToolSpecificationGenerator tool specification
Tool Information:
Name:
ToolSpecificationGenerator
Type:
AgenticTool
Description: Generates complete ToolUniverse-compliant tool specifications based on a description and analysis of similar existing tools. Creates comprehensive tool configurations including parameters, prompts, and metadata.
Parameters:
tool_description
(string) (required) Brief description of the desired tool functionality and purpose.tool_category
(string) (required) Target category for the tool (e.g., ‘biomedical’, ‘data_analysis’, ‘text_processing’).tool_type
(string) (required) Specific ToolUniverse tool type (e.g., ‘AgenticTool’, ‘RESTTool’, ‘PythonTool’).similar_tools
(string) (required) JSON string containing configurations of similar existing tools for analysis and differentiation.existing_tools_summary
(string) (required) Summary of existing tools in the ecosystem to avoid duplication and identify gaps.
Example Usage:
query = {
"name": "ToolSpecificationGenerator",
"arguments": {
"tool_description": "example_value",
"tool_category": "example_value",
"tool_type": "example_value",
"similar_tools": "example_value",
"existing_tools_summary": "example_value"
}
}
result = tu.run(query)
ToolSpecificationOptimizer (Type: AgenticTool)¶
Optimizes tool specifications for clarity, completeness, and usability with comprehensive benchma…
ToolSpecificationOptimizer tool specification
Tool Information:
Name:
ToolSpecificationOptimizer
Type:
AgenticTool
Description: Optimizes tool specifications for clarity, completeness, and usability with comprehensive benchmarking against similar tools
Parameters:
tool_config
(string) (required) JSON string of current tool configuration to optimizeoptimization_focus
(string) (optional) Primary optimization focustarget_audience
(string) (optional) Target user expertise levelsimilar_tools
(string) (optional) JSON string array of similar tools for comparison and benchmarking
Example Usage:
query = {
"name": "ToolSpecificationOptimizer",
"arguments": {
"tool_config": "example_value"
}
}
result = tu.run(query)
WritingPresentationReviewer (Type: AgenticTool)¶
Assesses clarity, organization, grammar, and visual presentation quality.
WritingPresentationReviewer tool specification
Tool Information:
Name:
WritingPresentationReviewer
Type:
AgenticTool
Description: Assesses clarity, organization, grammar, and visual presentation quality.
Parameters:
manuscript_text
(string) (required) No description
Example Usage:
query = {
"name": "WritingPresentationReviewer",
"arguments": {
"manuscript_text": "example_value"
}
}
result = tu.run(query)
call_agentic_human (Type: AgenticTool)¶
Produces a concise, practical answer that emulates how a well-informed human would respond to the…
call_agentic_human tool specification
Tool Information:
Name:
call_agentic_human
Type:
AgenticTool
Description: Produces a concise, practical answer that emulates how a well-informed human would respond to the question.
Parameters:
question
(string) (required) The user’s question to be answered in a human-like manner.
Example Usage:
query = {
"name": "call_agentic_human",
"arguments": {
"question": "example_value"
}
}
result = tu.run(query)