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Graph ML for Computational Biology
§ There has been a surge of interest in leveraging GNNs for 

learning meaningful representations of biology
§ GNNs have been used to learn representations that 

enabled critical predictions in downstream applications
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Biology is Interconnected!

3

N
on

co
di

ng
C

od
in

g
C

od
in

g

Protein

Noncoding RNA

Small 
compound

Neurological 
disease

Cardiovascular 
disease

Kidney 
disorder

Medical image

OC1=NC=NC2=C1C=NN2

Electronic 
Health 

Records

Machine learning for biomedical networks: Advancements, challenges, and opportunities, 2021 (to appear)

The effects of drugs are not limited to the 
molecules to which they directly bind in the 
body. Instead, these effects spread throughout 
biological networks in which they act. 
Therefore, the effect of a drug on a disease is 
inherently a network phenomenon

Marinka Zitnik - https://zitniklab.hms.harvard.edu - March 11, 2021



Why Networks in Biology? 
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Why Networks in Biology? 
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Long-standing Paradigm: “Local Hypothesis”
Proteins involved in the same disease have an increased tendency 

to interact with each other
Corollary of the Local Hypothesis 

Mutations in interacting proteins often lead to similar diseases 
Network medicine: a network-based approach to human disease, Nature Reviews Genetics, 2011

Why Networks in Biology?
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Hierarchies of cell systemsPatient networks

Cell-cell similarity 
networks

Biomedical knowledge
graphs

Disease pathways

Gene interaction
networks

Machine learning for integrating data in biology and medicine: Principles, practice, and opportunities, Information Fusion 20197

Similar findings apply to a broad 
range of biological networks

Machine learning for biomedical networks: Advancements, challenges, and opportunities, 2021 (to appear)

Cellular components associated with a specific disease 
(phenotype) show a tendency to cluster in the same 

network neighborhood

GNNs are well-suited for 
the analysis of biological networks
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Why are Biological Networks 
Challenging?

1. Networks involve heterogeneous interactions that span 
from molecules to whole populations
§ The challenge is how to computationally operationalize these 

data and make them amenable to ML
2. Networks contain data from diverse sources, including 

experimental readouts, curated annotations, metadata
§ No single data type can capture all the factors necessary to 

understand a phenomenon such as a disease
3. Networks are noisy due to inherent natural variations 

and limitations of measurement platforms
§ Missing data, repeated measurements, and contradictory 

observations can plague the analysis
8Machine learning for biomedical networks: Advancements, challenges, and opportunities, 2021 (to appear)
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Plan for Today
§ Safe drugs and drug combinations

Methods: Multi-relational link prediction on KGs

§ Patient outcomes & disease classification
Methods: Subgraph embeddings

§ Effective disease treatments
Methods: Few-shot learning for graphs
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Patients take multiple drugs to treat 
complex or co-existing diseases

46% of people over 65 years take more than 5 drugs

Many take more than 20 drugs to treat heart diseases, depression or cancer 

15% of the U.S. population affected by unwanted side effects

Annual costs in treating side effects exceed $177 billion in the U.S. alone

10Modeling Polypharmacy Side Effects with Graph Convolutional Networks, Bioinformatics, 2018

Poly-Therapy
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Unexpected Drug Interactions
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Task: How likely will a particular 
combination of drugs lead to a 

particular side effect?

11Modeling Polypharmacy Side Effects with Graph Convolutional Networks, Bioinformatics, 2018
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Why is modeling drug 
combinations chalenging?

Combinatorial explosion
§ >13 million possible combinations of 2 drugs
§ >20 billion possible combinations of 3 drugs

Non-linear & non-additive interactions
§ Different effect than the additive effect of individual drugs

Small subsets of patients
§ Side effects are interdependent 
§ No info on drug combinations not yet used in patients

12

,

Prescribed 
drugs

Drug
side effect

,

Prescribed 
drugs

Drug
side effect

,

Prescribed 
drugs

Drug
side effect

+ ≠

Modeling Polypharmacy Side Effects with Graph Convolutional Networks, Bioinformatics, 2018

Marinka Zitnik - https://zitniklab.hms.harvard.edu - March 11, 2021



Mode 1
e.g., drugs

Mode 2
e.g., proteins

E.g., Specific type of drug-
drug interaction (𝑟!)

𝑟"

𝑟#

𝑟$

E.g., drug-target interaction (𝑟")𝑟% 𝑟%
𝑟%

𝑟%

E.g., protein-protein interaction (𝑟#)

𝑟&

𝑟' Edge type 𝑖
Node types

Polypharmacy Knowledge Graph

13Modeling Polypharmacy Side Effects with Graph Convolutional Networks, Bioinformatics, 2018
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1. Encoder: Take a multimodal 
network and learn an embedding
for every node

2. Decoder: Use the learned 
embeddings to predict labeled 
edges between nodes

ri

Embedding
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Embedding

Embedding
?

Approach: Decagon

Training the model: Feed embeddings into any loss function and run stochastic 
gradient descent to train weight parameters:
• Use a loss based on e.g., random walks, node proximity in the graph
• Directly train the model for a supervised task (e.g., node classification)

Modeling Polypharmacy Side Effects with Graph Convolutional Networks, Bioinformatics, 2018
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Generate embeddings based on local network 
neighborhoods separated by edge type 

Key Idea: Aggregate Neighbors

2) Learn how to transform and propagate 
information across computation graph

1st order 
neighbor of 𝑣

2nd order 
neighbor of 𝑣

1) Determine a node’s computation 
graph for each edge type

Example for edge type 𝑟$:

Modeling Polypharmacy Side Effects with Graph Convolutional Networks, Bioinformatics, 2018
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Parameter weight matrices

Key element: Each node’s computation graph 
defines a neural network with a different architecture
§ Initial 0-th layer embeddings are equal to node features:

§ Per-layer update of node embeddings:

§ Embeddings after 𝐾 layers of neighborhood aggregation: 

Aggregate neighbor’s 
previous-layer embeddings, 

separated by edge type 

Multirelational Graph Encoder

Previous-layer 
embedding of 𝑣

Normalization constant, fixed 
e.g., 1/|𝑁!"|, or learned

Ability to integrate side 
information about nodes

16Modeling Polypharmacy Side Effects with Graph Convolutional Networks, Bioinformatics, 2018
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Heterogeneous Edge Decoder
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Parameter weight matrices

Probability that 𝐶 and 𝑆 are 
linked by an edge of type 𝑟"

Input: Embeddings of 
two nodes, 𝐶 and 𝑆

Output: Predicted edges, 
new discovered relationships

Tensor factorized model
captures dependences 

between different edge types

Modeling Polypharmacy Side Effects with Graph Convolutional Networks, Bioinformatics, 2018

Marinka Zitnik - https://zitniklab.hms.harvard.edu - March 11, 2021



We need Polypharmacy Dataset
Objective: Capture molecular, drug, and patient data for 
all drugs prescribed in the U.S. 

We build a unique dataset:
§ 4,651,131 drug-drug edges: Patient data from adverse 

event system, tested for confounders [FDA]
§ 18,596 drug-protein edges 
§ 719,402 protein-protein edges: Physical, metabolic enzyme-

coupled, and signaling interactions
§ Drug and protein features: drugs’ chemical structure, 

proteins’ membership in pathways

18

r1 Gastrointestinal bleed side effect  
r2 Bradycardia side effect Protein-protein interaction

Drug-protein interactionr3 Nausea side effect
r4 Mumps side effectr1 Gastrointestinal bleed side effect  

r2 Bradycardia side effect Protein-protein interaction
Drug-protein interactionr3 Nausea side effect

r4 Mumps side effect

Drug-protein

Protein-protein

Drug-drug

Gives multimodal network with over 5 million edges 
separated into 1,000 different edge types

Modeling Polypharmacy Side Effects with Graph Convolutional Networks, Bioinformatics, 2018
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We apply Decagon to 
the polypharmacy network

E.g.: How likely will Simvastatin and Ciprofloxacin, 
when taken together, break down muscle tissue?

19Modeling Polypharmacy Side Effects with Graph Convolutional Networks, Bioinformatics, 2018
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Results: Side Effect Prediction
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Shallow Network Embedding [Zong et al., Bioinformatics'17]

Modeling Polypharmacy Side Effects with Graph Convolutional Networks, Bioinformatics, 2018
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New Predictions
Approach:
1) Train deep model on data generated prior to 2012
2) How many predictions have been confirmed after 2012?

21Modeling Polypharmacy Side Effects with Graph Convolutional Networks, Bioinformatics, 2018
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Follow-Up: Adverse Events for 
Patient Groups

22

Population-scale patient safety data reveal inequalities in adverse events before and during 
COVID-19 pandemic, medRxiv: 2021.01.17.21249988
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Plan for Today
§ Safe drugs and drug combinations

Methods: Multi-relational link prediction on KGs

§ Patient outcomes & disease classification
Methods: Subgraph embeddings

§ Effective disease treatments
Methods: Few-shot learning for graphs
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Disease Diagnosis
§ Phenotypes are observable characteristics 

resulting from interactions between genotypes, as 
well as environment
§ Physicians utilize standardized vocabulary of 

phenotypes to describe human diseases. 
§ By modeling diseases as collections of associated 

phenotypes, we can diagnose patients based on their 
presenting symptoms

24

Medical History:
Has asthma?
Other chronic issues?
……
Symptoms:
Severe Cough
Wheezing
…..
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Diagnosis Task

25

§ Graph: Consider a graph 𝐺 built from the 
standardized vocabulary of phenotypes:
§ Nodes: phenotypes; edges: relationships between 

phenotypes
§ Patient is a set of phenotypes, a subgraph 𝑆 in 𝐺

§ Learning Task: Predict the disease (label) most 
consistent with the phenotype subgraph 𝑆

Lysosomal

Glycosylation

Carbohydrate

Lipid

Carbohydrate

Disease N

Graph 
machine 
learning

HPO network Graph ML model Disease subgraph predictionsDisease phenotypes

Disease 1: HPO-…
Disease 2: HPO-…
Disease 3: HPO-…
Disease 4: HPO-…
Disease 5: HPO-…

…
Disease N: HPO-… Prediction Task:

Subgraph Classification
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Problem Formulation
§ Goal: Learn subgraph embeddings such that the 

likelihood of preserving subgraph topology is 
maximized in the embedding space
§ 𝑆' and 𝑆+ with similar subgraph topology should be 

embedded close together in the embedding space

26

𝑧"!

𝑧""

Input Embedding space
Subgraph Neural Networks, NeurIPS 2020
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Why are subgraphs 
challenging?

§ Need to predict over structures of varying size:
§ How to represent subgraphs that 

are not 𝑘-hop neighborhoods? 
§ Rich connectivity patterns, both internally and 

externally through interactions with the rest of 𝐺: 
§ How to inject this information into a GNN?

§ Subgraphs can be:
§ Localized and reside in our region of the graph
§ Distributed across multiple local neighborhoods

27Subgraph Neural Networks, NeurIPS 2020
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Subgraph Neural Networks

28
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A Note on Problem Formulation
§ SubGNN puts forward a definition of a subgraph 

prediction learning task

§ It is different from other canonical tasks on graphs:
§ Node prediction: Predict property of a node
§ Link prediction: Predict property of a node pair
§ Graph prediction: Predict property of an entire graph

29Subgraph Neural Networks, NeurIPS 2020
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SubGNN: Overview
§ Part 1: Hierarchically 

propagate messages in 𝐺:
§ Propagate messages from 

anchor patches to 
subgraphs

§ Aggregate messages into a 
final subgraph embedding 

§ Part 2: Route messages 
through 3 channels to 
capture subgraph topology: 
position, neighborhood, 
structure

30

Aggregate information 
from subgraphs

Aggregate information 
from neighbors

Neural

M
essages

𝑖
𝑗

Subgraph Neural Networks, NeurIPS 2020
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#1: Subgraph Message Passing
§ Property 𝑥-specific messages 𝑚# are propagated 

from anchor patches to subgraph components 
§ Anchor patches are helper subgraphs randomly 

sampled from 𝐺; patches 𝐴$, 𝐴%, and 𝐴" for 
position, neighborhood and structure

similarity function between subgraph 
component and an anchor patch

property-specific representation of subgraph 
component at the previous layer that gets updated

31Subgraph Neural Networks, NeurIPS 2020
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#2: Property-aware Routing
§ SubGNN specifies three channels for position, 

neighborhood, and structure
§ Each channel 𝑥 has three 

key elements: 
§ Similarity function 𝛾!: 𝑆 " , 𝐴! →
[0,1] to weigh messages 
exchanged between patches and 
subgraph components

§ Anchor patch sampling function 
𝜑!: 𝐺, 𝑆 " → 𝐴! to sample 
patches from underlying graph

§ Anchor patch encoder 𝜓!: 𝐴! →
𝑎! to encode patches into 
embeddings 𝑎!

§ These functions can be learned 
or pre-defined

32Subgraph Neural Networks, NeurIPS 2020
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Aggregate information 
from subgraphs

Aggregate information 
from neighbors

Neural

M
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SubGNN: Recap
Channel outputs 𝒛% are concatenated 

to produce a final subgraph 
representation 𝒛𝑺

Subgraph Neural Networks, NeurIPS 2020
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Setup: Subgraph Datasets

Subgraph labels: Binned values of a metric act as subgraph labels
Metrics:

§ DENSITY tests if a method can capture the internal structure of subgraphs
§ CUT RATIO tests if a method can capture border structure 
§ CORENESS tests if a method can capture border structure and position
§ COMPONENT tests if a method can capture internal and external position

34
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Results: Synthetic Data

§ Shown are Micro-F1 scores + std across 100 runs
§ SubGNN outperforms baselines by 75.4%; the strongest baseline by 17%
§ Graph classification (GC) methods:

§ perform quite well on DENSITY (internal structure), as expected
§ perform poorly on datasets requiring a notion of position or border connectivity

§ Meta-node methods:
§ perform well on COMPONENT dataset

35

Conclusion: SubGNN can capture well 
different aspects of subgraph topology 

(position, neighborhood, structure)
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Real-World Datasets
§ Four real world datasets
§ Each consists of a base graph and subgraphs 

with associated labels
§ HPO-METAB and HPO-NEURO are clinical diagnostic 

tasks 
§ They ask the following: What is the subcategory of 

metabolic/neurological disease consistent with the 
phenotypes (i.e., phenotype subgraph)?

36
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Results: Real-World Datasets 

§ SubGNN outperforms baselines by an average of 
77% on synthetic and 125% on real-world datasets

§ SubGNN channels encode their intended properties

37
Standard deviations from runs with 10 random seeds

Marinka Zitnik - https://zitniklab.hms.harvard.edu - March 11, 2021



Plan for Today
§ Safe drugs and drug combinations

Methods: Multi-relational link prediction on KGs

§ Patient outcomes & disease classification
Methods: Subgraph embeddings

§ Effective disease treatments
Methods: Few-shot learning for graphs

38
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Finding Cures for Emerging Diseases
The traditional approach of iterative development, 
experimental testing, clinical validation, and approval of 
new drugs are not feasible. 

A more realistic strategy relies on drug repurposing, 
requiring us to identify clinically approved drugs that 
have a therapeutic effect in COVID-19 patients. 

Network Medicine Framework for Identifying Drug Repurposing Opportunities for Covid-19, arXiv:2004.07229 39
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Drugs Diseases

“Treats” relationship

?

?

? Unknown drug-disease relationship

What drug treats what disease?

Goal: Predict what diseases 
a new molecule might treat

41
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Why is finding treatments for a new 
disease challenging?

Generalizing to new phenomena is hard:
○ Prevailing methods require abundant label information
○ However, labeled examples are scarce
○ Examples: Novel drugs in development, emerging 

diseases, rare diseases, hard-to-diagnose patients
What prevailing 

methods assume
What happens in 

real world

42
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Background: Meta Learning
§ Meta-learning model

§ Trained over a variety of learning tasks 
§ Optimized for best performance on a distribution of 

tasks, including potentially unseen tasks
§ Each task is associated with a dataset 𝐷, 

containing both feature vectors and true labels
§ The optimal model parameters are:

§ It looks very similar to a normal learning task, 
but one dataset is considered as one data sample

43
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Meta-Training Meta-Testing
Background: Few-Shot Learning

Goal: How to make predictions on a new 
graph or a new label set when we have only a 

handful of labels?

An example of 2-shot 3-way image classification
Few-shot learning: Instantiation of meta learning in the field of supervised learning

K-shot N-class classification: K labeled examples for each of N classes

At test time, we need to build a “duck vs. 
dolphin vs. chicken” classifier. However, we 
only 2 examples of ducks, 2 examples of 

dolphins, and 2 examples of chicken!
Few-shot learning makes this possible.

Marinka Zitnik - https://zitniklab.hms.harvard.edu - March 11, 2021



Problem Formulation: G-Meta

Meta-learner needs to 
classify an unseen label set 
by observing other label 
sets in the same graph

45

Each task is a batch of a 
few nodes/edges from a 
different label set in the 
same graph 

Graph Meta Learning via Local Subgraphs, NeurIPS 2020
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Meta-Training Meta-Testing

Node 1 Node 2 Node 3

Node 4 Node 5 Node 6

Node 7 Node 8 Node 9

Node 10 Node 11 Node 12

Node a Node b Node c Node d Node e Node f

Node 13 Node 14 Node 15

Node 16 Node 17 Node 18

Node g Node h Node i

Label set 1 Label set 2 Label set 3

~ single graph
46

G-Meta: Overview
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Graph Meta Learning via Local Subgraphs, NeurIPS 2020
47

G-Meta: Subgraph 
signature functions

Key Idea: Local Subgraphs
§ Neural routing across 

subgraphs (not entire graphs!)
§ Subgraph signature functions 

learn how to map the structure of 
a sampled subgraphs to an 
effective initialization for a GNN

§ We consider a distribution over 
subgraphs as the distribution 
over tasks from which a global 
set of parameters are learnt

§ Deploy this strategy to train 
GNNs few-shot link prediction

Extract subgraphs that 
enclose labels 
Apply GNN to each 
subgraph individually
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§ Two sources of GNN power: 
§ Label propagation: Nodes with the same label are nearby in 

the graph
§ Structure similarity: Nodes with the same label have similar 

network shapes in their local neighborhoods
§ When labels are scarce:

§ Label propagation is not sufficient
§ When only a handful of nodes are labeled, it is challenging to 

efficiently propagate labels through the entire graph 
§ Graph-level embeddings cannot capture structure of large graphs

§ Need to better leverage structural equivalence
§ Local subgraphs capture structural information 
§ G-Meta learns a metric to classify query subgraph using the 

closest point from the support set [It compares query subgraph 
embedding to the support subgraph embedding] 

What is the value of subgraphs?
Support subgraph
embedding

Query subgraph
embedding

Graph Meta Learning via Local Subgraphs, NeurIPS 2020
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Theoretical Motivation for G-Meta

49

The influence of a node on the target node 
decays exponentially as we go further away 
from the target
TL;DR: 
§ Local subgraphs around target nodes 

contain all the relevant information
§ Local subgraphs preserve near the same 

feature information as the entire graph

v u
High Influence

v u
Low Influence

Graph Meta Learning via Local Subgraphs, NeurIPS 2020
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How to represent COVID-19? Network neighborhood 
of human PPI network targeted by SARS-CoV2 virus

COVID-19 Repurposing Dataset

Network Medicine Framework for Identifying Drug Repurposing Opportunities for Covid-19, arXiv:2004.07229

Viral Disease Module: Gordon et 
al., Nature 2020 expressed 26 of the 
29 SARS-CoV2 proteins and used 
AP-MS to identify 332 human 
proteins to which viral proteins bind 
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51Network Medicine Framework for Identifying Drug Repurposing Opportunities for Covid-19, arXiv:2004.07229

Results: Embedding Space
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We test each pipeline’s ability to 
recover drugs currently in clinical trials 
for COVID-19 (67 drugs from 
ClinicalTrials.gov).

The best individual ROC curves are 
obtained by the AI-based methods. 

The second-best performance is 
provided by the proximity P3. Close 
behind is P1 with AUC = 0.68 and 
AUC = 0.58.

Diffusion methods offer ROC between 
0.55-0.56.
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Results: COVID-19 Repurposing

Network Medicine Framework for Identifying Drug Repurposing Opportunities for Covid-19, arXiv:2004.07229 52
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Results: Experimental Validation of 
Predictions

National Emerging Infectious 
Diseases Laboratories (NEIDL)

New algorithms:
Prioritizing Network Communities, Nature Communications 2018
Subgraph Neural Networks, NeurIPS 2020
Graph Meta Learning via Local Subgraphs, NeurIPS 2020

Results: 918 compounds screened for their efficacy 
against SARS-CoV-2 in VeroE6 cells:
§ 77 showed strong/weak effect being active over 

a broad range of concentrations
§ An order of magnitude higher hit rate among top 

100 drugs than prior work

Ranked lists of drugs

Network Medicine Framework for Identifying Drug Repurposing Opportunities for Covid-19, arXiv:2004.07229 53
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Results: Network Drugs
§ 76/77 drugs that successfully reduced viral infection 

do not bind proteins targeted by SARS-CoV-2:
§ These drugs rely on network-based actions that cannot 

be identified by docking-based strategies

54

58/77 drugs with positive experimental 
outcome are among top 750 ranked drugs Network drugs (D3)

Direct target 
drugs (D1-2) 
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Network of an
eukaryotic species

Network of a
bacterial species

Motivation: How can we leverage PPI networks of 
model organisms to complete human PPI network?

Zitnik, Marinka, Marcus W. Feldman, and Jure Leskovec. "Evolution of resilience in protein interactomes across the tree of life." PNAS (2019): 4426-4433.

Transfer Learning Across Graphs:
Tree-of-Life Dataset

55
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Problem Formulation: G-Meta

Meta-learner needs to 
make predictions on a 
new graph by learning 
from other graphs with 
the same label set

56

Each task is a batch of a 
few nodes/edges from 
the same label set but 
from a different graph

Brief vignette into cross-graph learning 

Graph Meta Learning via Local Subgraphs, NeurIPS 2020
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Meta-Training Meta-Testing

Node 1 Node 2 Node 3

Node 4 Node 5 Node 6

Node 7 Node 8 Node 9

Node 10 Node 11 Node 12

Node a Node b Node c Node d Node e Node f

Node 13 Node 14 Node 15

Node 16 Node 17 Node 18

Node g Node h Node i

Label set 1 Label set 1 Label set 1
~ Graph 1 Graph 2~ Graph 3~

Few-Shot Learning across Graphs
Brief vignette into cross-graph learning Marinka Zitnik - https://zitniklab.hms.harvard.edu - March 11, 2021
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• G-Meta can successfully learn in challenging, few-shot learning 
settings: up to 29.9 % over previous works and 16.3 % over 
other meta learning methods

• G-Meta scales to large graphs: on our new Tree-of-Life dataset 
comprising of 1,840 graphs, 100x increase in graph size 
relative to prior work

G-Meta: Results

Reported is multi-class classification accuracy (five-fold average) and standard deviation. N/A means 
the method does not apply.

Brief vignette into cross-graph learning 

Graph Meta Learning via Local Subgraphs, NeurIPS 2020

Marinka Zitnik - https://zitniklab.hms.harvard.edu - March 11, 2021



Plan for Today
§ Safe drugs and drug combinations

Methods: Multi-relational link prediction on KGs

§ Patient outcomes & disease classification
Methods: Subgraph embeddings

§ Effective disease treatments
Methods: Few-shot learning for graphs
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