

Uncovering Proteins Functions Through Multi-Layer Tissue Networks

Marinka Zitnik
marinka@cs.stanford.edu
Joint work with Jure Leskovec

Why tissues?

A unified view of cellular functions across human tissues is essential for understanding biology, interpreting genetic variation, and developing therapeutic strategies

What Does My Protein Do?

Goal: Given a set of proteins and possible functions, predict each protein's association with each function

Proteins \times (Functions, Tissues) \rightarrow [0,1]

 $WNT1 \times (Midbrain development, Substantia nigra) \rightarrow 0.9$

RPT6 × (Angiogenesis, Blood) → 0.05

Existing Research

- Guilty by association: protein's function is determined based on who it interacts with [Zuberi et al. 2013, Radivojac et al. 2013, Kramer et al. 2014, Yu et al. 2015] and many others]
 - No tissue-specificity
- Protein functions are assumed constant across organs and tissues:
 - Functions in heart are the same as in skin

Lack of methods for predicting protein functions in different biological contexts

Challenges

- Tissues have inherently multiscale, hierarchical organization
- Tissues are related to each other:
 - Proteins in biologically similar tissues have similar functions [Greene et al. 2015, ENCODE 2016]
 - Proteins are missing in some tissues
- Interaction networks are tissue-specific
- Many tissues have no annotations

Machine Learning in Networks

Multi-label node classification: midbrain development, angiogenesis, etc.

Machine Learning Lifecycle

- Machine learning lifecycle: This feature, that feature
- Every single time!

Feature Learning in Multi-Layer Graphs

OhmNet: Unsupervised feature learning

Features in Multi-Layer Tissue Network

- Given: Layers $\{G_i\}_i$, hierarchy \mathcal{M}
 - Layers $\{G_i\}_{i=1..T}$ are in leaves of \mathcal{M}
- Goal: Learn functions: $f_i: V_i \to \mathbb{R}^d$
- Multi-scale model:
 - Learn node embeddings each possible scale
 - Layers i, j, k, l
 - Scales "3", "2", "1"

Marinka Zitnik Stanford ISMB/ECCB 201

OhmNet Learning Approach

OhmNet has two components:

- Single-layer objectives
 Nodes with similar network neighborhoods in each layer are embedded close together
- 2. Hierarchical dependency objectives

 Nodes in nearby network layers in the hierarchy share similar features

Single-Layer Objectives

 Intuition: For each layer, embed nodes to d dimensions by preserving their similarity

• Two nodes are similar if their neighborhoods are similar $N_i(u)$

• For node u in layer i we define nearby nodes as nodes in G_i visited by random walks starting at u

Dependencies Between Network Layers

 Intuition: Proteins in biologically similar tissues share similar features

Use tissue hierarchy to recursively regularize features at i to be similar to features in i's parent

OhmNet generates multi-scale node embeddings

Data: 107 Tissue Layers

Spermatid_

Layers are PPI nets:

Nodes: proteins

Edges: tissue-specific

PPIs

Node labels:

"Cortex development" in renal cortex tissue

"Artery morphogenesis" in artery tissue

Experimental Setup

- Protein function prediction is a multi-label node classification task
- Every node (protein) is assigned one or more labels (functions)
- Setup:
 - Learn OhmNet embeddings for multi-layer tissue network
 - Train a classifier for each function based on a fraction of proteins and all their functions
 - Predict functions for new proteins

Tissue-Specific Protein Functions

OhmNet

Protein function prediction methods

Mono-layer network embeddings

Tensor decompositions

Case Study: 9 Brain Tissues

9 brain tissue PPI networks in two-level hierarchy

Multi-Scale Node Embeddings

Annotating Proteins in a New Tissue

- Transfer protein functions to an unannotated tissue
- Task: Predict functions in target tissue without access to any annotation/label in that tissue

Target tissue	Tissue-specific (OhmNet)	Tissue non-specific	Improvement
Placenta	0.758	0.684	11%
Spleen	0.779	0.712	10%
Liver	0.741	0.553	34%
Forebrain	0.755	0.632	20%
Blood plasma	0.703	0.540	40%
Smooth muscle	0.729	0.583	25%
Average	0.746	0.617	21%

Conclusions

- Unsupervised feature learning for multi-layer networks
- Learned embeddings can be used for any downstream prediction task: node classification, node clustering, link prediction
- OhmNet predicts protein functions across biological contexts

A shift from flat networks to large multiscale systems in biology

snap.stanford.edu/ohmnet

