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Network biomedicine
Networks are a general

language for describing and
modeling biological systems,

their structure, functions
and dynamics
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Why Protein Functions?
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§ Protein functions important for:
§ Understanding life at the molecular level
§ Biomedicine and pharmaceutical industry

§ Biotechnological limits & rapid growth of 
sequence data: most proteins can only be 
annotated computationally [Clark et al. 2013, Rost et 
al. 2016, Greene et al. 2016]
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What Does My Protein Do?
Goal: Given a set of proteins and possible 
functions, we want to predict each protein’s 
association with each function:
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antn: 	Proteins	×	Functions → [0,1]

antn: CDC3	×	Cell	cycle → 0.9
antn: RPT6	×	Cell	cycle → 0.05
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Existing Research
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“Guilty by association”:
protein’s function is 
determined based on 
who it interacts with
§ Approaches

§ Neighbor scoring
§ Indirect scoring
§ Random walks 

[Zuberi et al. 2013, Radivojac et 
al. 2013, Kramer et al. 2014, Yu 
et al. 2015] and many others

Cell
proliferation

Cell cycle

?
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Existing Research
§ Protein functions are assumed constant

across organs and tissues:
§ Functions in heart are the same as in skin
§ Functions in frontal lobe are the same as in 

whole brain
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Lack of methods to predict functions 
in different biological contexts
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Questions for Today
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1. How can we describe and model multi-
layer tissue networks?

2. Can we predict protein functions in given 
context [e.g., tissue, organ, cell system]?

3. How functions vary across contexts?
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Biotechnological Challenges
§ Tissues have inherently multiscale, 

hierarchical organization
§ Tissues are related to each other:

§ Proteins in biologically similar tissues have 
similar functions [Greene et al. 2016, ENCODE 2016]

§ Proteins are missing in some tissues
§ Interaction networks are tissue-specific
§ Many tissues have no annotations
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Computational Challenges
§ Multi-layer network theory is only 

emerging at present
§ Lack of formulations accounting for:

§ multiple interaction types
§ interactions vary in space, time, scale
§ interconnected networks of networks

§ Nodes have different roles across layers
§ Labels are extremely sparse
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The multi-layer 
nature of networks
In biomedicine

Part 1
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populations, etc.) can depend on processes at other levels42. For 
example, changes in species’ biomass can affect the stability of food 
webs in dynamical models based on allometry43. When the layers 
in a multilayer network represent different levels of organization, 
one has a ‘multilevel’ network, and interactions between nodes 
at a lower level automatically entail interactions at upper levels14. 
For example, a trophic interaction between two species from two 
different patches implies that there is an interaction between the 
patches. The simplest example is a two-level multilevel network, 
which can also be construed as a network of networks (Fig. 1f). In 
an analysis of a three-level multilevel network (population, com-
munity, and metacommunity), Scotti et  al.44 illustrated that the 
metacommunity was sensitive to population-level processes (for 
example, social dynamics) that cascaded through different levels. 
The identification of such dependencies is one of the values of a 
multilayer approach.

Analyses of ecological multilayer networks
To illustrate the kinds of insights that one can gain by taking a 
multilayer approach, we analyse examples of ecological multilayer 
networks in which layers are connected explicitly. We consider 
(i) maximum modularity, a structural property that is commonly 
studied in monolayer networks; and (ii) extinction cascades, a con-
sequence of structure that is common in robustness analyses of net-
works. We use both synthetic networks and networks constructed 
from empirical data.

Modularity. In monolayer networks, maximizing modularity can 
help quantify the extent to which a network is organized into groups 
(modules) of species that interact more strongly with each other 
than with other species45,46. To illustrate the distinction between 
studying a multilayer network and studying a collection of net-
works, we start with a synthetic example from Fontaine et al.10. In 

A ‘multilayer network’ is a quadruplet M = (VM,EM,V,L). Multilayer 
networks can have several ‘aspects’ of layering, and an ‘elementary 
layer’ is a single element in one aspect of layering. A ‘layer’ encom-
passes one choice of elementary layer for each type of aspect (see 
the figure for an example). We include such relationships using 
sequences L  =  {La}d

a=1 of sets La of elementary layers, where a 
indexes the d different aspects. Note that d = 0 for a monolayer 
network, d = 1 when there is one type of layering, and d = 2 when 
there are two types of layering (as in the figure). The set of entities 
(that is, physical nodes) is V. The set VM � V × L1 × ... × Ld of node-
layer tuples (that is, state nodes) encodes the manifestations of an 
entity v � V on a particular layer l � L̂ = L1 × ... × Ld.

The edge set EM � VM × VM, which includes both intralayer and 
interlayer edges, encodes the connections between pairs of state 
nodes. In a given layer, the intralayer edges encode connections 
of a specified type (for example, a certain type of interaction at a 

given point in time). A function w : EM →  ℝ  encodes weights on 
edges. A pair of node-layer tuples, (u,α) and (v,β), are ‘adjacent’ 
if and only if there is an edge between them. One places a 1 in 
the associated entry in an adjacency tensor (a generalization of a 
matrix that consists of a higher-dimensional array of numbers)14,16 
if and only if ((u,α),(v,β)) = 1. Otherwise, one places a 0 in the cor-
responding entry. One can ‘flatten’ such an adjacency tensor into a 
matrix, called a ‘supra-adjacency matrix’, with intralayer edges on 
the diagonal blocks and interlayer edges on the off-diagonal blocks 
(see Supplementary Fig. 1b).

Constraints on the above general definition restrict the struc-
ture of a multilayer network14. For example, ‘diagonal coupling’ (see 
Fig. 1c) is a constraint in which the only permissible type of inter-
layer edge is one between counterpart entities on different layers. See 
ref. 14 for additional definitions and important types of constraints 
on M that produce common types of multilayer networks.

Box 1 | Definition of multilayer networks.

Toy example of a multilayer network. a, The network has d = 2 aspects: (i) different types of ecological interactions (trophic interactions are in the blue 
layer (A), and host–parasite interactions are in the orange layer (B)); and (ii) space (X and Y represent different patches). The elementary-layer set for 
ecological interaction types is L1 = {A,B}, and the one for patches is L2 = {X,Y}. A layer consists of a tuple of elementary layers. For example, the layer 
(A,X) encodes trophic interactions in patch X. We show intralayer edges using solid arrows. We depict diagonal interlayer edges (for example, between 
node 2 on layer (A,X) and node 2 on layer (B,X)) with dotted lines; such edges encode the extent to which a parasitized species is more susceptible to 
predation than a non-parasitized one. Interlayer edges between patches represent dispersal; we show them with dashed arcs. b, The ‘supra-graph’ that 
corresponds to the multilayer network in panel a. Each node in this graph is a node-layer tuple (that is, a state node) in the corresponding multilayer 
network. See Supplementary Fig. 1 for an example of how to represent a similar multilayer network as a supra-adjacency matrix. Figure adapted with 
permission from ref. 14, Oxford Univ. Press.
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Multi-Layer Networks
§ Collections of interdependent networks
§ Different layers have different meanings
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G1
G2

G3
G4
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Many Network Layers
§ Many networks are inherently multi-

layer but the layers are:
§ Modeled independently of each other
§ Collapsed into one aggregated network

§ The models must be:
§ Multi-scale: Layers at different levels of 

granularity
§ Scalable: Tens or hundreds of layers
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Example: Tissue Networks
§ Separate protein-protein interaction 

network for each tissue
§ Biological similarities between 

tissues at multiple scales
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G1
G2

G3
G4
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Example: Tissue Networks

14

§ Each PPI network is a layer 𝐺B = (𝑉B, 𝐸B)
§ Similarities between layers are given in 

hierarchy ℳ, map 𝜋 encodes parent-child 
relationships

G1
G2

G3
G4
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Neural embeddings
for multi-layer 
networks 

Part 2
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Machine Learning in Networks
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CDC3

CDC16
CLB4

RPN3RPT1

RPT6

UNK1

UNK2

CDC3

CDC16
CLB4

RPN3RPT1

RPT6

UNK1

Cell
proliferation

Cell 
cycle

UNK2

Machine 
Learning

Function prediction: Multi-label node classification
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Machine Learning Lifecycle
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Raw 
Networks

Node and edge 
profiles

Learning 
Algorithm  

Prediction
Model

Downstream 
prediction of protein functions

Feature 
Engineering

Automatically 
learn the features

§ Machine Learning Lifecycle: This 
feature, that feature 

§ Every single time!
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Feature Learning in Graphs
Efficient task-independent feature 
learning for machine learning in 

networks
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Node 𝑢
𝑓: 𝑢→ℝM

vector

Feature representation, 
embedding

N

ℝM
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Feature Learning in Multi-Layer Nets
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vectors for 𝑢

Node 𝑢

Node 𝑢
Node 𝑢 𝑓B, 𝑓O, 𝑓P

𝑓Q, 𝑓R, 𝑓S
𝑢→ℝM N

ℝM
Multi-layer, multi-scale

embedding
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Features in Multi-Layer Network

20

§ Given: Layers 𝐺B B, hierarchy ℳ
§ Layers 𝐺B BTS..U are in leaves of ℳ

§ Goal: Learn functions: 𝑓B: 𝑉B →ℝM

§ Multi-scale model:
§ 𝑓B are in leaves of ℳ
§ 𝑓V are internal elements of ℳ
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Features in Multi-Layer Network

21

§ Approach has two components:
1. Single-layer objectives: nodes with 

similar neighborhoods in each layer 
are embedded close together

2. Hierarchical dependency objectives: 
nodes in nearby layers are 
encouraged to share similar features
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BFS vs. DFS

BFS:
Micro-view of 

neighbourhood

u

DFS:
Macro-view of 
neighbourhood

36Jure Leskovec, Stanford

Single-Layer Objectives
§ Intuition: For each layer, embed nodes to 
𝑑 dimensions by preserving their similarity

§ Approach: Nodes 𝑢 and 𝑣 are similar if 
their network neighborhoods are similar

§ Given node 𝑢 in layer 𝑖 we define nearby 
nodes 𝑁B(𝑢) based on random walks 
starting at node 𝑢

22
[Grover et al. 2016]

BFS vs. DFS

BFS:
Micro-view of 

neighbourhood

u

DFS:
Macro-view of 
neighbourhood

36Jure Leskovec, Stanford

u

NLayer 𝑖
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Single-Layer Objectives
§ Given node 𝑢 in layer 𝑖, learn 𝑢’s 

representation such that it predicts 
nearby nodes 𝑁B(𝑢):

§ Given 𝑇 layers, maximize:

23
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neural network embedding based approaches. In matrix factorization,
a network is expressed as a data matrix where the entries represent
relationships. The data matrix is projected to a low dimensional space
using linear techniques based on SVD (Tang et al., 2012), or non-linear
techniques based on multi-dimensional scaling (Tenenbaum et al., 2000;
Belkin and Niyogi, 2001; Hou et al., 2014). These methods have two
important drawbacks. First, they do not account for important structures
typically exhibited in networks such as high sparsity and skewed degree
distribution. Second, matrix factorization methods perform a global
factorization of the data matrix while a local-centric method might often
yield more useful feature representations (Kramer et al., 2014).

Limitations of matrix factorization are overcome by neural network
embeddings. Recent studies focused on embedding nodes into low-
dimensional vector spaces by first using random walks to construct the
network neighborhood of every node in the graph, and then optimizing an
objective function with network neighborhoods as input (Perozzi et al.,
2014; Tang et al., 2015; Grover and Leskovec, 2016). The objective
function is carefully designed to preserve both the local and global network
structures. A state-of-the-art neural network embedding algorithm is the
Node2vec algorithm (Grover and Leskovec, 2016), which learns feature
representations as follows: it scans over the nodes in a network, and for
every node it aims to embed it such that the node’s features can predict
nearby nodes, that is, node’s feature predict which other nodes are part
of its network neighborhood. Node2vec can explore different network
neighborhoods to embed nodes based on the principles of homophily (i.e.,
network communities) as well as structural equivalence (i.e., structural
roles of nodes).

A challenging problem for neural network embedding-based methods
is to learn features in multi-layer networks. Existing methods can learn
features in multi-layer networks either by treating each layer independently
of other layers, or by aggregating the layers into a single (weighted)
network. However, neglecting the existence of multiple layers or
aggregating the layers into a single network, alters topological properties
of the system as well as the importance of individual nodes with respect to
the entire network structure (De Domenico et al., 2016). This is a major
shortcoming of prior work that can lead to a wrong identification of the
most versatile nodes (De Domenico et al., 2015) and overestimation of
the importance of more marginal nodes (De Domenico et al., 2014). As
we shall show, this shortcoming also affects predictive accuracy of the
learned features. Our approach OhmNet overcomes this limitation since it
learns features in a multi-layer network in the context of the entire system
structure, bridging together different layers and generalizing methods
developed for learning features in single-layer networks (Section 3).

Finally, there exists recent work for task-dependent feature learning
based on graph-specific deep network architectures (Zhai and Zhang,
2015; Li et al., 2015; Xiaoyi et al., 2014; Wang et al., 2016a). Our
approach differs from those approaches in two important ways. First,
those architectures are task-dependent, meaning they directly optimize
the objective function for a downstream prediction task, such as cellular
function prediction in a particular tissue, using several layers of non-linear
transformations. Second, those architectures do not model rich graph
structures, such as multi-layer graphs with hierarchies.

3 Hierarchy-aware feature learning in
multi-layer networks
We formulate feature learning in multi-layer networks with hierarchical
dependencies as a maximum likelihood optimization problem. Let V be a
given set ofN nodes (e.g., proteins) {u1, u2, . . . , uN}, and let there beT

types of edges (e.g., protein interactions in different tissues) between pairs
of nodes u1, u2, . . . , uN . A multi-layer network is a general system in
which each biological context is represented by a distinct layer i (where
i = 1, 2, . . . , T ) of a system (Figure 1). We use the term single-layer
network (layer) for the network Gi = (Vi, Ei) that indicates the edges
Ei between nodesVi ✓ V within the same layer i. Our analysis is general
and applies to any (un)directed, (un)weighted multi-layer network.

We take into account the possibility that a node uk from layer i can be
related to any other node uh in any other layer j. We encode information
about the dependencies between layers in a hierarchical manner that we use
in the learning process. Let the hierarchy be a directed treeM defined over
a setM of objects by the parent-child relationships given by⇡ : M ! M,

where ⇡(i) is the parent of object i (Figure 1). For convenience, let Ci

denote the set of all children of object i in the hierarchy. Let T ⇢ M be
the set of all leaf objects in the hierarchy. We assume that each layer Gi is
attached to one leaf object in the hierarchy. As a result, the hierarchy has
exactly T leaf objects.

The problem of feature learning in a multi-layer network is to learn
functions f1, f2, . . . , fT , such that each function fi : Vi ! Rd maps
nodes in Vi to feature representations in Rd. Here, d is a parameter
specifying the number of dimensions in the feature representation of one
node. Equivalently, fi is a matrix of |Vi|⇥ d parameters.

We proceed by describing OhmNet, our approach for feature learning
in multi-layer networks. OhmNet has two components:

• single-layer network objectives, in which nodes with similar network
neighborhoods in each layer are encouraged to share similar features,
and

• hierarchical dependency objective, in which nodes in nearby layers
in the hierarchy are encouraged to share similar features.

We start by describing the model that considers the layers independently
of each other. We then extend the model to encourage nodes which are
nearby in the hierarchy to have similar features.

3.1 Single-layer network objectives

We start by formalizing the intuition that nodes with similar network
neighborhoods in each layer should share similar features. For that, we
specify one objective for each layer in a given multi-layer network. We
shall later discuss how OhmNet incorporates the dependencies between
different layers.

Our goal is to take layer Gi and learn fi which embeds nodes from
similar network regions, or nodes with similar structural roles, closely
together. In OhmNet, we aim to achieve this goal by specifying the
following objective function for each layer Gi. Given a node u 2 Vi,
the objective function !i seeks to predict, which nodes are members of
u’s network neighborhood Ni(u) based on the learned node features fi:

!i(u) = logPr(Ni(u)|fi(u)), (1)

where the conditional likelihood of every node-neighborhood node pair
is modeled as an independent softmax unit parameterized by a dot
product of nodes’ features, which corresponds to a single-layer feed-
forward neural network (Grover and Leskovec, 2016). Given a node
u, maximization of !i(u) tries to maximize classification of nodes in
u’s network neighborhood based on u’s learned representation. More
precisely, we use each current node as an input to a log-linear classifier,
and predict nodes that are in the neighborhood of the current node.

The objective ⌦i is defined for each layer i:

⌦i =
X

u2Vi

!i(u), for i = 1, 2, . . . , T. (2)for
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neural network embedding based approaches. In matrix factorization,
a network is expressed as a data matrix where the entries represent
relationships. The data matrix is projected to a low dimensional space
using linear techniques based on SVD (Tang et al., 2012), or non-linear
techniques based on multi-dimensional scaling (Tenenbaum et al., 2000;
Belkin and Niyogi, 2001; Hou et al., 2014). These methods have two
important drawbacks. First, they do not account for important structures
typically exhibited in networks such as high sparsity and skewed degree
distribution. Second, matrix factorization methods perform a global
factorization of the data matrix while a local-centric method might often
yield more useful feature representations (Kramer et al., 2014).

Limitations of matrix factorization are overcome by neural network
embeddings. Recent studies focused on embedding nodes into low-
dimensional vector spaces by first using random walks to construct the
network neighborhood of every node in the graph, and then optimizing an
objective function with network neighborhoods as input (Perozzi et al.,
2014; Tang et al., 2015; Grover and Leskovec, 2016). The objective
function is carefully designed to preserve both the local and global network
structures. A state-of-the-art neural network embedding algorithm is the
Node2vec algorithm (Grover and Leskovec, 2016), which learns feature
representations as follows: it scans over the nodes in a network, and for
every node it aims to embed it such that the node’s features can predict
nearby nodes, that is, node’s feature predict which other nodes are part
of its network neighborhood. Node2vec can explore different network
neighborhoods to embed nodes based on the principles of homophily (i.e.,
network communities) as well as structural equivalence (i.e., structural
roles of nodes).

A challenging problem for neural network embedding-based methods
is to learn features in multi-layer networks. Existing methods can learn
features in multi-layer networks either by treating each layer independently
of other layers, or by aggregating the layers into a single (weighted)
network. However, neglecting the existence of multiple layers or
aggregating the layers into a single network, alters topological properties
of the system as well as the importance of individual nodes with respect to
the entire network structure (De Domenico et al., 2016). This is a major
shortcoming of prior work that can lead to a wrong identification of the
most versatile nodes (De Domenico et al., 2015) and overestimation of
the importance of more marginal nodes (De Domenico et al., 2014). As
we shall show, this shortcoming also affects predictive accuracy of the
learned features. Our approach OhmNet overcomes this limitation since it
learns features in a multi-layer network in the context of the entire system
structure, bridging together different layers and generalizing methods
developed for learning features in single-layer networks (Section 3).

Finally, there exists recent work for task-dependent feature learning
based on graph-specific deep network architectures (Zhai and Zhang,
2015; Li et al., 2015; Xiaoyi et al., 2014; Wang et al., 2016a). Our
approach differs from those approaches in two important ways. First,
those architectures are task-dependent, meaning they directly optimize
the objective function for a downstream prediction task, such as cellular
function prediction in a particular tissue, using several layers of non-linear
transformations. Second, those architectures do not model rich graph
structures, such as multi-layer graphs with hierarchies.

3 Hierarchy-aware feature learning in
multi-layer networks
We formulate feature learning in multi-layer networks with hierarchical
dependencies as a maximum likelihood optimization problem. Let V be a
given set ofN nodes (e.g., proteins) {u1, u2, . . . , uN}, and let there beT

types of edges (e.g., protein interactions in different tissues) between pairs
of nodes u1, u2, . . . , uN . A multi-layer network is a general system in
which each biological context is represented by a distinct layer i (where
i = 1, 2, . . . , T ) of a system (Figure 1). We use the term single-layer
network (layer) for the network Gi = (Vi, Ei) that indicates the edges
Ei between nodesVi ✓ V within the same layer i. Our analysis is general
and applies to any (un)directed, (un)weighted multi-layer network.

We take into account the possibility that a node uk from layer i can be
related to any other node uh in any other layer j. We encode information
about the dependencies between layers in a hierarchical manner that we use
in the learning process. Let the hierarchy be a directed treeM defined over
a setM of objects by the parent-child relationships given by⇡ : M ! M,

where ⇡(i) is the parent of object i (Figure 1). For convenience, let Ci

denote the set of all children of object i in the hierarchy. Let T ⇢ M be
the set of all leaf objects in the hierarchy. We assume that each layer Gi is
attached to one leaf object in the hierarchy. As a result, the hierarchy has
exactly T leaf objects.

The problem of feature learning in a multi-layer network is to learn
functions f1, f2, . . . , fT , such that each function fi : Vi ! Rd maps
nodes in Vi to feature representations in Rd. Here, d is a parameter
specifying the number of dimensions in the feature representation of one
node. Equivalently, fi is a matrix of |Vi|⇥ d parameters.

We proceed by describing OhmNet, our approach for feature learning
in multi-layer networks. OhmNet has two components:

• single-layer network objectives, in which nodes with similar network
neighborhoods in each layer are encouraged to share similar features,
and

• hierarchical dependency objective, in which nodes in nearby layers
in the hierarchy are encouraged to share similar features.

We start by describing the model that considers the layers independently
of each other. We then extend the model to encourage nodes which are
nearby in the hierarchy to have similar features.

3.1 Single-layer network objectives

We start by formalizing the intuition that nodes with similar network
neighborhoods in each layer should share similar features. For that, we
specify one objective for each layer in a given multi-layer network. We
shall later discuss how OhmNet incorporates the dependencies between
different layers.

Our goal is to take layer Gi and learn fi which embeds nodes from
similar network regions, or nodes with similar structural roles, closely
together. In OhmNet, we aim to achieve this goal by specifying the
following objective function for each layer Gi. Given a node u 2 Vi,
the objective function !i seeks to predict, which nodes are members of
u’s network neighborhood Ni(u) based on the learned node features fi:

!i(u) = logPr(Ni(u)|fi(u)), (1)

where the conditional likelihood of every node-neighborhood node pair
is modeled as an independent softmax unit parameterized by a dot
product of nodes’ features, which corresponds to a single-layer feed-
forward neural network (Grover and Leskovec, 2016). Given a node
u, maximization of !i(u) tries to maximize classification of nodes in
u’s network neighborhood based on u’s learned representation. More
precisely, we use each current node as an input to a log-linear classifier,
and predict nodes that are in the neighborhood of the current node.

The objective ⌦i is defined for each layer i:

⌦i =
X

u2Vi

!i(u), for i = 1, 2, . . . , T. (2)
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Interdependent Layers

24

§ So far, we did not consider hierarchy ℳ
§ Node representations in different layers are 

learned independently of each other

How to model dependencies between 
layers when learning features?
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Idea: Interdependent Layers
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§ Encourage nodes in layers nearby in 
the hierarchy to be embedded close 
together
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Relationships Between Layers

26

§ Hierarchy 𝑀 is a tree, given by the 
parent-child relationships:

§ is parent of 	𝑖 in 𝑀

Example: 
“2” is parent of 𝐺B, 𝐺]
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neural network embedding based approaches. In matrix factorization,
a network is expressed as a data matrix where the entries represent
relationships. The data matrix is projected to a low dimensional space
using linear techniques based on SVD (Tang et al., 2012), or non-linear
techniques based on multi-dimensional scaling (Tenenbaum et al., 2000;
Belkin and Niyogi, 2001; Hou et al., 2014). These methods have two
important drawbacks. First, they do not account for important structures
typically exhibited in networks such as high sparsity and skewed degree
distribution. Second, matrix factorization methods perform a global
factorization of the data matrix while a local-centric method might often
yield more useful feature representations (Kramer et al., 2014).

Limitations of matrix factorization are overcome by neural network
embeddings. Recent studies focused on embedding nodes into low-
dimensional vector spaces by first using random walks to construct the
network neighborhood of every node in the graph, and then optimizing an
objective function with network neighborhoods as input (Perozzi et al.,
2014; Tang et al., 2015; Grover and Leskovec, 2016). The objective
function is carefully designed to preserve both the local and global network
structures. A state-of-the-art neural network embedding algorithm is the
Node2vec algorithm (Grover and Leskovec, 2016), which learns feature
representations as follows: it scans over the nodes in a network, and for
every node it aims to embed it such that the node’s features can predict
nearby nodes, that is, node’s feature predict which other nodes are part
of its network neighborhood. Node2vec can explore different network
neighborhoods to embed nodes based on the principles of homophily (i.e.,
network communities) as well as structural equivalence (i.e., structural
roles of nodes).

A challenging problem for neural network embedding-based methods
is to learn features in multi-layer networks. Existing methods can learn
features in multi-layer networks either by treating each layer independently
of other layers, or by aggregating the layers into a single (weighted)
network. However, neglecting the existence of multiple layers or
aggregating the layers into a single network, alters topological properties
of the system as well as the importance of individual nodes with respect to
the entire network structure (De Domenico et al., 2016). This is a major
shortcoming of prior work that can lead to a wrong identification of the
most versatile nodes (De Domenico et al., 2015) and overestimation of
the importance of more marginal nodes (De Domenico et al., 2014). As
we shall show, this shortcoming also affects predictive accuracy of the
learned features. Our approach OhmNet overcomes this limitation since it
learns features in a multi-layer network in the context of the entire system
structure, bridging together different layers and generalizing methods
developed for learning features in single-layer networks (Section 3).

Finally, there exists recent work for task-dependent feature learning
based on graph-specific deep network architectures (Zhai and Zhang,
2015; Li et al., 2015; Xiaoyi et al., 2014; Wang et al., 2016a). Our
approach differs from those approaches in two important ways. First,
those architectures are task-dependent, meaning they directly optimize
the objective function for a downstream prediction task, such as cellular
function prediction in a particular tissue, using several layers of non-linear
transformations. Second, those architectures do not model rich graph
structures, such as multi-layer graphs with hierarchies.

3 Hierarchy-aware feature learning in
multi-layer networks
We formulate feature learning in multi-layer networks with hierarchical
dependencies as a maximum likelihood optimization problem. Let V be a
given set ofN nodes (e.g., proteins) {u1, u2, . . . , uN}, and let there beT

types of edges (e.g., protein interactions in different tissues) between pairs
of nodes u1, u2, . . . , uN . A multi-layer network is a general system in
which each biological context is represented by a distinct layer i (where
i = 1, 2, . . . , T ) of a system (Figure 1). We use the term single-layer
network (layer) for the network Gi = (Vi, Ei) that indicates the edges
Ei between nodesVi ✓ V within the same layer i. Our analysis is general
and applies to any (un)directed, (un)weighted multi-layer network.

We take into account the possibility that a node uk from layer i can be
related to any other node uh in any other layer j. We encode information
about the dependencies between layers in a hierarchical manner that we use
in the learning process. Let the hierarchy be a directed treeM defined over
a setM of objects by the parent-child relationships given by⇡ : M ! M,

where ⇡(i) is the parent of object i (Figure 1). For convenience, let Ci

denote the set of all children of object i in the hierarchy. Let T ⇢ M be
the set of all leaf objects in the hierarchy. We assume that each layer Gi is
attached to one leaf object in the hierarchy. As a result, the hierarchy has
exactly T leaf objects.

The problem of feature learning in a multi-layer network is to learn
functions f1, f2, . . . , fT , such that each function fi : Vi ! Rd maps
nodes in Vi to feature representations in Rd. Here, d is a parameter
specifying the number of dimensions in the feature representation of one
node. Equivalently, fi is a matrix of |Vi|⇥ d parameters.

We proceed by describing OhmNet, our approach for feature learning
in multi-layer networks. OhmNet has two components:

• single-layer network objectives, in which nodes with similar network
neighborhoods in each layer are encouraged to share similar features,
and

• hierarchical dependency objective, in which nodes in nearby layers
in the hierarchy are encouraged to share similar features.

We start by describing the model that considers the layers independently
of each other. We then extend the model to encourage nodes which are
nearby in the hierarchy to have similar features.

3.1 Single-layer network objectives

We start by formalizing the intuition that nodes with similar network
neighborhoods in each layer should share similar features. For that, we
specify one objective for each layer in a given multi-layer network. We
shall later discuss how OhmNet incorporates the dependencies between
different layers.

Our goal is to take layer Gi and learn fi which embeds nodes from
similar network regions, or nodes with similar structural roles, closely
together. In OhmNet, we aim to achieve this goal by specifying the
following objective function for each layer Gi. Given a node u 2 Vi,
the objective function !i seeks to predict, which nodes are members of
u’s network neighborhood Ni(u) based on the learned node features fi:

!i(u) = logPr(Ni(u)|fi(u)), (1)

where the conditional likelihood of every node-neighborhood node pair
is modeled as an independent softmax unit parameterized by a dot
product of nodes’ features, which corresponds to a single-layer feed-
forward neural network (Grover and Leskovec, 2016). Given a node
u, maximization of !i(u) tries to maximize classification of nodes in
u’s network neighborhood based on u’s learned representation. More
precisely, we use each current node as an input to a log-linear classifier,
and predict nodes that are in the neighborhood of the current node.

The objective ⌦i is defined for each layer i:

⌦i =
X

u2Vi

!i(u), for i = 1, 2, . . . , T. (2)
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the importance of more marginal nodes (De Domenico et al., 2014). As
we shall show, this shortcoming also affects predictive accuracy of the
learned features. Our approach OhmNet overcomes this limitation since it
learns features in a multi-layer network in the context of the entire system
structure, bridging together different layers and generalizing methods
developed for learning features in single-layer networks (Section 3).

Finally, there exists recent work for task-dependent feature learning
based on graph-specific deep network architectures (Zhai and Zhang,
2015; Li et al., 2015; Xiaoyi et al., 2014; Wang et al., 2016a). Our
approach differs from those approaches in two important ways. First,
those architectures are task-dependent, meaning they directly optimize
the objective function for a downstream prediction task, such as cellular
function prediction in a particular tissue, using several layers of non-linear
transformations. Second, those architectures do not model rich graph
structures, such as multi-layer graphs with hierarchies.

3 Hierarchy-aware feature learning in
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We formulate feature learning in multi-layer networks with hierarchical
dependencies as a maximum likelihood optimization problem. Let V be a
given set ofN nodes (e.g., proteins) {u1, u2, . . . , uN}, and let there beT

types of edges (e.g., protein interactions in different tissues) between pairs
of nodes u1, u2, . . . , uN . A multi-layer network is a general system in
which each biological context is represented by a distinct layer i (where
i = 1, 2, . . . , T ) of a system (Figure 1). We use the term single-layer
network (layer) for the network Gi = (Vi, Ei) that indicates the edges
Ei between nodesVi ✓ V within the same layer i. Our analysis is general
and applies to any (un)directed, (un)weighted multi-layer network.

We take into account the possibility that a node uk from layer i can be
related to any other node uh in any other layer j. We encode information
about the dependencies between layers in a hierarchical manner that we use
in the learning process. Let the hierarchy be a directed treeM defined over
a setM of objects by the parent-child relationships given by⇡ : M ! M,

where ⇡(i) is the parent of object i (Figure 1). For convenience, let Ci

denote the set of all children of object i in the hierarchy. Let T ⇢ M be
the set of all leaf objects in the hierarchy. We assume that each layer Gi is
attached to one leaf object in the hierarchy. As a result, the hierarchy has
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The problem of feature learning in a multi-layer network is to learn
functions f1, f2, . . . , fT , such that each function fi : Vi ! Rd maps
nodes in Vi to feature representations in Rd. Here, d is a parameter
specifying the number of dimensions in the feature representation of one
node. Equivalently, fi is a matrix of |Vi|⇥ d parameters.

We proceed by describing OhmNet, our approach for feature learning
in multi-layer networks. OhmNet has two components:

• single-layer network objectives, in which nodes with similar network
neighborhoods in each layer are encouraged to share similar features,
and

• hierarchical dependency objective, in which nodes in nearby layers
in the hierarchy are encouraged to share similar features.

We start by describing the model that considers the layers independently
of each other. We then extend the model to encourage nodes which are
nearby in the hierarchy to have similar features.

3.1 Single-layer network objectives

We start by formalizing the intuition that nodes with similar network
neighborhoods in each layer should share similar features. For that, we
specify one objective for each layer in a given multi-layer network. We
shall later discuss how OhmNet incorporates the dependencies between
different layers.

Our goal is to take layer Gi and learn fi which embeds nodes from
similar network regions, or nodes with similar structural roles, closely
together. In OhmNet, we aim to achieve this goal by specifying the
following objective function for each layer Gi. Given a node u 2 Vi,
the objective function !i seeks to predict, which nodes are members of
u’s network neighborhood Ni(u) based on the learned node features fi:

!i(u) = logPr(Ni(u)|fi(u)), (1)

where the conditional likelihood of every node-neighborhood node pair
is modeled as an independent softmax unit parameterized by a dot
product of nodes’ features, which corresponds to a single-layer feed-
forward neural network (Grover and Leskovec, 2016). Given a node
u, maximization of !i(u) tries to maximize classification of nodes in
u’s network neighborhood based on u’s learned representation. More
precisely, we use each current node as an input to a log-linear classifier,
and predict nodes that are in the neighborhood of the current node.

The objective ⌦i is defined for each layer i:
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§ Given node 𝑢, learn 𝑢’s representation in 
layer 𝑖 to be close to 𝑢’s representation in 
parent 𝜋(𝑖):

§ Multi-scale: Repeat at every level of ℳ
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The objective is inspired by the intuition that nodes with similar network
neighborhoods tend to have similar meanings, or roles, in a network.
It formalizes this intuition by encouraging nodes in similar network
neighborhoods to share similar features.

We found that a flexible notion of a network neighborhoodNi is crucial
to achieve excellent predictive accuracy on a downstream cellular function
prediction task (Grover and Leskovec, 2016). For that reason, we use a
randomized procedure to sample many different neighborhoods of a given
node u. Technically, the network neighborhood Ni(u) is a set of nodes
that appear in an appropriately biased random walk defined on layer Gi

and started at node u (Grover and Leskovec, 2016). The neighborhoods
Ni(u) are not restricted to just immediate neighbors but can have vastly
different structures depending on the sampling strategy.

Next, we expand OhmNet’s single-layer network objectives to leverage
information provided by the tissue taxonomy and this way inform
embeddings across different layers.

3.2 Hierarchical dependency objective

So far, we specified T layer-by-layer objectives each of which estimates
node features in its layer independently of node features in other layers.
This means that nodes in different layers representing the same entity have
features that are learned independently of each other.

To harness the dependencies between the layers, we expand OhmNet
with terms that encourage sharing of protein features between the layers.
Our approach is based on the assumption that nearby layers in the
hierarchy are semantically close to each other and hence proteins/nodes
in them should share similar features. For example, in the tissue multi-
layer network, we model the fact that the “medulla” layer is part of the
“brainstem” layer, which is, in turn, part of the “brain” layer. We use the
dependencies among the layers to define a joint objective for regularization
of the learned features of proteins.

We propose to use the hierarchy in the learning process by
incorporating a recursive structure into the regularization term for every
object in the hierarchy. Specifically, we propose the following form of
regularization for node u that resides in hierarchy i:

ci(u) =
1

2

kfi(u)� f⇡(i)(u)k22. (3)

This recursive form of regularization enforces the features of node u in
the hierarchy i to be similar to the features of node u in i’s parent ⇡(i)
under the Euclidean norm. When regularizing features of all nodes in the
elements i of the hierarchy, we obtain:

Ci =
X

u2Li

ci(u), (4)

where Li = Vi if i 2 T is a leaf object in the hierarchy, and otherwise
Li = [j2TiVj . Here, Ti denotes the set of leaf objects in the sub-
hierarchy rooted at i. In words, we specify the features for both leaf as well
as internal, i.e., non-leaf, objects in the hierarchy, and we regularize the
features of sibling (i.e., sharing the same parent) objects towards features
in the common parent object in the hierarchy.

It is important to notice that OhmNet’s structured regularization allows
us to learn feature representations at multiple scales. For example, consider
a multi-layer network in Figure 2, consisting of four layers that are
interrelated by a two-level hierarchy. OhmNet learns the mappings fi, fj ,
fk , and fl that map nodes in each layer into a d-dimensional feature space.
Additionally, OhmNet also learns the mapping f2 representing features
for nodes V2 = Vi [ Vj at an intermediate scale, and the mapping f1
representing features for nodes V1 = Vi [ Vj [ Vk [ Vl at the highest
scale.

Fig. 2: A multi-layer network with four layers. Relationships between
the layers are encoded by a two-level hierarchyM. Leaves of the hierarchy
correspond to the network layers. Given networks Gi and hierarchy M,
OhmNet learns node embeddings captured by functions fi.

The modeling of relationships between layers in a multi-layer network
has several implications:

• First, the model encourages nodes which are in nearby layers in the
hierarchy to share similar features.

• Second, the model shares statistical strength across the hierarchy as
nodes in different layers representing the same protein share features
through ancestors in the hierarchy.

• Third, this model is more efficient than the fully pairwise model.
In the fully pairwise model, the dependencies between layers are
modeled by pairwise comparisons of nodes across all pairs of layers,
which takes O(T 2N) time, where T is the number of layers and
N is the number of nodes. In contrast, OhmNet models inter-layer
dependencies according to the parent-child relationships specified by
the hierarchy, which takes only O(|M |N) time. Since OhmNet’s
hierarchy is a tree, it holds that |M | ⌧ T 2, meaning that the proposed
model scales more easily to large multi-layer networks than the fully
pairwise model.

• Finally, the hierarchy is a natural way to represent and model biological
systems spanning many different biological scales (Carvunis and
Ideker, 2014; Greene et al., 2015; Yu et al., 2016).

3.3 Full OhmNet model

Given a multi-layer network consisting of layers G1, G2, . . . , GT , and a
hierarchy encoding relationships between the layers, the OhmNet’s goal
is to learn the functions f1, f2, . . . , fT that map from nodes in each layer
to feature representations. OhmNet achieves this goal by fitting its feature
learning model to a given multi-layer network and a given hierarchy, i.e.,
by finding the mapping functions f1, f2, . . . , fT that maximize the data
likelihood.

Given the data, OhmNet aims to solve the following maximum
likelihood optimization problem:

max

f1,f2,...,f|M|

X

i2T
⌦i � �

X

j2M
Cj , (5)

which includes the single-layer network objectives for all network layers,
and the hierarchical dependency objectives for all hierarchy objects.
In Eq. (5), parameter � is a user-specified parameter representing the
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The objective is inspired by the intuition that nodes with similar network
neighborhoods tend to have similar meanings, or roles, in a network.
It formalizes this intuition by encouraging nodes in similar network
neighborhoods to share similar features.

We found that a flexible notion of a network neighborhoodNi is crucial
to achieve excellent predictive accuracy on a downstream cellular function
prediction task (Grover and Leskovec, 2016). For that reason, we use a
randomized procedure to sample many different neighborhoods of a given
node u. Technically, the network neighborhood Ni(u) is a set of nodes
that appear in an appropriately biased random walk defined on layer Gi

and started at node u (Grover and Leskovec, 2016). The neighborhoods
Ni(u) are not restricted to just immediate neighbors but can have vastly
different structures depending on the sampling strategy.

Next, we expand OhmNet’s single-layer network objectives to leverage
information provided by the tissue taxonomy and this way inform
embeddings across different layers.

3.2 Hierarchical dependency objective

So far, we specified T layer-by-layer objectives each of which estimates
node features in its layer independently of node features in other layers.
This means that nodes in different layers representing the same entity have
features that are learned independently of each other.

To harness the dependencies between the layers, we expand OhmNet
with terms that encourage sharing of protein features between the layers.
Our approach is based on the assumption that nearby layers in the
hierarchy are semantically close to each other and hence proteins/nodes
in them should share similar features. For example, in the tissue multi-
layer network, we model the fact that the “medulla” layer is part of the
“brainstem” layer, which is, in turn, part of the “brain” layer. We use the
dependencies among the layers to define a joint objective for regularization
of the learned features of proteins.

We propose to use the hierarchy in the learning process by
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Li = [j2TiVj . Here, Ti denotes the set of leaf objects in the sub-
hierarchy rooted at i. In words, we specify the features for both leaf as well
as internal, i.e., non-leaf, objects in the hierarchy, and we regularize the
features of sibling (i.e., sharing the same parent) objects towards features
in the common parent object in the hierarchy.

It is important to notice that OhmNet’s structured regularization allows
us to learn feature representations at multiple scales. For example, consider
a multi-layer network in Figure 2, consisting of four layers that are
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The modeling of relationships between layers in a multi-layer network
has several implications:

• First, the model encourages nodes which are in nearby layers in the
hierarchy to share similar features.

• Second, the model shares statistical strength across the hierarchy as
nodes in different layers representing the same protein share features
through ancestors in the hierarchy.

• Third, this model is more efficient than the fully pairwise model.
In the fully pairwise model, the dependencies between layers are
modeled by pairwise comparisons of nodes across all pairs of layers,
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N is the number of nodes. In contrast, OhmNet models inter-layer
dependencies according to the parent-child relationships specified by
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hierarchy is a tree, it holds that |M | ⌧ T 2, meaning that the proposed
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𝐿B has all layers appearing in sub-hierarchy rooted at 𝑖
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Automatic feature learning in multi-layer networks

Solve maximum likelihood problem:
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It formalizes this intuition by encouraging nodes in similar network
neighborhoods to share similar features.
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prediction task (Grover and Leskovec, 2016). For that reason, we use a
randomized procedure to sample many different neighborhoods of a given
node u. Technically, the network neighborhood Ni(u) is a set of nodes
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This means that nodes in different layers representing the same entity have
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hierarchy rooted at i. In words, we specify the features for both leaf as well
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features of sibling (i.e., sharing the same parent) objects towards features
in the common parent object in the hierarchy.

It is important to notice that OhmNet’s structured regularization allows
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a multi-layer network in Figure 2, consisting of four layers that are
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Fig. 2: A multi-layer network with four layers. Relationships between
the layers are encoded by a two-level hierarchyM. Leaves of the hierarchy
correspond to the network layers. Given networks Gi and hierarchy M,
OhmNet learns node embeddings captured by functions fi.

The modeling of relationships between layers in a multi-layer network
has several implications:

• First, the model encourages nodes which are in nearby layers in the
hierarchy to share similar features.

• Second, the model shares statistical strength across the hierarchy as
nodes in different layers representing the same protein share features
through ancestors in the hierarchy.

• Third, this model is more efficient than the fully pairwise model.
In the fully pairwise model, the dependencies between layers are
modeled by pairwise comparisons of nodes across all pairs of layers,
which takes O(T 2N) time, where T is the number of layers and
N is the number of nodes. In contrast, OhmNet models inter-layer
dependencies according to the parent-child relationships specified by
the hierarchy, which takes only O(|M |N) time. Since OhmNet’s
hierarchy is a tree, it holds that |M | ⌧ T 2, meaning that the proposed
model scales more easily to large multi-layer networks than the fully
pairwise model.

• Finally, the hierarchy is a natural way to represent and model biological
systems spanning many different biological scales (Carvunis and
Ideker, 2014; Greene et al., 2015; Yu et al., 2016).

3.3 Full OhmNet model

Given a multi-layer network consisting of layers G1, G2, . . . , GT , and a
hierarchy encoding relationships between the layers, the OhmNet’s goal
is to learn the functions f1, f2, . . . , fT that map from nodes in each layer
to feature representations. OhmNet achieves this goal by fitting its feature
learning model to a given multi-layer network and a given hierarchy, i.e.,
by finding the mapping functions f1, f2, . . . , fT that maximize the data
likelihood.

Given the data, OhmNet aims to solve the following maximum
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which includes the single-layer network objectives for all network layers,
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In Eq. (5), parameter � is a user-specified parameter representing the
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OhmNet Algorithm
1.For each layer, compute random walk probs.
2.For each layer, sample fixed-length random 

walks starting from each node 𝑢
3.Optimize the OhmNet objective using 

stochastic gradient descent
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Scalable: No pairwise comparison of 
nodes from different layers
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Results: Protein 
function prediction 
across tissues

Part 3

Marinka Zitnik, Stanford



Tissue-Specific Function Prediction

1. Learn features of every node and at 
every scale based on:

§ Edges within each layer
§ Inter-layer relationships between nodes active 

on different layers
2. Predict tissue-specific protein functions 

using the learned node features 
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Protein Functions and Tissues
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FemaleReproductiveSystemFemaleReproductiveSystem

ChoroidChoroid
EyeEye

NervousSystemNervousSystem

PlacentaPlacenta

IntegumentIntegument RetinaRetina
HindbrainHindbrain

PancreaticIsletPancreaticIslet
BasophilBasophil

SpinalCordSpinalCord

SpermatidSpermatid

EndocrineGlandEndocrineGland

ReproductiveSystemReproductiveSystem

ParietalLobeParietalLobe

HepatocyteHepatocyte

CorpusCallosumCorpusCallosum

PonsPons

TemporalLobeTemporalLobe

PancreasPancreas

OviductOviduct

BloodPlasmaBloodPlasma

LensLens

GliaGlia

Data: 107 Tissue Layers
§ Layers are PPI nets:

§ Nodes: proteins
§ Edges: tissue-specific PPIs

§ Node labels:
§ E.g., Cortex development in 

renal cortex tissue
§ E.g., Artery morphogenesis in 

artery tissue
§ Multi-label node classification
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Networks

I Networks are a great way of encoding structure in the data

I We use Markov random fields (MRFs), which denote conditional
independencies between di↵erent entities

Introduction 4

One layer
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Experimental Setup
§ Protein function prediction is a multi-label 

node classification task
§ Every node (protein) is assigned one or 

more labels (functions)

§ Setup:
§ Learn features for multi-layer network
§ Train a classifier for each function based on 

a fraction of proteins and all their functions 
§ Predict functions for new proteins
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Protein Function Prediction
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OhmNet

Protein function 
prediction methods

Mono-layer 
network 
embeddings

Tensor 
decompositions

0.756

>10% improvement over 
current protein function 
prediction methods

>18% improvement over 
methods based on non-
hierarchical versions of 
the same dataset

>15% improvement over 
matrix-based methods
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Results: Other 
applicationsPart 4
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Brain Tissues

Frontal
lobe

Medulla
oblongata

PonsSubstantia
nigra

Midbrain

Parietal
lobe

Occipital
lobe

Temporal
lobe

Brainstem

Brain

Cerebellum
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9 brain tissue PPI networks
in two-level hierarchy
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Meaningful Node Embeddings
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Unannotated Tissues
§ Transfer functions to unannotated tissues
§ Task: Predict functions in target tissue without 

access to any annotation/label in that tissue

39

Target tissue OhmNet Tissue non-specific Improvement
Placenta 0.758 0.684 11%
Spleen 0.779 0.712 10%
Liver 0.741 0.553 34%
Forebrain 0.755 0.632 20%
Blood plasma 0.703 0.540 40%
Smooth muscle 0.729 0.583 25%
Average 0.746 0.617 21%

Reported are AUC values
Marinka Zitnik, Stanford



Revisit: Questions for Today
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1. How can we describe and model multi-
layer tissue networks?

2. Can we predict protein functions in given 
context [e.g., tissue, organ, cell system]?

3. How functions vary across contexts?

Marinka Zitnik, Stanford



Conclusions
§ Unsupervised feature learning in 

multi-layer networks
§ Learned features can be used for any 

downstream prediction task: node 
classification, node clustering, link 
prediction

§ Move from flat networks to large    
multiscale systems in biology
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Thank you!
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snap.stanford.edu/ohmnet

Predicting multicellular function through multi-layer 
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