

Marinka Zitnik marinka@cs.stanford.edu Joint work with Jure Leskovec

Network biomedicine

Networks are a general language for describing and modeling biological systems, their structure, functions and dynamics

Why Protein Functions?

- Protein functions important for:
 - Understanding life at the molecular level
 - Biomedicine and pharmaceutical industry

 Biotechnological limits & rapid growth of sequence data: most proteins can only be annotated computationally [Clark et al. 2013, Rost et al. 2016, Greene et al. 2016]

What Does My Protein Do?

Goal: Given a set of proteins and possible functions, we want to predict each protein's association with each function:

antn: Proteins \times Functions \rightarrow [0,1]

antn: CDC3 \times Cell cycle \rightarrow 0.9

antn: RPT6 \times Cell cycle \rightarrow 0.05

Existing Research

"Guilty by association": protein's function is determined based on who it interacts with

- Approaches
 - Neighbor scoring
 - Indirect scoring
 - Random walks

[Zuberi et al. 2013, Radivojac et al. 2013, Kramer et al. 2014, Yu et al. 2015] and many others

Existing Research

- Protein functions are assumed constant across organs and tissues:
 - Functions in heart are the same as in skin
 - Functions in frontal lobe are the same as in whole brain

Lack of methods to predict functions in different biological contexts

Questions for Today

- How can we describe and model multilayer tissue networks?
- 2. Can we predict protein functions in given context [e.g., tissue, organ, cell system]?
- 3. How functions vary across contexts?

Biotechnological Challenges

- Tissues have inherently multiscale, hierarchical organization
- Tissues are related to each other:
 - Proteins in biologically similar tissues have similar functions [Greene et al. 2016, ENCODE 2016]
 - Proteins are missing in some tissues
- Interaction networks are tissue-specific
- Many tissues have no annotations

Computational Challenges

- Multi-layer network theory is only emerging at present
- Lack of formulations accounting for:
 - multiple interaction types
 - interactions vary in space, time, scale
 - interconnected networks of networks
- Nodes have different roles across layers
- Labels are extremely sparse

Part 1

The multi-layer nature of networks In biomedicine

Multi-Layer Networks

Collections of interdependent networks

Different layers have different meanings

Many Network Layers

- Many networks are inherently multilayer but the layers are:
 - Modeled independently of each other
 - Collapsed into one aggregated network
- The models must be:
 - Multi-scale: Layers at different levels of granularity
 - Scalable: Tens or hundreds of layers

Example: Tissue Networks

- Separate protein-protein interaction network for each tissue
- Biological similarities between tissues at multiple scales

 G_2

Example: Tissue Networks

- Each PPI network is a layer $G_i = (V_i, E_i)$
- Similarities between layers are given in hierarchy \mathcal{M} , map π encodes parent-child relationships

Part 2

Neural embeddings for multi-layer networks

Machine Learning in Networks

Function prediction: Multi-label node classification

Machine Learning Lifecycle

- Machine Learning Lifecycle: This feature, that feature
- Every single time!

Feature Learning in Graphs

Efficient task-independent feature learning for machine learning in networks

Feature representation, embedding

Feature Learning in Multi-Layer Nets

Multi-layer, multi-scale embedding

Features in Multi-Layer Network

- Given: Layers $\{G_i\}_i$, hierarchy \mathcal{M}
 - Layers $\{G_i\}_{i=1..T}$ are in leaves of \mathcal{M}
- Goal: Learn functions: $f_i: V_i \to \mathbb{R}^d$
- Multi-scale model:
 - f_i are in leaves of \mathcal{M}
 - f_I are internal elements of \mathcal{M}_{i}

Features in Multi-Layer Network

- Approach has two components:
- 1. Single-layer objectives: nodes with similar neighborhoods in each layer are embedded close together
- 2. Hierarchical dependency objectives: nodes in nearby layers are encouraged to share similar features

Single-Layer Objectives

- Intuition: For each layer, embed nodes to d dimensions by preserving their similarity
- Approach: Nodes u and v are similar if their network neighborhoods are similar
- Given node u in layer i we define nearby nodes $N_i(u)$ based on random walks starting at node u

Layer

Single-Layer Objectives

• Given node u in layer i, learn u's representation such that it predicts nearby nodes $N_i(u)$:

$$\omega_i(u) = \log Pr(N_i(u)|f_i(u))$$

• Given *T* layers, maximize:

$$\Omega_i = \sum_{u \in V_i} \omega_i(u), \quad \text{for } i = 1, 2, \dots, T$$

Interdependent Layers

- So far, we did not consider hierarchy ${\mathcal M}$
- Node representations in different layers are learned independently of each other

How to model dependencies between layers when learning features?

Idea: Interdependent Layers

 Encourage nodes in layers nearby in the hierarchy to be embedded close together

Relationships Between Layers

Hierarchy M is a tree, given by the parent-child relationships:

$$\pi:M\to M$$

• $\pi(i)$ is parent of i in M

Example:

"2" is parent of G_i , G_j

Interdependent Layers

• Given node u, learn u's representation in layer i to be close to u's representation in parent $\pi(i)$:

$$c_i(u) = \frac{1}{2} ||f_i(u) - f_{\pi(i)}(u)||_2^2$$

• Multi-scale: Repeat at every level of \mathcal{M}

$$C_i = \sum_{u \in L_i} c_i(u)$$

Final Model: OhmNet

Automatic feature learning in multi-layer networks

Solve maximum likelihood problem:

$$\max_{f_1, f_2, \dots, f_{|M|}} \sum_{i \in \mathcal{T}} \Omega_i - \lambda \sum_{j \in \mathcal{M}} C_j$$

Single-layer objectives

Hierarchical dependency objectives

OhmNet Algorithm

- 1. For each layer, compute random walk probs.
- 2. For each layer, sample fixed-length random walks starting from each node \boldsymbol{u}
- 3. Optimize the OhmNet objective using stochastic gradient descent

Scalable: No pairwise comparison of nodes from different layers

Part 3

Results: Protein function prediction across tissues

Tissue-Specific Function Prediction

- 1. Learn features of every node and at every scale based on:
 - Edges within each layer
 - Inter-layer relationships between nodes active on different layers
- 2. Predict tissue-specific protein functions using the learned node features

Protein Functions and Tissues

Data: 107 Tissue Layers

FemaleReproductiveSystem

Layers are PPI nets:

Nodes: proteins

Edges: tissue-specific PPIs

Node labels:

 E.g., Cortex development in renal cortex tissue

 E.g., Artery morphogenesis in artery tissue

Multi-label node classification

Corpus@allosun

Experimental Setup

- Protein function prediction is a multi-label node classification task
- Every node (protein) is assigned one or more labels (functions)

Setup:

- Learn features for multi-layer network
- Train a classifier for each function based on a fraction of proteins and all their functions
- Predict functions for new proteins

Protein Function Prediction

AUROC

Part 4

Results: Other applications

Brain Tissues

9 brain tissue PPI networks in two-level hierarchy

Meaningful Node Embeddings

Unannotated Tissues

- Transfer functions to unannotated tissues
- Task: Predict functions in target tissue without access to any annotation/label in that tissue

Target tissue	OhmNet	Tissue non-specific	Improvement
Placenta	0.758	0.684	11%
Spleen	0.779	0.712	10%
Liver	0.741	0.553	34%
Forebrain	0.755	0.632	20%
Blood plasma	0.703	0.540	40%
Smooth muscle	0.729	0.583	25%
Average	0.746	0.617	21%

Revisit: Questions for Today

- How can we describe and model multilayer tissue networks?
- 2. Can we predict protein functions in given context [e.g., tissue, organ, cell system]?
- 3. How functions vary across contexts?

Conclusions

- Unsupervised feature learning in multi-layer networks
- Learned features can be used for any downstream prediction task: node classification, node clustering, link prediction
- Move from flat networks to large multiscale systems in biology

Thank you!

snap.stanford.edu/ohmnet

Predicting multicellular function through multi-layer tissue networks. M. Zitnik, J. Leskovec. Bioinformatics 2017.

To appear at ISMB/ECCB 2017

