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Network biomedicine

Networks are a general
language for describing and
modeling biological systems,

thelr structure, functions
and dynamics
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Why Protein Functions®

= Protein functions important for:
= Understanding life at the molecular level
» Biomedicine and pharmaceutical industry

= Biotechnological limits & rapid growth of
seguence data: most proteins can only be

annotated computationally (ciark et ai. 2013, Rost et
al. 2016, Greene et al. 2016]
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What Does My Protein Do”

Goal: Given a set of proteins and possible
functions, we want to predict each protein’s
association with each function:

antn: Proteins X Functions — [0,1]

antn: CDC3 X Cell cycle —» 0.9
antn: RPT6 X Cell cycle = 0.05



EXisting Research

Cell cycle

Cell
proliferation

“Guilty by association”:
protein’s function is
determined based on
who It Interacts with

= Approaches

Neighbor scoring
ndirect scoring

Random walks

[Zuberi et al. 2013, Radivojac et
al. 2013, Kramer et al. 2014, Yu

et al. 2015] and many others
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EXisting Research

= Protein functions are assumed constant
across organs and tissues:
= Functions In heart are the same as in skin

= Functions in frontal lobe are the same as in
whole brain

Lack of methods to predict functions
in different biological contexts
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Questions for Today

How can we describe and model multi-
layer tissue networks”?

Can we predict protein functions in given
context [e.q., tissue, organ, cell system]?
How functions vary across contexts”
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Biotechnological Challenges

= [issues have inherently multiscale,
hierarchical organization

= [issues are related to each other:

= Proteins in biologically similar tissues have
similar Tunctions [Greene et al. 2016, ENCODE 2016

= Proteins are missing in some tissues
= |nteraction networks are tissue-specific
= Many tissues have no annotations
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Computational Challenges

Multi-layer network theory is only
emerging at present

Lack of formulations accounting for:
= multiple interaction types
= |nteractions vary in space, time, scale
= |nterconnected networks of networks

Nodes have different roles across layers
Labels are extremely sparse



The multi-layer
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Multi-Layer Networks

= Collections of interdependent networks
= Different Iayers have different meanlngs

P




Many Network Layers

= Many networks are inherently multi-
layer but the layers are:
= Modeled independently of each other
= Collapsed into one aggregated network

= [The models must be:

= Multi-scale: Layers at different levels of
granularity

= Scalable: Tens or hundreds of layers

Marinka Zitnik, Stanford



Example: Tissue Networks

= Separate protein-protein interaction
network for each tissue

= Biological similarities between
tissues at multiple scales & o

g2lp
Gy
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Example: Tissue Networks

= Each PPl network is a layer G; = (V;, E;)

= Similarities between layers are given in
hierarchy M, map m encodes parent-child
relatlonshlps

&




Neural embeddings
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Machine Learning in Networks

Cell CDC3 CDC3
cycle
CLB4 CLB4
CDC16 CDC16

UNK1
Cell

. : Machine
proliferation earning
RPT1 RPN3 RPT1 RPN3
RPT RPT6
6 UNK2 UNK?2

Function prediction: Multi-label node classification
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Machine Learning Litecycle

= Machine Learning Lifecycle: This

Raw
Networks
J

~

feature, that feature
—very single time!

En
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ing
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Node and edge
profiles
J

Learning
Algorithm

I

Prediction
Model

|

Automatically
learn the features
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Feature Learning in Graphs

—fficient task-independent feature
learning for machine learning in
networks

vector
Nodey ——s JHEEEEN

fru—- R4 \ y
]Rd
Feature representation,
embedding



Feature Learning in Multi-Layer Nets
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Features In Multi-Layer Network

= Given: Layers {G;};, hierarchy M
= |ayers {G;};—, 7 are in leaves of M

= Goal: Learn functions: f;: V; » R4

= Multi-scale model:
= f; arein leaves of M £,
= f; are internal elements of

fi



Features In Multi-Layer Network

= Approach has two components:

1. Single-layer objectives: nodes with
similar neighborhoods in each layer
are embedded close together

2. Hierarchical dependency objectives:
nodes in nearby layers are
encouraged to share similar features
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Single-Layer Objectives

= [ntuition: For each layer, embed nodes to
d dimensions by preserving their similarity

= Approach: Nodes u and v are similar if
their network neighborhoods are similar

= Given node u in layer i we define nearby
nodes N;(u) based on random walks
starting at node u

Layer i

[Grover et al. 2016]
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Single-Layer Objectives

= Given node u in layer i, learn u’s
representation such that it predicts
nearby nodes N;(u):

wi(u) = log Pr(N;(u)|fi(u))

= Given T layers, maximize:

’L_szu, fore=1,2,...,7T
uevVv;
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Interdependent Layers

= 5o far, we did not consider hierarchy M

= Node representations in different layers are
learned independently of each other

How to mod

el dependencies

layers w

netween

nen learning featu

res”?



|[dea: Interdependent Layers

= Encourage nodes In layers nearby In
the hierarchy to be embedded close

together \
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Relationships Between Layers

= Hierarchy M Is a tree, given by the
parent-child relationships:

. M — M

= 7(¢)is parent of iin M

—xXample:
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Interdependent Layers

= Given node u, learn u’s representation in
layer i to be close to u’s representation in
parent (i):

cilw) = ZI1filw) = Frgiy (01

= Multi-scale: Repeat at every level of M

C; = Z c; (u) / V N

ucl;
L; has all layers appearing in sub- hlerarchy rooted at i ?%% %

aaaaaaaaaaaaaaaaaaaa



Final Model: OhmNet

Automatic feature learning in multi-layer networks

Solve maximum likelihood problem:

— A

IMax
f17f27°°'7f|M

Single-layer Hierarchical
objectives dependency
objectives
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OhmNet Algorithm

1. For each layer, compute random walk probs.

2. For each layer, sample fixed-length random
walks starting from each node u

3. Optimize the OhmNet objective using
stochastic gradient descent

Scalable: No pairwise comparison of
nodes from different layers




Results: Protein
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Tissue-Specific Function Prediction

1. Learn features of every node and at
every scale based on:
m Edges within each layer
D Inter-layer relationships between nodes active
on different layers
2. Predict tissue-specific protein functions
using the learned node features



Protein Functions and Tissues

Structural and Mechanical

Hair and Nails

Enzymes A protein called alpha-
r protein called alpha
Tesngpont keratin forms your hair and Blood

fingernails,and also is the 3 2

major component of The hemoglobin protein

feathers, wool, claws, carries oxygen in your

scales, horns, and hooves. blood to every part of

your body.
Muscles Brain and Nerves
Sinste Muscle proteins called lon channel proteins control
and pumps \ ? Homionss aﬁhn and lrnyosm enablte brain signaling by allowing
PROTE'NS i all muscular movement—

Antibodies

Fluid
balance

small molecules into and out

from blinking to breathing of nerve cells.

to rollerblading.

Cellular Messengers Enzymes

Receptor proteins stud the

Enzymes in your saliva,
outside of your cells and

stomach, and small

transmit signals to partner intestine are proteins that
proteins on the inside of help you digest food.
the cells.
Cellular Construction Workers
Antibodies

Huge clusters of proteins
form molecular machines
that do your cells’ heavy
work, such as copying genes
during cell division and
making new proteins.

Antibodies are proteins
that help defend your
body against foreign
invaders, such as
bacteria and viruses.
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Data: 107 Tissue Layers

= [ayers are PPl nets: :-3% |3

= Nodes: proteins . “H;Q -

= Edges: tissue-specific PPIs
= Node labels:

= E.g., Cortex development n;/m /4 4& ¥ o

renal cortex tissue

= E.g., Artery morphogenesis in \
artery tissue e s

= Multi-label node classification
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Experimental Setup

Protein function prediction is a multi-label
node classification task

Every node (protein) is assigned one or
more labels (functions)

Setup:
= | earn features for multi-layer network

= [rain a classifier for each function based on
a fraction of proteins and all their functions

= Predict functions for new proteins
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Protein Function Prediction

OhmNet

>10% improvement over
current protein function
prediction methods

Protein function
prediction methods

>18% improvement over

Mono-layer methods based on non-

network i i i

embeddings hierarchical versions of
the same dataset

Tensor >15% improvement over

decompositions matrix-based methods

0.5 0.6 0.7 0.8 0.9

AUROC
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P art 4 Results: Other

applications




Brain Tissues

Brain

Brainstem

Cerebellum Frontal
lobe

Parietal Occipital  Temporal
lobe lobe lobe

Midbrain Substantia Pons Medulla
nigra oblongata

9 brain tissue PPl networks
In two-level hierarchy
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Brainstem

Midbrain
Pons

Medulla

Basilar artery

Vertebral arteries
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Meaningful Node Embeddings

Brainstem

Brain

Cerebellum
Medulla oblongata
Substantia nigra

Frontal lobe Parietal lobe &/~
Temporal lobe e Occipital lobe =~
Pons e Midbrain
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Unannotated Tissues

ransfer functions to unannotated tissues

ask: Predict functions in target tissue without
access to any annotation/label in that tissue

Target tissue | OhmNet | Tissue non-specific_| Improvement _

Placenta 0.758 0.684 11%
Spleen 0.779 0.712 10%
Liver 0.741 0.553 34%
Forebrain 0.755 0.632 20%
Blood plasma 0.703 0.540 40%
Smooth muscle 0.729 0.583 25%
Average 0.746 0.617 21%

Reported are AUC values
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Revisit: Questions for Today

How can we describe and model multi-
layer tissue networks”?

Can we predict protein functions in given
context [e.q., tissue, organ, cell system]?
How functions vary across contexts”
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Conclusions

= Unsupervised feature learning in
Multi-layer networks

= | earned features can be used for any
downstream prediction task: node
classification, node clustering, link
porediction

= Move from flat networks to large
multiscale systems in biology



Thank youl!

snap.stanford.edu/ohmnet

Predicting multicellular function through multi-layer
tissue networks. M. Zitnik, J. Leskovec.
Bioinformatics 2017 .
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