## Learning by Fusing Heterogeneous Data

Marinka Zitnik

## Motivation



Large-scale physics experiments



Large-scale physics experiments



Social networks, recommender systems



Large-scale physics experiments



Social networks, recommender systems



Social networks, recommender systems



Global navigation satellite systems



Social networks, recommender systems



Large-scale physics experiments



Social networks, recommender systmolecular biology



Global navigation satellite systems



Social networks, recommender systems



Large-scale physics experiments



Molecular biology

Objects of different types

Objects of different types

Different points in time, space and scale

Objects of different types

Different points in time, space and scale

Different perspectives

## Warming-Up

## One Data Matrix



## One Data Matrix



Recipe matrix of B





Recipe matrix of B













# Data Fusion by Collective Matrix Factorization











Many shared factors





Many shared factors



Optimization Problem



Optimization Problem

#### Given

```
\mathcal{R} = {\mathbf{R}_{ij}; i \text{ and } j \text{ are object types}}
\mathcal{C} = {\mathbf{\Theta}_i^l; l = 1, 2, \dots, l_i, i \text{ is an object type}}
```



Optimization Problem



#### Given

$$\mathcal{R} = \{\mathbf{R}_{ij}; i \text{ and } j \text{ are object types}\}$$

$$\mathcal{C} = \{\mathbf{\Theta}_i^l; l = 1, 2, \dots, l_i, i \text{ is an object type}\}$$

Find latent matrices  $G_i$  and  $S_{ij}$  that minimize

$$\min_{\mathbf{G}_i \geq 0, \mathbf{S}_{ij}} \sum_{\mathbf{R}_{ij} \in \mathcal{R}} \|\mathbf{R}_{ij} - \mathbf{G}_i \mathbf{S}_{ij} \mathbf{G}_j^T\|_{\text{Fro}}^2 + \sum_{\mathbf{\Theta}_i \in \mathcal{C}} \sum_{l=1}^{l_i} \text{tr}(\mathbf{G}_i^T \mathbf{\Theta}_i^{(l)} \mathbf{G}_i)$$



Optimization Problem



Given

$$\mathcal{R} = \{\mathbf{R}_{ij}; i \text{ and } j \text{ are object types}\}$$

$$C = \{ \mathbf{\Theta}_i^l; \ l = 1, 2, \dots, l_i, \ i \text{ is an object type} \}$$

S<sub>AB</sub>

Find latent matrices  $G_i$  and  $S_{ij}$  that minimize

$$\min_{\mathbf{G}_i \geq 0, \mathbf{S}_{ij}} \sum_{\mathbf{R}_{ij} \in \mathcal{R}} \|\mathbf{R}_{ij} - \mathbf{G}_i \mathbf{S}_{ij} \mathbf{G}_j^T\|_{\text{Fro}}^2 + \sum_{\mathbf{\Theta}_i \in \mathcal{C}} \sum_{l=1}^{l_i} \text{tr}(\mathbf{G}_i^T \mathbf{\Theta}_i^{(l)} \mathbf{G}_i)$$

The problem is non-convex. The global optimum is unknown

Solution: DFMF Algorithm



# Many Matric Solution: DF

**Input:** A set  $\mathcal{R}$  of relation matrices  $\mathbf{R}_{ij}$ ; constraint matrices  $\mathbf{\Theta}^{(t)}$  for  $t \in \{1, 2, ..., \max_i t_i\}$ ; ranks  $k_1, k_2, ..., k_r$   $(i, j \in [r])$ . **Output:** Matrix factors  $\mathbf{S}$  and  $\mathbf{G}$ .

- 1) Initialize  $G_i$  for i = 1, 2, ..., r.
- 2) Repeat until convergence:
  - Construct **R** and **G** using their definitions in Eq. (1) and Eq. (3).
- Update S using:

$$\mathbf{S} \leftarrow (\mathbf{G}^T \mathbf{G})^{-1} \mathbf{G}^T \mathbf{R} \mathbf{G} (\mathbf{G}^T \mathbf{G})^{-1}.$$

- Set  $\mathbf{G}_{i}^{(e)} \leftarrow \mathbf{0}$  for  $i = 1, 2, \dots, r$ .
- Set  $\mathbf{G}_i^{(d)} \leftarrow \mathbf{0}$  for  $i = 1, 2, \dots, r$ .
- For  $\mathbf{R}_{ij} \in \mathcal{R}$ :

$$\mathbf{G}_{i}^{(e)} += (\mathbf{R}_{ij}\mathbf{G}_{j}\mathbf{S}_{ij}^{T})^{+} + \mathbf{G}_{i}(\mathbf{S}_{ij}\mathbf{G}_{j}^{T}\mathbf{G}_{j}\mathbf{S}_{ij}^{T})^{-}$$

$$\mathbf{G}_{i}^{(d)} += (\mathbf{R}_{ij}\mathbf{G}_{j}\mathbf{S}_{ij}^{T})^{-} + \mathbf{G}_{i}(\mathbf{S}_{ij}\mathbf{G}_{j}^{T}\mathbf{G}_{j}\mathbf{S}_{ij}^{T})^{+}$$

$$\mathbf{G}_{j}^{(e)} += (\mathbf{R}_{ij}^{T}\mathbf{G}_{i}\mathbf{S}_{ij})^{+} + \mathbf{G}_{j}(\mathbf{S}_{ij}^{T}\mathbf{G}_{i}^{T}\mathbf{G}_{i}\mathbf{S}_{ij})^{-}$$

$$\mathbf{G}_{j}^{(d)} += (\mathbf{R}_{ij}^{T}\mathbf{G}_{i}\mathbf{S}_{ij})^{-} + \mathbf{G}_{j}(\mathbf{S}_{ij}^{T}\mathbf{G}_{i}^{T}\mathbf{G}_{i}\mathbf{S}_{ij})^{+} (10)$$

• For  $t = 1, 2, ..., \max_i t_i$ :

$$\mathbf{G}_{i}^{(e)} += [\boldsymbol{\Theta}_{i}^{(t)}]^{-} \mathbf{G}_{i} \quad \text{for } i = 1, 2, \dots, r$$

$$\mathbf{G}_{i}^{(d)} += [\boldsymbol{\Theta}_{i}^{(t)}]^{+} \mathbf{G}_{i} \quad \text{for } i = 1, 2, \dots, r \quad (11)$$

• Construct **G** as:

$$\mathbf{G} \leftarrow \mathbf{G} \circ \operatorname{Diag}(\sqrt{\frac{\mathbf{G}_{1}^{(e)}}{\mathbf{G}_{1}^{(d)}}}, \sqrt{\frac{\mathbf{G}_{2}^{(e)}}{\mathbf{G}_{2}^{(d)}}}, \dots, \sqrt{\frac{\mathbf{G}_{r}^{(e)}}{\mathbf{G}_{r}^{(d)}}}), \quad (12)$$

where  $\circ$  denotes the Hadamard product. The  $\sqrt{\cdot}$  and  $\stackrel{\cdot}{-}$  are entry-wise operations.



# Many Data Matrices

Solution: DFMF Algorithm



# Many Data Matrices

Solution: DFMF Algorithm



Theorem 1 (Correctness of DFMF algorithm): If the update rules for matrix factors  $\mathbf{G}_i$  and  $\mathbf{S}_{ij}$  from the DFMF algorithm converge, then the final solution satisfies the Karush-Kuhn-Tucker conditions of optimality.

# Many Data Matrices

Solution: DFMF Algorithm



Theorem 1 (Correctness of DFMF algorithm): If the update rules for matrix factors  $\mathbf{G}_i$  and  $\mathbf{S}_{ij}$  from the DFMF algorithm converge, then the final solution satisfies the Karush-Kuhn-Tucker conditions of optimality.

Theorem 2 (Convergence of DFMF algorithm): The objective function:

$$\min_{\mathbf{G}_i \geq 0, \mathbf{S}_{ij}} \sum_{\mathbf{R}_{ij} \in \mathcal{R}} \|\mathbf{R}_{ij} - \mathbf{G}_i \mathbf{S}_{ij} \mathbf{G}_j^T\|_{\text{Fro}}^2 + \sum_{\mathbf{\Theta}_i \in \mathcal{C}} \sum_{l=1}^{l_i} \text{tr}(\mathbf{G}_i^T \mathbf{\Theta}_i^{(l)} \mathbf{G}_i)$$

is nonincreasing under the updating rules for matrix factors  $G_i$  and  $S_{ij}$  given by DFMF algorithm.

Marinka Zitnik - PhD Thesis

# Two Case Studies of Collective Matrix Factorization

### #1: Amoeba







# Search for Bacterial Response Genes

50,000 clonal mutants



Nasser et al (2013) Curr Biol

A data-driven approach

14 data sources4 Gram- seed genes9 candidate genes



A data-driven approach

14 data sources4 Gram- seed genes9 candidate genes







Dicty genes → Diseases











Žitnik et al. PLoS Comp Bio 2015

Latent chains

$$G_1$$
,  $G_1S_{1,7}$ ,  $G_1S_{1,8}$ ,  $G_1S_{1,9}$ ,  $G_1S_{1,10}$ ,  $G_1S_{1,2}$ ,  $G_1S_{1,6}$ ,  $G_1S_{1,5}$ ,  $G_1S_{1,4}$ ,  $G_1S_{1,2}S_{2,3}$ ,  $G_1S_{1,6}S_{6,5}$ ,  $G_1S_{1,6}S_{6,4}$ ,  $G_1S_{1,2}S_{2,4}$ ,  $G_1S_{1,5}S_{5,4}$  and  $G_1S_{1,6}S_{6,5}S_{5,4}$ 





#### Latent chains

 $\begin{aligned} &\mathbf{G}_1,\,\mathbf{G}_1\mathbf{S}_{1,7},\,\mathbf{G}_1\mathbf{S}_{1,8},\,\mathbf{G}_1\mathbf{S}_{1,9},\\ &\mathbf{G}_1\mathbf{S}_{1,10},\,\mathbf{G}_1\mathbf{S}_{1,2},\,\mathbf{G}_1\mathbf{S}_{1,6},\\ &\mathbf{G}_1\mathbf{S}_{1,5},\,\mathbf{G}_1\mathbf{S}_{1,4},\,\mathbf{G}_1\mathbf{S}_{1,2}\mathbf{S}_{2,3},\\ &\mathbf{G}_1\mathbf{S}_{1,6}\mathbf{S}_{6,5},\,\mathbf{G}_1\mathbf{S}_{1,6}\mathbf{S}_{6,4},\\ &\mathbf{G}_1\mathbf{S}_{1,2}\mathbf{S}_{2,4},\,\mathbf{G}_1\mathbf{S}_{1,5}\mathbf{S}_{5,4}\,\,\mathrm{and}\\ &\mathbf{G}_1\mathbf{S}_{1,6}\mathbf{S}_{6,5}\mathbf{S}_{5,4}\end{aligned}$ 

# Latent Chaining and Profiling



Latent chains

 $\mathbf{G}_{1}\mathbf{S}_{1,6}\mathbf{S}_{6,5}\mathbf{S}_{5,4}$ 

 $\begin{aligned} &\mathbf{G}_1,\,\mathbf{G}_1\mathbf{S}_{1,7},\,\mathbf{G}_1\mathbf{S}_{1,8},\,\mathbf{G}_1\mathbf{S}_{1,9},\\ &\mathbf{G}_1\mathbf{S}_{1,10},\,\mathbf{G}_1\mathbf{S}_{1,2},\,\mathbf{G}_1\mathbf{S}_{1,6},\\ &\mathbf{G}_1\mathbf{S}_{1,5},\,\mathbf{G}_1\mathbf{S}_{1,4},\,\mathbf{G}_1\mathbf{S}_{1,2}\mathbf{S}_{2,3},\\ &\mathbf{G}_1\mathbf{S}_{1,6}\mathbf{S}_{6,5},\,\mathbf{G}_1\mathbf{S}_{1,6}\mathbf{S}_{6,4},\\ &\mathbf{G}_1\mathbf{S}_{1,2}\mathbf{S}_{2,4},\,\mathbf{G}_1\mathbf{S}_{1,5}\mathbf{S}_{5,4}\,\mathrm{and} \end{aligned}$ 

# Latent Chaining and Profiling



| cf50-1       |
|--------------|
| smlA         |
| acbA         |
| pirA         |
| rps10        |
| abpC         |
| tirA         |
| DDB_G0272184 |
| pikB         |
| vps46        |
| pikA         |
| swp1         |
| ggtA         |
| DDB_G0288519 |
| pten         |
| DDB_G0288551 |
| tra2         |
| DDB_G0286429 |
| dscA-1       |
| cinC         |
| udpB         |
| sfbA         |
| modA         |

DDB G0287399

Žitnik et al. PLoS Comp Bio 2015





#### 8/9 predictions correct!

14 data sources4 Gram- seed genes9 candidate genes

Žitnik et al. PLoS Comp Bio 2015







|--|

| Prediction task                                                                                                                 | DI                               | FMF                              |
|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------|
|                                                                                                                                 | $F_1$                            | AUC                              |
| 100 <i>D. discoideum</i> genes<br>1000 <i>D. discoideum</i> genes<br>Whole <i>D. discoideum</i> genome<br>Pharmacologic actions | 0.799<br>0.826<br>0.831<br>0.663 | 0.801<br>0.823<br>0.849<br>0.834 |



| Prediction task                                                                                                                 | DF                               | MF                               | M                                | KL                               |
|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
|                                                                                                                                 | $F_1$                            | AUC                              | $F_1$                            | AUC                              |
| 100 <i>D. discoideum</i> genes<br>1000 <i>D. discoideum</i> genes<br>Whole <i>D. discoideum</i> genome<br>Pharmacologic actions | 0.799<br>0.826<br>0.831<br>0.663 | 0.801<br>0.823<br>0.849<br>0.834 | 0.781<br>0.787<br>0.800<br>0.639 | 0.788<br>0.798<br>0.821<br>0.811 |



| Prediction task                                                                                                                 | DF                               | MF                               | M                                | KL                               | RF                               |                                  |  |
|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|--|
|                                                                                                                                 | $F_1$                            | AUC                              | $F_1$                            | AUC                              | $F_1$                            | AUC                              |  |
| 100 <i>D. discoideum</i> genes<br>1000 <i>D. discoideum</i> genes<br>Whole <i>D. discoideum</i> genome<br>Pharmacologic actions | 0.799<br>0.826<br>0.831<br>0.663 | 0.801<br>0.823<br>0.849<br>0.834 | 0.781<br>0.787<br>0.800<br>0.639 | 0.788<br>0.798<br>0.821<br>0.811 | 0.761<br>0.767<br>0.782<br>0.643 | 0.785<br>0.788<br>0.801<br>0.819 |  |



| Prediction task            | DFMF  |       | MKL   |       | RF    |       | tri-SPMF |       |
|----------------------------|-------|-------|-------|-------|-------|-------|----------|-------|
|                            | $F_1$ | AUC   | $F_1$ | AUC   | $F_1$ | AUC   | $F_1$    | AUC   |
| 100 D. discoideum genes    | 0.799 | 0.801 | 0.781 | 0.788 | 0.761 | 0.785 | 0.731    | 0.724 |
| 1000 D. discoideum genes   | 0.826 | 0.823 | 0.787 | 0.798 | 0.767 | 0.788 | 0.756    | 0.741 |
| Whole D. discoideum genome | 0.831 | 0.849 | 0.800 | 0.821 | 0.782 | 0.801 | 0.778    | 0.787 |
| Pharmacologic actions      | 0.663 | 0.834 | 0.639 | 0.811 | 0.643 | 0.819 | 0.641    | 0.810 |



| Prediction task                                                                                                                 | DF                               | MF                               | M                                | KL                               | R                                | RF                               |                                  | tri-SPMF                         |  |
|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|--|
|                                                                                                                                 | $F_1$                            | AUC                              | $F_1$                            | AUC                              | $F_1$                            | AUC                              | $F_1$                            | AUC                              |  |
| 100 <i>D. discoideum</i> genes<br>1000 <i>D. discoideum</i> genes<br>Whole <i>D. discoideum</i> genome<br>Pharmacologic actions | 0.799<br>0.826<br>0.831<br>0.663 | 0.801<br>0.823<br>0.849<br>0.834 | 0.781<br>0.787<br>0.800<br>0.639 | 0.788<br>0.798<br>0.821<br>0.811 | 0.761<br>0.767<br>0.782<br>0.643 | 0.785<br>0.788<br>0.801<br>0.819 | 0.731<br>0.756<br>0.778<br>0.641 | 0.724<br>0.741<br>0.787<br>0.810 |  |



| Prediction task                                         | DF    | DFMF MKL |       | KL    | R     | RF    | tri-SPMF |       |
|---------------------------------------------------------|-------|----------|-------|-------|-------|-------|----------|-------|
|                                                         | $F_1$ | AUC      | $F_1$ | AUC   | $F_1$ | AUC   | $F_1$    | AUC   |
| 100 D. discoideum genes                                 | 0.799 | 0.801    | 0.781 | 0.788 | 0.761 | 0.785 | 0.731    | 0.724 |
| 1000 D. discoideum genes                                | 0.826 | 0.823    | 0.787 | 0.798 | 0.767 | 0.788 | 0.756    | 0.741 |
| Whole <i>D. discoideum</i> genome Pharmacologic actions | 0.831 | 0.849    | 0.800 | 0.821 | 0.782 | 0.801 | 0.778    | 0.787 |
|                                                         | 0.663 | 0.834    | 0.639 | 0.811 | 0.643 | 0.819 | 0.641    | 0.810 |



#### Mining disease associations

Žitnik *et al Scientific Reports* 2013

| Prediction task                                                                                                                 | DF                               | DFMF                             |                                  | MKL                              |                                  | RF                               |                                  | tri-SPMF                         |  |
|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|--|
|                                                                                                                                 | $F_1$                            | AUC                              | $F_1$                            | AUC                              | $F_1$                            | AUC                              | $F_1$                            | AUC                              |  |
| 100 <i>D. discoideum</i> genes<br>1000 <i>D. discoideum</i> genes<br>Whole <i>D. discoideum</i> genome<br>Pharmacologic actions | 0.799<br>0.826<br>0.831<br>0.663 | 0.801<br>0.823<br>0.849<br>0.834 | 0.781<br>0.787<br>0.800<br>0.639 | 0.788<br>0.798<br>0.821<br>0.811 | 0.761<br>0.767<br>0.782<br>0.643 | 0.785<br>0.788<br>0.801<br>0.819 | 0.731<br>0.756<br>0.778<br>0.641 | 0.724<br>0.741<br>0.787<br>0.810 |  |



#### Mining disease associations

Žitnik *et al Scientific Reports* 2013

#### Predicting drug toxicity

Žitnik & Zupan *Systems Biomedicine* 2014 (CAMDA Award)

| Prediction task                                                                                                                 | DF                               | DFMF MKL                         |                                  | R                                | RF.                              | tri-SPMF                         |                                  |                                  |
|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
|                                                                                                                                 | $F_1$                            | AUC                              | $F_1$                            | AUC                              | $F_1$                            | AUC                              | $F_1$                            | AUC                              |
| 100 <i>D. discoideum</i> genes<br>1000 <i>D. discoideum</i> genes<br>Whole <i>D. discoideum</i> genome<br>Pharmacologic actions | 0.799<br>0.826<br>0.831<br>0.663 | 0.801<br>0.823<br>0.849<br>0.834 | 0.781<br>0.787<br>0.800<br>0.639 | 0.788<br>0.798<br>0.821<br>0.811 | 0.761<br>0.767<br>0.782<br>0.643 | 0.785<br>0.788<br>0.801<br>0.819 | 0.731<br>0.756<br>0.778<br>0.641 | 0.724<br>0.741<br>0.787<br>0.810 |



#### Mining disease associations

Žitnik *et al Scientific Reports* 2013

#### Predicting drug toxicity

Žitnik & Zupan *Systems Biomedicine* 2014 (CAMDA Award)

#### Predicting gene functions

Žitnik & Zupan In PSB 2014

| Prediction task                                                                                                                 | DF                               | DFMF MKL                         |                                  | R                                | RF.                              | tri-SPMF                         |                                  |                                  |
|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
|                                                                                                                                 | $F_1$                            | AUC                              | $F_1$                            | AUC                              | $F_1$                            | AUC                              | $F_1$                            | AUC                              |
| 100 <i>D. discoideum</i> genes<br>1000 <i>D. discoideum</i> genes<br>Whole <i>D. discoideum</i> genome<br>Pharmacologic actions | 0.799<br>0.826<br>0.831<br>0.663 | 0.801<br>0.823<br>0.849<br>0.834 | 0.781<br>0.787<br>0.800<br>0.639 | 0.788<br>0.798<br>0.821<br>0.811 | 0.761<br>0.767<br>0.782<br>0.643 | 0.785<br>0.788<br>0.801<br>0.819 | 0.731<br>0.756<br>0.778<br>0.641 | 0.724<br>0.741<br>0.787<br>0.810 |



#### Mining disease associations

Žitnik *et al Scientific Reports* 2013

#### Predicting drug toxicity

Žitnik & Zupan *Systems Biomedicine* 2014 (CAMDA Award)

#### Predicting gene functions

Žitnik & Zupan In PSB 2014

#### Predicting cancer survival

Žitnik & Zupan *Systems Biomedicine* 2015 (CAMDA Award)

| Prediction task                                         | DF    | MF    | MKL   |       | R     | RF    |       | tri-SPMF |  |
|---------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|----------|--|
|                                                         | $F_1$ | AUC   | $F_1$ | AUC   | $F_1$ | AUC   | $F_1$ | AUC      |  |
| 100 D. discoideum genes                                 | 0.799 | 0.801 | 0.781 | 0.788 | 0.761 | 0.785 | 0.731 | 0.724    |  |
| 1000 D. discoideum genes                                | 0.826 | 0.823 | 0.787 | 0.798 | 0.767 | 0.788 | 0.756 | 0.741    |  |
| Whole <i>D. discoideum</i> genome Pharmacologic actions | 0.831 | 0.849 | 0.800 | 0.821 | 0.782 | 0.801 | 0.778 | 0.787    |  |
|                                                         | 0.663 | 0.834 | 0.639 | 0.811 | 0.643 | 0.819 | 0.641 | 0.810    |  |

## Key Idea: Transfer of Knowledge





## Key Idea: Transfer of Knowledge











heta Model parameters

## Key Idea: Transfer of Knowledge













Marinka Zitnik - PhD Thesis





Heterogeneous data domain space





Heterogeneous data domain space





Heterogeneous data domain space









Data view

heta Model parameters

# Transfer of Knowledge: Another Example

Network Inference from Mixed Data





Direct inference

$$\mathcal{N}(g_1) = \{g_i \in V \setminus \{g_1\} : \sin(g_1, g_i) \geq T\}$$
 threshold value



#### Direct inference

$$\mathcal{N}(g_1) = \{g_i \in V \setminus \{g_1\} : \sin(g_1, g_i) \geq T\}$$
 threshold value

#### Model-based inference

$$g_1=\theta_2g_2+\theta_3g_3+\theta_4g_4+\theta_5g_5+\cdots+\theta_ng_n$$
 
$$\mathcal{N}(g_1)=\{g_i\in V\setminus\{g_1\}:\theta_i\neq 0\}$$
 model parameters

#### RNA-seq count data





Somatic mutations





$$P_{\Theta}(X) \propto \exp(\sum_{g \in V} \theta_g \phi_g(X_g) + \sum_{(g,h) \in E} \theta_{gh} \phi_{gh}(X_g, X_h))$$

 $X = (X_1, X_2, \dots, X_n), X_i$  is an object of interest

$$P_{\Theta}(X) \propto \exp(\sum_{g \in V} \theta_g \phi_g(X_g) + \sum_{(g,h) \in E} \theta_{gh} \phi_{gh}(X_g, X_h))$$

$$X = (X_1, X_2, \dots, X_n), X_i$$
 is an object of interest

$$P_{\Theta}(X) \propto \exp(\sum_{g \in V} \theta_g \phi_g(X_g) + \sum_{(g,h) \in E} \theta_{gh} \phi_{gh}(X_g, X_h))$$

Nodes

Edges

$$X = (X_1, X_2, \dots, X_n), X_i$$
 is an object of interest



 $heta_g = \mathbf{U}_g$ Object weights

$$X = (X_1, X_2, \dots, X_n), X_i$$
 is an object of interest 
$$P_{\Theta}(X) \propto \exp(\sum_{g \in V} \theta_g \phi_g(X_g) + \sum_{(g,h) \in E} \theta_{gh} \phi_{gh}(X_g, X_h))$$

$$\theta_g = \mathbf{U}_g \qquad \theta_{gh} = \mathbf{U}_g^T \mathbf{W}^T \mathbf{W} \mathbf{U}_h$$
Object weights Object-object interactions

Objective function

Objective function

$$\min_{\mathbf{U}, \mathbf{W}_x, \mathbf{W}_y} \sum_{g \in V} \ell_{g; P_x}(\mathbf{U}, \mathbf{W}_x; \mathbf{X})$$

Data  $\mathbf{X}$  following distribution  $P_x$ 

Objective function



Data  $\mathbf{X}$  following distribution  $P_x$ 

Data  $\mathbf{Y}$  following distribution  $P_y$ 

#### Objective function



Data  $\mathbf{X}$  following distribution  $P_x$ 

Data  $\mathbf{Y}$  following distribution  $P_y$ 

$$\min_{\mathbf{U},\mathbf{W}_x,\mathbf{W}_y} \sum_{g \in V} \ell_{g;P_x}(\mathbf{U},\mathbf{W}_x;\mathbf{X}) + \ell_{g;P_y}(\mathbf{U},\mathbf{W}_y;\mathbf{Y}) + \text{reg. param.}$$

$$\min_{\mathbf{U},\mathbf{W}_x,\mathbf{W}_y} \sum_{g \in V} \ell_{g;P_x}(\mathbf{U},\mathbf{W}_x;\mathbf{X}) + \ell_{g;P_y}(\mathbf{U},\mathbf{W}_y;\mathbf{Y}) + \text{reg. param.}$$





Data **X** 

Data **Y** 

$$\mathbf{U}_g^T \mathbf{W}_y^T \mathbf{W}_y \mathbf{U}_h \neq 0 \}$$

Marinka Zitnik - PhD Thesis



Marinka Zitnik - PhD Thesis

## FuseNet

Data



## FuseNet

Data

Model

$$P_{\Theta}(X) \propto \exp(\sum_{g \in V} \theta_g \phi_g(X_g) + \sum_{(g,h) \in E} \theta_{gh} \phi_{gh}(X_g, X_h))$$

## FuseNet

Data

Model

Network



Marinka Zitnik - PhD Thesis

# Poisson Data

|          | $g_1$ | $g_2$ | $g_3$ | $g_4$ | $g_5$ | $g_6$ | $g_7$ | $g_8$ |
|----------|-------|-------|-------|-------|-------|-------|-------|-------|
| Sample 1 | 452   | 872   | 495   | 348   | 2     | 297   | 348   | 982   |
| Sample 2 | 482   | 124   | 726   | 132   | 872   | 29    | 77    | 144   |
| Sample 3 | 719   | 2     | 198   | 376   | 193   | 287   | 173   | 346   |
| Sample 4 | 56    | 24    | 99    | 0     | 239   | 928   | 376   | 660   |

# Poisson Data

|          | $g_1$ | $g_2$ | $g_3$ | $g_4$ | $g_5$ | $g_6$ | $g_7$ | $g_8$ |  |  |
|----------|-------|-------|-------|-------|-------|-------|-------|-------|--|--|
| Sample 1 | 452   | 872   | 495   | 348   | 2     | 297   | 348   | 982   |  |  |
| Sample 2 | 482   | 124   | 726   | 132   | 872   | 29    | 77    | 144   |  |  |
| Sample 3 | 719   | 2     | 198   | 376   | 193   | 287   | 173   | 346   |  |  |
| Sample 4 | 56    | 24    | 99    | 0     | 239   | 928   | 376   | 660   |  |  |

Poisson distribution

## Recovery of Poisson Networks



# Recovery of Poisson Networks



# Recovery of Poisson Networks



# Recovery of Poisson Networks



# Functional Content of Inferred Cancer Networks



Higher score indicates a more informative network Data from International Cancer Genome Consortium, BRCA

# Functional Content of Inferred Cancer Networks



Higher score indicates a more informative network Data from International Cancer Genome Consortium, BRCA

0.0

# Summary of Contributions

Markov network inference for mixed data

Epistasis network inference

Collective pairwise classification for multi-way data

Z & Z. *JMLR* 2012;

Z & Z. Bioinformatics 2014 (in ISMB 2014);

Z & Z. Bioinformatics 2015 (in ISMB 2015);

Z & Z. In PSB 2016

Markov network inference for mixed data

Epistasis network inference

Collective pairwise classification for multi-way data

Z & Z. *JMLR* 2012;

Z & Z. *Bioinformatics* 2014 (in ISMB 2014);

Z & Z. Bioinformatics 2015 (in ISMB 2015);

Z & Z. In PSB 2016

### **Object Heterogeneity**

Latent profile chaining

Z et al. PLOS Comp Bio 2015

Markov network inference for mixed data

Epistasis network inference

Collective pairwise classification for multi-way data

Z & Z. JMLR 2012;

Z & Z. Bioinformatics 2014 (in ISMB 2014);

Z & Z. *Bioinformatics* 2015 (in ISMB 2015);

Z & Z. In PSB 2016

#### **Dual Heterogeneity**

Network guided matrix completion

Survival regression by data fusion

Z & Z. Systems Biomedicine 2015;

Z & Z. In RECOMB 2014;

Z & Z. Journal of Comp Bio 2015

#### **Object Heterogeneity**

Latent profile chaining

Z et al. PLOS Comp Bio 2015

Markov network inference for mixed data

Epistasis network inference

Collective pairwise classification for multi-way data

Z & Z. JMLR 2012;

Z & Z. Bioinformatics 2014 (in ISMB 2014);

Z & Z. Bioinformatics 2015 (in ISMB 2015);

Z & Z. In PSB 2016

### **Object Heterogeneity**

Latent profile chaining

Z et al. PLOS Comp Bio 2015

#### **Dual Heterogeneity**

Network guided matrix completion

Survival regression by data fusion

Z & Z. Systems Biomedicine 2015;

Z & Z. In RECOMB 2014;

Z & Z. Journal of Comp Bio 2015

#### Triple Heterogeneity

collective matrix factorization

Z et al. Scientific Reports 2013;

Z & Z. Systems Biomedicine 2014;

Z & Z. In PSB 2014;

Z & Z. *IEEE TPAMI* 2015;

Markov network inference for mixed data

Epistasis network inference

Collective pairwise classification for multi-way data

Z & Z. JMLR 2012;

Z & Z. Bioinformatics 2014 (in ISMB 2014);

Z & Z. Bioinformatics 2015 (in ISMB 2015);

Z & Z. In PSB 2016

### Object Heterogeneity

Latent profile chaining

Z et al. PLOS Comp Bio 2015

#### **Dual Heterogeneity**

Network guided matrix completion

Survival regression by data fusion

Z & Z. Systems Biomedicine 2015;

Z & Z. In RECOMB 2014;

Z & Z. Journal of Comp Bio 2015

#### Triple Heterogeneity

collective matrix factorization

Z et al. Scientific Reports 2013;

Z & Z. Systems Biomedicine 2014;

Z & Z. In PSB 2014;

Z & Z. *IEEE TPAMI* 2015;

#### **Exploring Heterogeneity**

Sensitivity estimation using Frechet derivatives

ALL THIS EXCITEMENT ABOUT DATA FUSION!

GENE FUNCTION PREDICTION,
DISEASE ASSOCIATIONS, PREDICTION
OF DRUG TOXICITY, GENE
PRIORITIZATION, CANCER NETWORKS,
DISEASE PROGRESSION, DRUG
INTERACTIONS, PHARMACOGENOMICS.











Thomas Helleday Jordi C. Puigvert

Baylor College of Medicine<sup>®</sup>



Adam Kuspa

**Edward Nam** 

Stanford

University

Jure Leskovec



Natasa Przulj Vuk Janjic

> **Imperial College** London

Gad Shaulsky Rafael Rosengarten Mariko Kurasawa Balaji Santhanam







Uroš Petrovic Petra Kaferle

Charles Boone Mojca M. Usaj

