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Why tissues”?

A unified view of cellular functions across human

tissues is essential for understanding biology,

interpreting genetic variation, and developing
therapeutic strategies

[Greene et al. 2015, Yeger & Sharan 2015, GTEx and others]



What Does My Protein Do”

Goal: Given a set of proteins and possible functions, predict
each protein’s association with each function
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EXisting Research

= Guilty by association: protein’s function is determined

based on who It interacts with [Zuberi et al. 2013, Radivojac et al. 2013,
Kramer et al. 2014, Yu et al. 2015] and many others]

= No tissue-specificity

= Protein functions are assumed constant across organs
and tissues:

= Functions In heart are the same as in skin




Challenges

Tissues have inherently multiscale, hierarchical
organization

ISsues are related to each other:

= Proteins in biologically similar tissues have similar
fuNctioNs [Greene et al. 2015, ENCODE 2016

= Proteins are missing in some tissues
Interaction networks are tissue-specific
Many tissues have no annotations
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Machine Learning in Networks
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= Machine learning lifecycle: This feature, that
feature

—very single time!
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Downstream task: Protein
function prediction



Feature Learning in Multi-Layer Graphs

OhmNet: Unsupervised feature learning
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Features In Multi-Layer Tissue Network

= Given: Layers {G;};, hierarchy M &

= |ayers {G;};—, 7 are in leaves of M

= (Goal: Learn functions: f;: V; eIRd//j | .

= Multi-scale model:
o

= [ earn node embeddings
each possible scale

= Layersi,j, k,l
- Scales “8”, “2!!, “-I”

”
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OhmNet Learning Approach

OhmNet has two components:

1. Single-layer objectives
Nodes with similar network neighlborhoods in each
layer are embedded close together

2. Hierarchical dependency objectives
Nodes In nearby network layers in the hierarchy
share similar features
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Single-Layer Objectives

= [ntuition: For each layer, embed
nodes to d dimensions by
preserving their similarity

= Two nodes are similar if their
neighbornhoods are similar N

= For node u In layer i we deﬂne
nearby nodes as nodes in
G; visited by random walks
starting at u
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Dependencies Between Network Layers

= [ntuition: Proteins In
biologically similar tissues
share similar features

= Use tissue hierarchy to
recursively regularize features
at i to be similar to features in
'S parent
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Data: 107 Tissue Layers
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Experimental Setup

= Protein function prediction is a multi-label node
classification task

= Every node (protein) is assigned one or more labels
(functions)

= Setup:
= [earn OhmNet embeddings for multi-layer tissue network

= [rain a classifier for each function based on a fraction of
proteins and all their functions

= Predict functions for new proteins
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Tissue-Specific Protein Functions

OhmNet t 0.756

>10% improvement over
function prediction methods

Protein function
prediction methods

>18% improvement over non-
hierarchical versions of the dataset

Mono-layer network
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Case Study: 9 Brain Tissues
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Multi-Scale Node Embeddings
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Annotating Proteins in a New Tissue

‘ransfer protein functions to an unannotated tissue

‘ask: Predict functions in target tissue without access to
any annotation/label in that tissue

Target tissue | Tissue-specific (OhmNet)

Placenta

Spleen

Liver

Forebrain

Blood plasma
Smooth muscle

Average

0.758

0.779
0.741
0.755
0.703
0.729
0.746

Reported are AURQG values (see paper, for other metrics)

0.684

0.712
0.553
0.632
0.540
0.583
0.617

11%
10%
34%
20%
40%
25%
21%
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Conclusions

= Unsupervised feature learning for multi-layer networks

* | earned embeddings can be used for any downstream
orediction task: node classification, node clustering, link
prediction

= OhmNet predicts protein functions across biological
contexts

A shift from flat networks to large multiscale
systems in biology
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