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Why tissues?
A unified view of cellular functions across human 

tissues is essential for understanding biology, 
interpreting genetic variation, and developing 

therapeutic strategies

[Greene et al. 2015, Yeger & Sharan 2015, GTEx and others]
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What Does My Protein Do?
Goal: Given a set of proteins and possible functions, predict 
each protein’s association with each function

Proteins	×	(Functions, Tissues) → [0,1]

𝑊𝑁𝑇1	×	(Midbrain	development, Substantia	nigra) → 0.9
RPT6	×	(Angiogenesis, Blood) → 0.05
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WNT1PPI network in
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PPI network in 
blood tissue
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Existing Research
§ Guilty by association: protein’s function is determined 

based on who it interacts with [Zuberi et al. 2013, Radivojac et al. 2013, 
Kramer et al. 2014, Yu et al. 2015] and many others]

§ No tissue-specificity
§ Protein functions are assumed constant across organs 

and tissues:
§ Functions in heart are the same as in skin

Lack of methods for predicting protein functions 
in different biological contexts
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Challenges
§ Tissues have inherently multiscale, hierarchical 

organization
§ Tissues are related to each other:

§ Proteins in biologically similar tissues have similar 
functions [Greene et al. 2015, ENCODE 2016]

§ Proteins are missing in some tissues
§ Interaction networks are tissue-specific
§ Many tissues have no annotations
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Machine Learning in Networks
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Multi-label node classification: midbrain development, angiogenesis, etc.
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Machine Learning Lifecycle

Raw 
Networks

Node and edge 
profiles

Learning 
Algorithm  

Prediction
Model

Downstream task: Protein 
function prediction

Feature engineering Automatically 
learn the features

§ Machine learning lifecycle: This feature, that 
feature 

§ Every single time!
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Feature Learning in Multi-Layer Graphs 
OhmNet: Unsupervised feature learning 

for multi-layer networks Vectors, node 
embeddings
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Features in Multi-Layer Tissue Network

§ Given: Layers 𝐺L L, hierarchy ℳ
§ Layers 𝐺L LWQ..X are in leaves of ℳ

§ Goal: Learn functions: 𝑓L: 𝑉L →ℝT

§ Multi-scale model:
§ Learn node embeddings at 

each possible scale
§ Layers 𝑖, 𝑗, 𝑘, 𝑙
§ Scales “3”, “2”, “1”
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OhmNet Learning Approach
OhmNet has two components:
1. Single-layer objectives 

Nodes with similar network neighborhoods in each 
layer are embedded close together

2. Hierarchical dependency objectives 
Nodes in nearby network layers in the hierarchy 
share similar features
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Single-Layer Objectives
§ Intuition: For each layer, embed 

nodes to 𝑑 dimensions by 
preserving their similarity

§ Two nodes are similar if their 
neighborhoods are similar

§ For node 𝑢 in layer 𝑖 we define 
nearby nodes as nodes in 
𝐺L	visited by random walks 
starting at 𝑢

u

u
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Dependencies Between Network Layers
§ Intuition: Proteins in 

biologically similar tissues 
share similar features

§ Use tissue hierarchy to 
recursively regularize features 
at 𝑖 to be similar to features in 
𝑖’s parent “2” is a parent of 𝐺L and 𝐺

OhmNet generates multi-scale node embeddings
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Data: 107 Tissue Layers
§ Layers are PPI nets:
§ Nodes: proteins
§ Edges: tissue-specific 

PPIs
§ Node labels:
§ “Cortex development” in 

renal cortex tissue
§ “Artery morphogenesis” 

in artery tissue

Networks

I Networks are a great way of encoding structure in the data

I We use Markov random fields (MRFs), which denote conditional
independencies between di↵erent entities

Introduction 4

One layer

Marinka Zitnik, Stanford, ISMB/ECCB 2017 13



Experimental Setup
§ Protein function prediction is a multi-label node 

classification task
§ Every node (protein) is assigned one or more labels 

(functions)

§ Setup:
§ Learn OhmNet embeddings for multi-layer tissue network
§ Train a classifier for each function based on a fraction of 

proteins and all their functions 
§ Predict functions for new proteins
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0.756

Tissue-Specific Protein Functions

OhmNet

Protein function 
prediction methods

Mono-layer network 
embeddings

Tensor decompositions

>10% improvement over 
function prediction methods

>18% improvement over non-
hierarchical versions of the dataset

>15% improvement over 
matrix-based methods
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Case Study: 9 Brain Tissues
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9 brain tissue PPI networks
in two-level hierarchy
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Multi-Scale Node Embeddings
Brainstem Brain
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Annotating Proteins in a New Tissue
§ Transfer protein functions to an unannotated tissue
§ Task: Predict functions in target tissue without access to 

any annotation/label in that tissue
Target tissue Tissue-specific (OhmNet) Tissue non-specific Improvement

Placenta 0.758 0.684 11%

Spleen 0.779 0.712 10%
Liver 0.741 0.553 34%
Forebrain 0.755 0.632 20%
Blood plasma 0.703 0.540 40%
Smooth muscle 0.729 0.583 25%
Average 0.746 0.617 21%
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Conclusions
§ Unsupervised feature learning for multi-layer networks
§ Learned embeddings can be used for any downstream 

prediction task: node classification, node clustering, link 
prediction

§ OhmNet predicts protein functions across biological 
contexts

A shift from flat networks to large multiscale 
systems in biology
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