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where all matrices on right-hand sides are nonnega-
tive. Then, given an initial guess of G

i

, the successive
updates of G

i

using Eq. (10)–(12) converge to a local
minimum of the problem in Eq. (5). It can be easily
seen that using such a rule, at convergence, G

i

satis-
fies �

i
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i

= 0, which is equivalent to �
i

= 0 (Eq. (9))
due to nonnegativity of G

i

. ⇤

Theorem 2 (Convergence of DFMF algorithm): The objec-
tive function J(G;S) given by Eq. (5) is nonincreasing
under the updating rules for matrix factors G and S
in Fig. 2.

Please see the Appendix for a detailed proof of
the above theorem. Our proof essentially follows the
idea of auxiliary functions often used in the conver-
gence proofs of approximate matrix factorization al-
gorithms [13].

Input: A set R of relation matrices Rij ; constraint matrices ⇥(t)
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2
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1) Initialize Gi for i = 1, 2, . . . , r.
2) Repeat until convergence:
• Construct R and G using their definitions in Eq. (1) and

Eq. (3).
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�1GTRG(GTG)

�1.

• Set G(e)
i  0 for i = 1, 2, . . . , r.

• Set G(d)
i  0 for i = 1, 2, . . . , r.

• For Rij 2 R:

G
(e)
i += (RijGjS

T
ij)

+

+Gi(SijG
T
j GjS

T
ij)

�

G
(d)
i += (RijGjS

T
ij)

�
+Gi(SijG

T
j GjS

T
ij)

+

G
(e)
j += (RT

ijGiSij)
+

+Gj(S
T
ijG

T
i GiSij)

�

G
(d)
j += (RT

ijGiSij)
�

+Gj(S
T
ijG

T
i GiSij)

+ (10)

• For t = 1, 2, . . . ,maxi ti:

G
(e)
i += [⇥

(t)
i ]

�Gi for i = 1, 2, . . . , r

G
(d)
i += [⇥

(t)
i ]

+Gi for i = 1, 2, . . . , r (11)

• Construct G as:

G G �Diag(

vuutG
(e)
1

G
(d)
1

,

vuutG
(e)
2

G
(d)
2

, . . . ,

vuutG
(e)
r

G
(d)
r

), (12)

where � denotes the Hadamard product. The
p
· and ·

· are
entry-wise operations.

Fig. 2. Factorization algorithm of proposed data fusion
approach (DFMF).

2.4 Stopping Criterion
In this paper we apply data fusion to infer relations
between two target object types, E

i

and E
j

. We hence
define the stopping criterion that observes conver-
gence in approximation of only the target matrix R

ij

.
Our convergence criterion is ||R

ij

� G
i

S
ij

GT

j

||2 < ✏,

where ✏ is a user-defined parameter, possibly refined
through observing log entries of the target matrix
approximation error for several runs of the factoriza-
tion algorithm. In our experiments ✏ was set to 10

�5.
To reduce the computational load, the convergence
criterion was assessed only every fifth iteration.

2.5 Parameter Estimation
Parameters to DFMF algorithm are factorization
ranks, k

1

, k

2

, . . . , k

r

. These are chosen from a pre-
defined interval of possible rank values such that
their choice maximizes the estimated quality of the
model. To reduce the number of required factor-
ization runs we mimic the bisection method by
first testing rank values at the midpoint and bor-
ders of specified ranges and then for each rank
value selecting the subinterval for which the result-
ing model was of higher quality. We evaluate the
models through the explained variance, the residual
sum of squares (RSS) and a measure based on the
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where all matrices on right-hand sides are nonnega-
tive. Then, given an initial guess of G

i

, the successive
updates of G

i

using Eq. (10)–(12) converge to a local
minimum of the problem in Eq. (5). It can be easily
seen that using such a rule, at convergence, G

i

satis-
fies �

i

�G
i

= 0, which is equivalent to �
i

= 0 (Eq. (9))
due to nonnegativity of G

i

. ⇤

Theorem 2 (Convergence of DFMF algorithm): The objec-
tive function J(G;S) given by Eq. (5) is nonincreasing
under the updating rules for matrix factors G and S
in Fig. 2.

Please see the Appendix for a detailed proof of
the above theorem. Our proof essentially follows the
idea of auxiliary functions often used in the conver-
gence proofs of approximate matrix factorization al-
gorithms [13].

Input: A set R of relation matrices Rij ; constraint matrices ⇥(t)

for t 2 {1, 2, . . . ,maxi ti}; ranks k
1

, k
2

, . . . , kr (i, j 2 [r]).
Output: Matrix factors S and G.
1) Initialize Gi for i = 1, 2, . . . , r.
2) Repeat until convergence:
• Construct R and G using their definitions in Eq. (1) and

Eq. (3).
• Update S using:

S (GTG)

�1GTRG(GTG)

�1.

• Set G(e)
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where � denotes the Hadamard product. The
p
· and ·

· are
entry-wise operations.

Fig. 2. Factorization algorithm of proposed data fusion
approach (DFMF).

2.4 Stopping Criterion
In this paper we apply data fusion to infer relations
between two target object types, E

i

and E
j

. We hence
define the stopping criterion that observes conver-
gence in approximation of only the target matrix R

ij

.
Our convergence criterion is ||R

ij

� G
i

S
ij

GT

j

||2 < ✏,

where ✏ is a user-defined parameter, possibly refined
through observing log entries of the target matrix
approximation error for several runs of the factoriza-
tion algorithm. In our experiments ✏ was set to 10

�5.
To reduce the computational load, the convergence
criterion was assessed only every fifth iteration.

2.5 Parameter Estimation
Parameters to DFMF algorithm are factorization
ranks, k

1

, k

2

, . . . , k

r

. These are chosen from a pre-
defined interval of possible rank values such that
their choice maximizes the estimated quality of the
model. To reduce the number of required factor-
ization runs we mimic the bisection method by
first testing rank values at the midpoint and bor-
ders of specified ranges and then for each rank
value selecting the subinterval for which the result-
ing model was of higher quality. We evaluate the
models through the explained variance, the residual
sum of squares (RSS) and a measure based on the
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tive function J(G;S) given by Eq. (5) is nonincreasing
under the updating rules for matrix factors G and S
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2.4 Stopping Criterion
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between two target object types, E
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. We hence
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gence in approximation of only the target matrix R
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where ✏ is a user-defined parameter, possibly refined
through observing log entries of the target matrix
approximation error for several runs of the factoriza-
tion algorithm. In our experiments ✏ was set to 10

�5.
To reduce the computational load, the convergence
criterion was assessed only every fifth iteration.

2.5 Parameter Estimation
Parameters to DFMF algorithm are factorization
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. These are chosen from a pre-
defined interval of possible rank values such that
their choice maximizes the estimated quality of the
model. To reduce the number of required factor-
ization runs we mimic the bisection method by
first testing rank values at the midpoint and bor-
ders of specified ranges and then for each rank
value selecting the subinterval for which the result-
ing model was of higher quality. We evaluate the
models through the explained variance, the residual
sum of squares (RSS) and a measure based on the
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Supplementary Table 3. The impact of data selection. The table lists the top-30 candidate 

genes obtained by prioritization by data fusion of 14, 7, 4, 3 and 2 data sets from the data fusion 

graphs in Supplementary Fig. 3. Genes in bold are the ones selected for the experimental 

study. 

 

14 data sets 7 data sets 4 data sets 3 data sets 2 data sets 
cf50-1 
smlA 
acbA 
pirA 
rps10 
abpC 
tirA 
DDB_G0272184 
pikB 
vps46 
pikA 
swp1 
ggtA 
DDB_G0288519 
pten 
DDB_G0288551 
tra2 
DDB_G0286429 
dscA-1 
cinC 
udpB 
sfbA 
modA 
DDB_G0287399 
prmt5 
dpoA 
DDB_G0278663 
psiP 
sibC 
DDB_G0291926 

shkA 
DDB_G0288519 
pten 
cf50-1 
acbA 
smlA 
DDB_G0288947 
DDB_G0275057 
tra2 
sibC 
rbsk 
DDB_G0281967 
pikA 
DDB_G0272614 
DG1112 
adprh 
DDB_G0288551 
DD_G0283989 
dscA-1 
gdt6 
piaA 
DDB_G0279145 
DDB_G0290575 
abcA1 
DDB_G0272380 
DDB_G0272801 
lipA 
cepG 
lvsG 
uduA1 

rbsk 
DDB_G0272614 
DDB_G0278163 
qtrt1 
DDB_G0279263 
DDB_G0286079 
adprh 
DDB_G0279939 
DDB_G0272382 
gdt6 
ku80 
arpF 
cofD-1 
DDB_G0288551 
empB 
gacV 
DDB_G0294629 
swp1 
gbqA 
DDB_G0291926 
DDB_G0273031 
DDB_G0287643 
DDB_G0268876 
abkD 
DDB_G0268206 
DDB_G0279145 
DDB_G0272380 
plbG 
cct3 
psiP 

DDB_G0271348 
DDB_G0268872 
DDB_G0287153 
yelA 
sibD 
DDB_G0272380 
DDB_G0288519 
dnaja1 
rabT2 
DDB_G0292920 
sibB 
DDB_G0278163 
adprh 
lvsG 
DDB_G0285403 
tpsB 
ndm 
DDB_G0281559 
DDB_G0275671 
DDB_G0288963 
gbqA 
uduA1 
acrA 
arpE 
uduC 
DG1098 
DDB_G0273451 
adprt3 
DDB_G0288031 
yipf1 

arpE 
DDB_G0278663 
DDB_G0281091 
DDB_G0267742 
pten 
DDB_G0277937 
DDB_G0271120 
yipf1 
DDB_G0267494 
DDB_G0272016 
eif2b1 
empB 
DDB_G0291926 
vps13l 
cenB 
ku80 
DDB_G0288161 
DDB_G0268232 
rbsk 
atg12 
vps46 
DDB_G0290575 
DDB_G0267958 
DDB_G0287153 
gacV 
DDB_G0276509 
DDB_G0279971 
usp39 
DDB_G0280477 
DDB_G0292098 
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ku80 
arpF 
cofD-1 
DDB_G0288551 
empB 
gacV 
DDB_G0294629 
swp1 
gbqA 
DDB_G0291926 
DDB_G0273031 
DDB_G0287643 
DDB_G0268876 
abkD 
DDB_G0268206 
DDB_G0279145 
DDB_G0272380 
plbG 
cct3 
psiP 

DDB_G0271348 
DDB_G0268872 
DDB_G0287153 
yelA 
sibD 
DDB_G0272380 
DDB_G0288519 
dnaja1 
rabT2 
DDB_G0292920 
sibB 
DDB_G0278163 
adprh 
lvsG 
DDB_G0285403 
tpsB 
ndm 
DDB_G0281559 
DDB_G0275671 
DDB_G0288963 
gbqA 
uduA1 
acrA 
arpE 
uduC 
DG1098 
DDB_G0273451 
adprt3 
DDB_G0288031 
yipf1 

arpE 
DDB_G0278663 
DDB_G0281091 
DDB_G0267742 
pten 
DDB_G0277937 
DDB_G0271120 
yipf1 
DDB_G0267494 
DDB_G0272016 
eif2b1 
empB 
DDB_G0291926 
vps13l 
cenB 
ku80 
DDB_G0288161 
DDB_G0268232 
rbsk 
atg12 
vps46 
DDB_G0290575 
DDB_G0267958 
DDB_G0287153 
gacV 
DDB_G0276509 
DDB_G0279971 
usp39 
DDB_G0280477 
DDB_G0292098 
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chemical substances (type 4) and their categorization
(type 6), and PubChem substructure fingerprints (type 5).

The data included 1;260 chemicals extracted from the
complete DrugBank [66] database (accessed in Feb. 2014)
that were identified with at least one pharmacologic action
in the PubChem Compound database. In that way, every
chemical (drug) was assigned one or more MeSH headings
that described its pharmacologic actions and corresponded
to D27.505 tree of the 2014 MeSH Tree Structure (target rela-
tion R12). For example, established pharmacologic actions
for Aspirin include “Anti-Inflammatory Agents, Non-
Steroidal”, “Fibrinolytic Agents” and “Antipyretics.” To
increase the number of chemicals assigned to a particular
pharmacologic action, the actions of the chemical also
included those from its direct parents in the D27.505 tree.

Other data considered were publications from the
PubMed database (R13), data on depositors who submitted
substances of the chemicals present in PubChem Com-
pound records (R14), categories of data depositors (R46) and
PubChem substructure fingerprints (R15). These finger-
prints consist of a series of 881 binary indicators, each
denoting the presence or absence of a particular substruc-
ture in a molecule. Collectively, these binary keys provide a
“fingerprint” of a particular chemical structure form. Chem-
icals are constrained by a matrix of substructure-based Tani-
moto 2D similarity (Q1) obtained through PubChem Score
Matrix Service.

4.2.2 Preprocessing for Alternative Learning Methods

For the kernel-based fusion, we generated the kernel matri-
ces for chemicals from R13, R14, R15 andQ1 (Fig. 3) using the
polynomial kernel of degree 2. We included data on deposi-
tors (R46) by applying a polynomial kernel to R14R46: The
resulting kernel matrices were centered and normalized,
and the kernel parameters were selected in internal cross-
validation (see Section 4.1.2 for details). Preprocessing for
early integration by random forests and tri-SPMF learning
followed the same procedures as described in Sections 4.1.3
and 4.1.4, respectively. The prediction task was defined by
the associations of chemicals to pharmacologic actions given
by R12 (Fig. 3).

4.3 Scoring
We estimated the quality of inferred models by ten-fold
cross-validation. In each iteration, we split the set of genes
(chemicals) to a train and test set. The corresponding data
on genes (chemicals) from the test set was entirely omitted
from the training data. We developed prediction models

from the training data and tested them on the genes (chemi-
cals) from the test set. The performance was evaluated using
an F1 score, a harmonic mean of precision and recall, and
area under ROC curve (AUC). Both scores were averaged
across cross-validation runs.

5 RESULTS AND DISCUSSION

5.1 Predictive Performance
Table 1 presents the cross-validated F1 and AUC scores for
both gene function prediction (data set of slim GO
terms) and prediction of pharmacologic actions. The
accuracy of DFMF is at least comparable to MKL and
substantially higher than that of early integration by ran-
dom forests and relational learning by tri-SPMF. When
more genes and hence more data were considered for
the gene function prediction the performance of all four
fusion approaches improved.

Poorer performance of tri-SPMF was most probably due
to required introduction of relations into factorized system
that were not present in the input data. Consequently, the
ability of tri-SPMF to infer relations of interest between
other object types deteriorated considerably. Notice also
that tri-SPMF could not be applied if fusion schemes in
Figs. 2 or 3 would contain asymmetric or one-way relations,
such as those from the analysis of signed networks [67] and
computational biology [68], among others. We also
observed numerical instability with tri-SPMF, which was
exhibited as an increase in the value of objective function
between successive iterations. In contrast, DFMF exhibited
numerical stability in all experiments (results not shown).

The accuracy for nine GO terms selected by domain
expert is given in Table 2. The DFMF performs consistently
better than the other three approaches. Again, the early
integration by random forests is inferior to all three interme-
diate integration methods. Notice that, with only a few
exceptions, both F1 and AUC scores of DFMF are high. This
is important, as all nine gene processes and functions
observed are relevant for current research of D. discoideum
where the methods for data fusion can yield new candidate
genes for focused experimental studies.

Our fusion approach is faster than multiple kernel learn-
ing. DFMF required 18 minutes of runtime on a standard
desktop computer compared to 77 minutes for MKL to fin-
ish one iteration of cross-validation of the whole-genome
variant of gene function prediction task. The factorization
algorithm of DFMF also took less time to execute than tri-
SPMF due to redundant representation of fusion system
required by tri-SPMF.

TABLE 1
Cross-Validated F1 and AUC Accuracy Scores for Fusion by Matrix Factorization (DFMF), Kernel-Based Method (MKL),

Random Forests (RF) and Relational Learning-Based Matrix Factorization (tri-SPMF)

Prediction task DFMF MKL RF tri-SPMF

F1 AUC F1 AUC F1 AUC F1 AUC

100 D. discoideum genes 0.799 0.801 0.781 0.788 0.761 0.785 0.731 0.724
1000 D. discoideum genes 0.826 0.823 0.787 0.798 0.767 0.788 0.756 0.741
Whole D. discoideum genome 0.831 0.849 0.800 0.821 0.782 0.801 0.778 0.787
Pharmacologic actions 0.663 0.834 0.639 0.811 0.643 0.819 0.641 0.810

!ZITNIK AND ZUPAN: DATA FUSION BY MATRIX FACTORIZATION 49

Gene

PMID

R14

Experimental
   ConditionR13

1

GO Term
R12

KEGG
Pathway

R16

2

MeSH
Descriptor

R45

R42

5

6
R62

1

2

3

4 5

6

Chemical

Θ1

Pharmacologic
Action

R12

PMIDR13

Depositor

R14

Substructure
Fingerprint

R15
Depositor
Category

R46

1

2

3

4

5

6

Žitnik & Zupan IEEE TPAMI 2015



Marinka Zitnik - PhD Thesis

#2: Functional Genomics

chemical substances (type 4) and their categorization
(type 6), and PubChem substructure fingerprints (type 5).

The data included 1;260 chemicals extracted from the
complete DrugBank [66] database (accessed in Feb. 2014)
that were identified with at least one pharmacologic action
in the PubChem Compound database. In that way, every
chemical (drug) was assigned one or more MeSH headings
that described its pharmacologic actions and corresponded
to D27.505 tree of the 2014 MeSH Tree Structure (target rela-
tion R12). For example, established pharmacologic actions
for Aspirin include “Anti-Inflammatory Agents, Non-
Steroidal”, “Fibrinolytic Agents” and “Antipyretics.” To
increase the number of chemicals assigned to a particular
pharmacologic action, the actions of the chemical also
included those from its direct parents in the D27.505 tree.

Other data considered were publications from the
PubMed database (R13), data on depositors who submitted
substances of the chemicals present in PubChem Com-
pound records (R14), categories of data depositors (R46) and
PubChem substructure fingerprints (R15). These finger-
prints consist of a series of 881 binary indicators, each
denoting the presence or absence of a particular substruc-
ture in a molecule. Collectively, these binary keys provide a
“fingerprint” of a particular chemical structure form. Chem-
icals are constrained by a matrix of substructure-based Tani-
moto 2D similarity (Q1) obtained through PubChem Score
Matrix Service.

4.2.2 Preprocessing for Alternative Learning Methods

For the kernel-based fusion, we generated the kernel matri-
ces for chemicals from R13, R14, R15 andQ1 (Fig. 3) using the
polynomial kernel of degree 2. We included data on deposi-
tors (R46) by applying a polynomial kernel to R14R46: The
resulting kernel matrices were centered and normalized,
and the kernel parameters were selected in internal cross-
validation (see Section 4.1.2 for details). Preprocessing for
early integration by random forests and tri-SPMF learning
followed the same procedures as described in Sections 4.1.3
and 4.1.4, respectively. The prediction task was defined by
the associations of chemicals to pharmacologic actions given
by R12 (Fig. 3).

4.3 Scoring
We estimated the quality of inferred models by ten-fold
cross-validation. In each iteration, we split the set of genes
(chemicals) to a train and test set. The corresponding data
on genes (chemicals) from the test set was entirely omitted
from the training data. We developed prediction models

from the training data and tested them on the genes (chemi-
cals) from the test set. The performance was evaluated using
an F1 score, a harmonic mean of precision and recall, and
area under ROC curve (AUC). Both scores were averaged
across cross-validation runs.

5 RESULTS AND DISCUSSION

5.1 Predictive Performance
Table 1 presents the cross-validated F1 and AUC scores for
both gene function prediction (data set of slim GO
terms) and prediction of pharmacologic actions. The
accuracy of DFMF is at least comparable to MKL and
substantially higher than that of early integration by ran-
dom forests and relational learning by tri-SPMF. When
more genes and hence more data were considered for
the gene function prediction the performance of all four
fusion approaches improved.

Poorer performance of tri-SPMF was most probably due
to required introduction of relations into factorized system
that were not present in the input data. Consequently, the
ability of tri-SPMF to infer relations of interest between
other object types deteriorated considerably. Notice also
that tri-SPMF could not be applied if fusion schemes in
Figs. 2 or 3 would contain asymmetric or one-way relations,
such as those from the analysis of signed networks [67] and
computational biology [68], among others. We also
observed numerical instability with tri-SPMF, which was
exhibited as an increase in the value of objective function
between successive iterations. In contrast, DFMF exhibited
numerical stability in all experiments (results not shown).

The accuracy for nine GO terms selected by domain
expert is given in Table 2. The DFMF performs consistently
better than the other three approaches. Again, the early
integration by random forests is inferior to all three interme-
diate integration methods. Notice that, with only a few
exceptions, both F1 and AUC scores of DFMF are high. This
is important, as all nine gene processes and functions
observed are relevant for current research of D. discoideum
where the methods for data fusion can yield new candidate
genes for focused experimental studies.

Our fusion approach is faster than multiple kernel learn-
ing. DFMF required 18 minutes of runtime on a standard
desktop computer compared to 77 minutes for MKL to fin-
ish one iteration of cross-validation of the whole-genome
variant of gene function prediction task. The factorization
algorithm of DFMF also took less time to execute than tri-
SPMF due to redundant representation of fusion system
required by tri-SPMF.

TABLE 1
Cross-Validated F1 and AUC Accuracy Scores for Fusion by Matrix Factorization (DFMF), Kernel-Based Method (MKL),

Random Forests (RF) and Relational Learning-Based Matrix Factorization (tri-SPMF)

Prediction task DFMF MKL RF tri-SPMF

F1 AUC F1 AUC F1 AUC F1 AUC

100 D. discoideum genes 0.799 0.801 0.781 0.788 0.761 0.785 0.731 0.724
1000 D. discoideum genes 0.826 0.823 0.787 0.798 0.767 0.788 0.756 0.741
Whole D. discoideum genome 0.831 0.849 0.800 0.821 0.782 0.801 0.778 0.787
Pharmacologic actions 0.663 0.834 0.639 0.811 0.643 0.819 0.641 0.810
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chemical substances (type 4) and their categorization
(type 6), and PubChem substructure fingerprints (type 5).

The data included 1;260 chemicals extracted from the
complete DrugBank [66] database (accessed in Feb. 2014)
that were identified with at least one pharmacologic action
in the PubChem Compound database. In that way, every
chemical (drug) was assigned one or more MeSH headings
that described its pharmacologic actions and corresponded
to D27.505 tree of the 2014 MeSH Tree Structure (target rela-
tion R12). For example, established pharmacologic actions
for Aspirin include “Anti-Inflammatory Agents, Non-
Steroidal”, “Fibrinolytic Agents” and “Antipyretics.” To
increase the number of chemicals assigned to a particular
pharmacologic action, the actions of the chemical also
included those from its direct parents in the D27.505 tree.

Other data considered were publications from the
PubMed database (R13), data on depositors who submitted
substances of the chemicals present in PubChem Com-
pound records (R14), categories of data depositors (R46) and
PubChem substructure fingerprints (R15). These finger-
prints consist of a series of 881 binary indicators, each
denoting the presence or absence of a particular substruc-
ture in a molecule. Collectively, these binary keys provide a
“fingerprint” of a particular chemical structure form. Chem-
icals are constrained by a matrix of substructure-based Tani-
moto 2D similarity (Q1) obtained through PubChem Score
Matrix Service.

4.2.2 Preprocessing for Alternative Learning Methods

For the kernel-based fusion, we generated the kernel matri-
ces for chemicals from R13, R14, R15 andQ1 (Fig. 3) using the
polynomial kernel of degree 2. We included data on deposi-
tors (R46) by applying a polynomial kernel to R14R46: The
resulting kernel matrices were centered and normalized,
and the kernel parameters were selected in internal cross-
validation (see Section 4.1.2 for details). Preprocessing for
early integration by random forests and tri-SPMF learning
followed the same procedures as described in Sections 4.1.3
and 4.1.4, respectively. The prediction task was defined by
the associations of chemicals to pharmacologic actions given
by R12 (Fig. 3).

4.3 Scoring
We estimated the quality of inferred models by ten-fold
cross-validation. In each iteration, we split the set of genes
(chemicals) to a train and test set. The corresponding data
on genes (chemicals) from the test set was entirely omitted
from the training data. We developed prediction models

from the training data and tested them on the genes (chemi-
cals) from the test set. The performance was evaluated using
an F1 score, a harmonic mean of precision and recall, and
area under ROC curve (AUC). Both scores were averaged
across cross-validation runs.

5 RESULTS AND DISCUSSION

5.1 Predictive Performance
Table 1 presents the cross-validated F1 and AUC scores for
both gene function prediction (data set of slim GO
terms) and prediction of pharmacologic actions. The
accuracy of DFMF is at least comparable to MKL and
substantially higher than that of early integration by ran-
dom forests and relational learning by tri-SPMF. When
more genes and hence more data were considered for
the gene function prediction the performance of all four
fusion approaches improved.

Poorer performance of tri-SPMF was most probably due
to required introduction of relations into factorized system
that were not present in the input data. Consequently, the
ability of tri-SPMF to infer relations of interest between
other object types deteriorated considerably. Notice also
that tri-SPMF could not be applied if fusion schemes in
Figs. 2 or 3 would contain asymmetric or one-way relations,
such as those from the analysis of signed networks [67] and
computational biology [68], among others. We also
observed numerical instability with tri-SPMF, which was
exhibited as an increase in the value of objective function
between successive iterations. In contrast, DFMF exhibited
numerical stability in all experiments (results not shown).

The accuracy for nine GO terms selected by domain
expert is given in Table 2. The DFMF performs consistently
better than the other three approaches. Again, the early
integration by random forests is inferior to all three interme-
diate integration methods. Notice that, with only a few
exceptions, both F1 and AUC scores of DFMF are high. This
is important, as all nine gene processes and functions
observed are relevant for current research of D. discoideum
where the methods for data fusion can yield new candidate
genes for focused experimental studies.

Our fusion approach is faster than multiple kernel learn-
ing. DFMF required 18 minutes of runtime on a standard
desktop computer compared to 77 minutes for MKL to fin-
ish one iteration of cross-validation of the whole-genome
variant of gene function prediction task. The factorization
algorithm of DFMF also took less time to execute than tri-
SPMF due to redundant representation of fusion system
required by tri-SPMF.

TABLE 1
Cross-Validated F1 and AUC Accuracy Scores for Fusion by Matrix Factorization (DFMF), Kernel-Based Method (MKL),

Random Forests (RF) and Relational Learning-Based Matrix Factorization (tri-SPMF)

Prediction task DFMF MKL RF tri-SPMF

F1 AUC F1 AUC F1 AUC F1 AUC

100 D. discoideum genes 0.799 0.801 0.781 0.788 0.761 0.785 0.731 0.724
1000 D. discoideum genes 0.826 0.823 0.787 0.798 0.767 0.788 0.756 0.741
Whole D. discoideum genome 0.831 0.849 0.800 0.821 0.782 0.801 0.778 0.787
Pharmacologic actions 0.663 0.834 0.639 0.811 0.643 0.819 0.641 0.810
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chemical substances (type 4) and their categorization
(type 6), and PubChem substructure fingerprints (type 5).

The data included 1;260 chemicals extracted from the
complete DrugBank [66] database (accessed in Feb. 2014)
that were identified with at least one pharmacologic action
in the PubChem Compound database. In that way, every
chemical (drug) was assigned one or more MeSH headings
that described its pharmacologic actions and corresponded
to D27.505 tree of the 2014 MeSH Tree Structure (target rela-
tion R12). For example, established pharmacologic actions
for Aspirin include “Anti-Inflammatory Agents, Non-
Steroidal”, “Fibrinolytic Agents” and “Antipyretics.” To
increase the number of chemicals assigned to a particular
pharmacologic action, the actions of the chemical also
included those from its direct parents in the D27.505 tree.

Other data considered were publications from the
PubMed database (R13), data on depositors who submitted
substances of the chemicals present in PubChem Com-
pound records (R14), categories of data depositors (R46) and
PubChem substructure fingerprints (R15). These finger-
prints consist of a series of 881 binary indicators, each
denoting the presence or absence of a particular substruc-
ture in a molecule. Collectively, these binary keys provide a
“fingerprint” of a particular chemical structure form. Chem-
icals are constrained by a matrix of substructure-based Tani-
moto 2D similarity (Q1) obtained through PubChem Score
Matrix Service.

4.2.2 Preprocessing for Alternative Learning Methods

For the kernel-based fusion, we generated the kernel matri-
ces for chemicals from R13, R14, R15 andQ1 (Fig. 3) using the
polynomial kernel of degree 2. We included data on deposi-
tors (R46) by applying a polynomial kernel to R14R46: The
resulting kernel matrices were centered and normalized,
and the kernel parameters were selected in internal cross-
validation (see Section 4.1.2 for details). Preprocessing for
early integration by random forests and tri-SPMF learning
followed the same procedures as described in Sections 4.1.3
and 4.1.4, respectively. The prediction task was defined by
the associations of chemicals to pharmacologic actions given
by R12 (Fig. 3).

4.3 Scoring
We estimated the quality of inferred models by ten-fold
cross-validation. In each iteration, we split the set of genes
(chemicals) to a train and test set. The corresponding data
on genes (chemicals) from the test set was entirely omitted
from the training data. We developed prediction models

from the training data and tested them on the genes (chemi-
cals) from the test set. The performance was evaluated using
an F1 score, a harmonic mean of precision and recall, and
area under ROC curve (AUC). Both scores were averaged
across cross-validation runs.

5 RESULTS AND DISCUSSION

5.1 Predictive Performance
Table 1 presents the cross-validated F1 and AUC scores for
both gene function prediction (data set of slim GO
terms) and prediction of pharmacologic actions. The
accuracy of DFMF is at least comparable to MKL and
substantially higher than that of early integration by ran-
dom forests and relational learning by tri-SPMF. When
more genes and hence more data were considered for
the gene function prediction the performance of all four
fusion approaches improved.

Poorer performance of tri-SPMF was most probably due
to required introduction of relations into factorized system
that were not present in the input data. Consequently, the
ability of tri-SPMF to infer relations of interest between
other object types deteriorated considerably. Notice also
that tri-SPMF could not be applied if fusion schemes in
Figs. 2 or 3 would contain asymmetric or one-way relations,
such as those from the analysis of signed networks [67] and
computational biology [68], among others. We also
observed numerical instability with tri-SPMF, which was
exhibited as an increase in the value of objective function
between successive iterations. In contrast, DFMF exhibited
numerical stability in all experiments (results not shown).

The accuracy for nine GO terms selected by domain
expert is given in Table 2. The DFMF performs consistently
better than the other three approaches. Again, the early
integration by random forests is inferior to all three interme-
diate integration methods. Notice that, with only a few
exceptions, both F1 and AUC scores of DFMF are high. This
is important, as all nine gene processes and functions
observed are relevant for current research of D. discoideum
where the methods for data fusion can yield new candidate
genes for focused experimental studies.

Our fusion approach is faster than multiple kernel learn-
ing. DFMF required 18 minutes of runtime on a standard
desktop computer compared to 77 minutes for MKL to fin-
ish one iteration of cross-validation of the whole-genome
variant of gene function prediction task. The factorization
algorithm of DFMF also took less time to execute than tri-
SPMF due to redundant representation of fusion system
required by tri-SPMF.

TABLE 1
Cross-Validated F1 and AUC Accuracy Scores for Fusion by Matrix Factorization (DFMF), Kernel-Based Method (MKL),

Random Forests (RF) and Relational Learning-Based Matrix Factorization (tri-SPMF)

Prediction task DFMF MKL RF tri-SPMF

F1 AUC F1 AUC F1 AUC F1 AUC

100 D. discoideum genes 0.799 0.801 0.781 0.788 0.761 0.785 0.731 0.724
1000 D. discoideum genes 0.826 0.823 0.787 0.798 0.767 0.788 0.756 0.741
Whole D. discoideum genome 0.831 0.849 0.800 0.821 0.782 0.801 0.778 0.787
Pharmacologic actions 0.663 0.834 0.639 0.811 0.643 0.819 0.641 0.810
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chemical substances (type 4) and their categorization
(type 6), and PubChem substructure fingerprints (type 5).

The data included 1;260 chemicals extracted from the
complete DrugBank [66] database (accessed in Feb. 2014)
that were identified with at least one pharmacologic action
in the PubChem Compound database. In that way, every
chemical (drug) was assigned one or more MeSH headings
that described its pharmacologic actions and corresponded
to D27.505 tree of the 2014 MeSH Tree Structure (target rela-
tion R12). For example, established pharmacologic actions
for Aspirin include “Anti-Inflammatory Agents, Non-
Steroidal”, “Fibrinolytic Agents” and “Antipyretics.” To
increase the number of chemicals assigned to a particular
pharmacologic action, the actions of the chemical also
included those from its direct parents in the D27.505 tree.

Other data considered were publications from the
PubMed database (R13), data on depositors who submitted
substances of the chemicals present in PubChem Com-
pound records (R14), categories of data depositors (R46) and
PubChem substructure fingerprints (R15). These finger-
prints consist of a series of 881 binary indicators, each
denoting the presence or absence of a particular substruc-
ture in a molecule. Collectively, these binary keys provide a
“fingerprint” of a particular chemical structure form. Chem-
icals are constrained by a matrix of substructure-based Tani-
moto 2D similarity (Q1) obtained through PubChem Score
Matrix Service.

4.2.2 Preprocessing for Alternative Learning Methods

For the kernel-based fusion, we generated the kernel matri-
ces for chemicals from R13, R14, R15 andQ1 (Fig. 3) using the
polynomial kernel of degree 2. We included data on deposi-
tors (R46) by applying a polynomial kernel to R14R46: The
resulting kernel matrices were centered and normalized,
and the kernel parameters were selected in internal cross-
validation (see Section 4.1.2 for details). Preprocessing for
early integration by random forests and tri-SPMF learning
followed the same procedures as described in Sections 4.1.3
and 4.1.4, respectively. The prediction task was defined by
the associations of chemicals to pharmacologic actions given
by R12 (Fig. 3).

4.3 Scoring
We estimated the quality of inferred models by ten-fold
cross-validation. In each iteration, we split the set of genes
(chemicals) to a train and test set. The corresponding data
on genes (chemicals) from the test set was entirely omitted
from the training data. We developed prediction models

from the training data and tested them on the genes (chemi-
cals) from the test set. The performance was evaluated using
an F1 score, a harmonic mean of precision and recall, and
area under ROC curve (AUC). Both scores were averaged
across cross-validation runs.

5 RESULTS AND DISCUSSION

5.1 Predictive Performance
Table 1 presents the cross-validated F1 and AUC scores for
both gene function prediction (data set of slim GO
terms) and prediction of pharmacologic actions. The
accuracy of DFMF is at least comparable to MKL and
substantially higher than that of early integration by ran-
dom forests and relational learning by tri-SPMF. When
more genes and hence more data were considered for
the gene function prediction the performance of all four
fusion approaches improved.

Poorer performance of tri-SPMF was most probably due
to required introduction of relations into factorized system
that were not present in the input data. Consequently, the
ability of tri-SPMF to infer relations of interest between
other object types deteriorated considerably. Notice also
that tri-SPMF could not be applied if fusion schemes in
Figs. 2 or 3 would contain asymmetric or one-way relations,
such as those from the analysis of signed networks [67] and
computational biology [68], among others. We also
observed numerical instability with tri-SPMF, which was
exhibited as an increase in the value of objective function
between successive iterations. In contrast, DFMF exhibited
numerical stability in all experiments (results not shown).

The accuracy for nine GO terms selected by domain
expert is given in Table 2. The DFMF performs consistently
better than the other three approaches. Again, the early
integration by random forests is inferior to all three interme-
diate integration methods. Notice that, with only a few
exceptions, both F1 and AUC scores of DFMF are high. This
is important, as all nine gene processes and functions
observed are relevant for current research of D. discoideum
where the methods for data fusion can yield new candidate
genes for focused experimental studies.

Our fusion approach is faster than multiple kernel learn-
ing. DFMF required 18 minutes of runtime on a standard
desktop computer compared to 77 minutes for MKL to fin-
ish one iteration of cross-validation of the whole-genome
variant of gene function prediction task. The factorization
algorithm of DFMF also took less time to execute than tri-
SPMF due to redundant representation of fusion system
required by tri-SPMF.
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The data included 1;260 chemicals extracted from the
complete DrugBank [66] database (accessed in Feb. 2014)
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in the PubChem Compound database. In that way, every
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that described its pharmacologic actions and corresponded
to D27.505 tree of the 2014 MeSH Tree Structure (target rela-
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for Aspirin include “Anti-Inflammatory Agents, Non-
Steroidal”, “Fibrinolytic Agents” and “Antipyretics.” To
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included those from its direct parents in the D27.505 tree.
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icals are constrained by a matrix of substructure-based Tani-
moto 2D similarity (Q1) obtained through PubChem Score
Matrix Service.

4.2.2 Preprocessing for Alternative Learning Methods

For the kernel-based fusion, we generated the kernel matri-
ces for chemicals from R13, R14, R15 andQ1 (Fig. 3) using the
polynomial kernel of degree 2. We included data on deposi-
tors (R46) by applying a polynomial kernel to R14R46: The
resulting kernel matrices were centered and normalized,
and the kernel parameters were selected in internal cross-
validation (see Section 4.1.2 for details). Preprocessing for
early integration by random forests and tri-SPMF learning
followed the same procedures as described in Sections 4.1.3
and 4.1.4, respectively. The prediction task was defined by
the associations of chemicals to pharmacologic actions given
by R12 (Fig. 3).

4.3 Scoring
We estimated the quality of inferred models by ten-fold
cross-validation. In each iteration, we split the set of genes
(chemicals) to a train and test set. The corresponding data
on genes (chemicals) from the test set was entirely omitted
from the training data. We developed prediction models

from the training data and tested them on the genes (chemi-
cals) from the test set. The performance was evaluated using
an F1 score, a harmonic mean of precision and recall, and
area under ROC curve (AUC). Both scores were averaged
across cross-validation runs.
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Table 1 presents the cross-validated F1 and AUC scores for
both gene function prediction (data set of slim GO
terms) and prediction of pharmacologic actions. The
accuracy of DFMF is at least comparable to MKL and
substantially higher than that of early integration by ran-
dom forests and relational learning by tri-SPMF. When
more genes and hence more data were considered for
the gene function prediction the performance of all four
fusion approaches improved.

Poorer performance of tri-SPMF was most probably due
to required introduction of relations into factorized system
that were not present in the input data. Consequently, the
ability of tri-SPMF to infer relations of interest between
other object types deteriorated considerably. Notice also
that tri-SPMF could not be applied if fusion schemes in
Figs. 2 or 3 would contain asymmetric or one-way relations,
such as those from the analysis of signed networks [67] and
computational biology [68], among others. We also
observed numerical instability with tri-SPMF, which was
exhibited as an increase in the value of objective function
between successive iterations. In contrast, DFMF exhibited
numerical stability in all experiments (results not shown).

The accuracy for nine GO terms selected by domain
expert is given in Table 2. The DFMF performs consistently
better than the other three approaches. Again, the early
integration by random forests is inferior to all three interme-
diate integration methods. Notice that, with only a few
exceptions, both F1 and AUC scores of DFMF are high. This
is important, as all nine gene processes and functions
observed are relevant for current research of D. discoideum
where the methods for data fusion can yield new candidate
genes for focused experimental studies.

Our fusion approach is faster than multiple kernel learn-
ing. DFMF required 18 minutes of runtime on a standard
desktop computer compared to 77 minutes for MKL to fin-
ish one iteration of cross-validation of the whole-genome
variant of gene function prediction task. The factorization
algorithm of DFMF also took less time to execute than tri-
SPMF due to redundant representation of fusion system
required by tri-SPMF.
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chemical substances (type 4) and their categorization
(type 6), and PubChem substructure fingerprints (type 5).

The data included 1;260 chemicals extracted from the
complete DrugBank [66] database (accessed in Feb. 2014)
that were identified with at least one pharmacologic action
in the PubChem Compound database. In that way, every
chemical (drug) was assigned one or more MeSH headings
that described its pharmacologic actions and corresponded
to D27.505 tree of the 2014 MeSH Tree Structure (target rela-
tion R12). For example, established pharmacologic actions
for Aspirin include “Anti-Inflammatory Agents, Non-
Steroidal”, “Fibrinolytic Agents” and “Antipyretics.” To
increase the number of chemicals assigned to a particular
pharmacologic action, the actions of the chemical also
included those from its direct parents in the D27.505 tree.

Other data considered were publications from the
PubMed database (R13), data on depositors who submitted
substances of the chemicals present in PubChem Com-
pound records (R14), categories of data depositors (R46) and
PubChem substructure fingerprints (R15). These finger-
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denoting the presence or absence of a particular substruc-
ture in a molecule. Collectively, these binary keys provide a
“fingerprint” of a particular chemical structure form. Chem-
icals are constrained by a matrix of substructure-based Tani-
moto 2D similarity (Q1) obtained through PubChem Score
Matrix Service.

4.2.2 Preprocessing for Alternative Learning Methods

For the kernel-based fusion, we generated the kernel matri-
ces for chemicals from R13, R14, R15 andQ1 (Fig. 3) using the
polynomial kernel of degree 2. We included data on deposi-
tors (R46) by applying a polynomial kernel to R14R46: The
resulting kernel matrices were centered and normalized,
and the kernel parameters were selected in internal cross-
validation (see Section 4.1.2 for details). Preprocessing for
early integration by random forests and tri-SPMF learning
followed the same procedures as described in Sections 4.1.3
and 4.1.4, respectively. The prediction task was defined by
the associations of chemicals to pharmacologic actions given
by R12 (Fig. 3).

4.3 Scoring
We estimated the quality of inferred models by ten-fold
cross-validation. In each iteration, we split the set of genes
(chemicals) to a train and test set. The corresponding data
on genes (chemicals) from the test set was entirely omitted
from the training data. We developed prediction models

from the training data and tested them on the genes (chemi-
cals) from the test set. The performance was evaluated using
an F1 score, a harmonic mean of precision and recall, and
area under ROC curve (AUC). Both scores were averaged
across cross-validation runs.

5 RESULTS AND DISCUSSION

5.1 Predictive Performance
Table 1 presents the cross-validated F1 and AUC scores for
both gene function prediction (data set of slim GO
terms) and prediction of pharmacologic actions. The
accuracy of DFMF is at least comparable to MKL and
substantially higher than that of early integration by ran-
dom forests and relational learning by tri-SPMF. When
more genes and hence more data were considered for
the gene function prediction the performance of all four
fusion approaches improved.

Poorer performance of tri-SPMF was most probably due
to required introduction of relations into factorized system
that were not present in the input data. Consequently, the
ability of tri-SPMF to infer relations of interest between
other object types deteriorated considerably. Notice also
that tri-SPMF could not be applied if fusion schemes in
Figs. 2 or 3 would contain asymmetric or one-way relations,
such as those from the analysis of signed networks [67] and
computational biology [68], among others. We also
observed numerical instability with tri-SPMF, which was
exhibited as an increase in the value of objective function
between successive iterations. In contrast, DFMF exhibited
numerical stability in all experiments (results not shown).

The accuracy for nine GO terms selected by domain
expert is given in Table 2. The DFMF performs consistently
better than the other three approaches. Again, the early
integration by random forests is inferior to all three interme-
diate integration methods. Notice that, with only a few
exceptions, both F1 and AUC scores of DFMF are high. This
is important, as all nine gene processes and functions
observed are relevant for current research of D. discoideum
where the methods for data fusion can yield new candidate
genes for focused experimental studies.

Our fusion approach is faster than multiple kernel learn-
ing. DFMF required 18 minutes of runtime on a standard
desktop computer compared to 77 minutes for MKL to fin-
ish one iteration of cross-validation of the whole-genome
variant of gene function prediction task. The factorization
algorithm of DFMF also took less time to execute than tri-
SPMF due to redundant representation of fusion system
required by tri-SPMF.

TABLE 1
Cross-Validated F1 and AUC Accuracy Scores for Fusion by Matrix Factorization (DFMF), Kernel-Based Method (MKL),

Random Forests (RF) and Relational Learning-Based Matrix Factorization (tri-SPMF)

Prediction task DFMF MKL RF tri-SPMF
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chemical substances (type 4) and their categorization
(type 6), and PubChem substructure fingerprints (type 5).

The data included 1;260 chemicals extracted from the
complete DrugBank [66] database (accessed in Feb. 2014)
that were identified with at least one pharmacologic action
in the PubChem Compound database. In that way, every
chemical (drug) was assigned one or more MeSH headings
that described its pharmacologic actions and corresponded
to D27.505 tree of the 2014 MeSH Tree Structure (target rela-
tion R12). For example, established pharmacologic actions
for Aspirin include “Anti-Inflammatory Agents, Non-
Steroidal”, “Fibrinolytic Agents” and “Antipyretics.” To
increase the number of chemicals assigned to a particular
pharmacologic action, the actions of the chemical also
included those from its direct parents in the D27.505 tree.

Other data considered were publications from the
PubMed database (R13), data on depositors who submitted
substances of the chemicals present in PubChem Com-
pound records (R14), categories of data depositors (R46) and
PubChem substructure fingerprints (R15). These finger-
prints consist of a series of 881 binary indicators, each
denoting the presence or absence of a particular substruc-
ture in a molecule. Collectively, these binary keys provide a
“fingerprint” of a particular chemical structure form. Chem-
icals are constrained by a matrix of substructure-based Tani-
moto 2D similarity (Q1) obtained through PubChem Score
Matrix Service.

4.2.2 Preprocessing for Alternative Learning Methods

For the kernel-based fusion, we generated the kernel matri-
ces for chemicals from R13, R14, R15 andQ1 (Fig. 3) using the
polynomial kernel of degree 2. We included data on deposi-
tors (R46) by applying a polynomial kernel to R14R46: The
resulting kernel matrices were centered and normalized,
and the kernel parameters were selected in internal cross-
validation (see Section 4.1.2 for details). Preprocessing for
early integration by random forests and tri-SPMF learning
followed the same procedures as described in Sections 4.1.3
and 4.1.4, respectively. The prediction task was defined by
the associations of chemicals to pharmacologic actions given
by R12 (Fig. 3).

4.3 Scoring
We estimated the quality of inferred models by ten-fold
cross-validation. In each iteration, we split the set of genes
(chemicals) to a train and test set. The corresponding data
on genes (chemicals) from the test set was entirely omitted
from the training data. We developed prediction models

from the training data and tested them on the genes (chemi-
cals) from the test set. The performance was evaluated using
an F1 score, a harmonic mean of precision and recall, and
area under ROC curve (AUC). Both scores were averaged
across cross-validation runs.

5 RESULTS AND DISCUSSION

5.1 Predictive Performance
Table 1 presents the cross-validated F1 and AUC scores for
both gene function prediction (data set of slim GO
terms) and prediction of pharmacologic actions. The
accuracy of DFMF is at least comparable to MKL and
substantially higher than that of early integration by ran-
dom forests and relational learning by tri-SPMF. When
more genes and hence more data were considered for
the gene function prediction the performance of all four
fusion approaches improved.

Poorer performance of tri-SPMF was most probably due
to required introduction of relations into factorized system
that were not present in the input data. Consequently, the
ability of tri-SPMF to infer relations of interest between
other object types deteriorated considerably. Notice also
that tri-SPMF could not be applied if fusion schemes in
Figs. 2 or 3 would contain asymmetric or one-way relations,
such as those from the analysis of signed networks [67] and
computational biology [68], among others. We also
observed numerical instability with tri-SPMF, which was
exhibited as an increase in the value of objective function
between successive iterations. In contrast, DFMF exhibited
numerical stability in all experiments (results not shown).

The accuracy for nine GO terms selected by domain
expert is given in Table 2. The DFMF performs consistently
better than the other three approaches. Again, the early
integration by random forests is inferior to all three interme-
diate integration methods. Notice that, with only a few
exceptions, both F1 and AUC scores of DFMF are high. This
is important, as all nine gene processes and functions
observed are relevant for current research of D. discoideum
where the methods for data fusion can yield new candidate
genes for focused experimental studies.

Our fusion approach is faster than multiple kernel learn-
ing. DFMF required 18 minutes of runtime on a standard
desktop computer compared to 77 minutes for MKL to fin-
ish one iteration of cross-validation of the whole-genome
variant of gene function prediction task. The factorization
algorithm of DFMF also took less time to execute than tri-
SPMF due to redundant representation of fusion system
required by tri-SPMF.

TABLE 1
Cross-Validated F1 and AUC Accuracy Scores for Fusion by Matrix Factorization (DFMF), Kernel-Based Method (MKL),

Random Forests (RF) and Relational Learning-Based Matrix Factorization (tri-SPMF)

Prediction task DFMF MKL RF tri-SPMF

F1 AUC F1 AUC F1 AUC F1 AUC

100 D. discoideum genes 0.799 0.801 0.781 0.788 0.761 0.785 0.731 0.724
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chemical substances (type 4) and their categorization
(type 6), and PubChem substructure fingerprints (type 5).

The data included 1;260 chemicals extracted from the
complete DrugBank [66] database (accessed in Feb. 2014)
that were identified with at least one pharmacologic action
in the PubChem Compound database. In that way, every
chemical (drug) was assigned one or more MeSH headings
that described its pharmacologic actions and corresponded
to D27.505 tree of the 2014 MeSH Tree Structure (target rela-
tion R12). For example, established pharmacologic actions
for Aspirin include “Anti-Inflammatory Agents, Non-
Steroidal”, “Fibrinolytic Agents” and “Antipyretics.” To
increase the number of chemicals assigned to a particular
pharmacologic action, the actions of the chemical also
included those from its direct parents in the D27.505 tree.

Other data considered were publications from the
PubMed database (R13), data on depositors who submitted
substances of the chemicals present in PubChem Com-
pound records (R14), categories of data depositors (R46) and
PubChem substructure fingerprints (R15). These finger-
prints consist of a series of 881 binary indicators, each
denoting the presence or absence of a particular substruc-
ture in a molecule. Collectively, these binary keys provide a
“fingerprint” of a particular chemical structure form. Chem-
icals are constrained by a matrix of substructure-based Tani-
moto 2D similarity (Q1) obtained through PubChem Score
Matrix Service.

4.2.2 Preprocessing for Alternative Learning Methods

For the kernel-based fusion, we generated the kernel matri-
ces for chemicals from R13, R14, R15 andQ1 (Fig. 3) using the
polynomial kernel of degree 2. We included data on deposi-
tors (R46) by applying a polynomial kernel to R14R46: The
resulting kernel matrices were centered and normalized,
and the kernel parameters were selected in internal cross-
validation (see Section 4.1.2 for details). Preprocessing for
early integration by random forests and tri-SPMF learning
followed the same procedures as described in Sections 4.1.3
and 4.1.4, respectively. The prediction task was defined by
the associations of chemicals to pharmacologic actions given
by R12 (Fig. 3).

4.3 Scoring
We estimated the quality of inferred models by ten-fold
cross-validation. In each iteration, we split the set of genes
(chemicals) to a train and test set. The corresponding data
on genes (chemicals) from the test set was entirely omitted
from the training data. We developed prediction models

from the training data and tested them on the genes (chemi-
cals) from the test set. The performance was evaluated using
an F1 score, a harmonic mean of precision and recall, and
area under ROC curve (AUC). Both scores were averaged
across cross-validation runs.

5 RESULTS AND DISCUSSION

5.1 Predictive Performance
Table 1 presents the cross-validated F1 and AUC scores for
both gene function prediction (data set of slim GO
terms) and prediction of pharmacologic actions. The
accuracy of DFMF is at least comparable to MKL and
substantially higher than that of early integration by ran-
dom forests and relational learning by tri-SPMF. When
more genes and hence more data were considered for
the gene function prediction the performance of all four
fusion approaches improved.

Poorer performance of tri-SPMF was most probably due
to required introduction of relations into factorized system
that were not present in the input data. Consequently, the
ability of tri-SPMF to infer relations of interest between
other object types deteriorated considerably. Notice also
that tri-SPMF could not be applied if fusion schemes in
Figs. 2 or 3 would contain asymmetric or one-way relations,
such as those from the analysis of signed networks [67] and
computational biology [68], among others. We also
observed numerical instability with tri-SPMF, which was
exhibited as an increase in the value of objective function
between successive iterations. In contrast, DFMF exhibited
numerical stability in all experiments (results not shown).

The accuracy for nine GO terms selected by domain
expert is given in Table 2. The DFMF performs consistently
better than the other three approaches. Again, the early
integration by random forests is inferior to all three interme-
diate integration methods. Notice that, with only a few
exceptions, both F1 and AUC scores of DFMF are high. This
is important, as all nine gene processes and functions
observed are relevant for current research of D. discoideum
where the methods for data fusion can yield new candidate
genes for focused experimental studies.

Our fusion approach is faster than multiple kernel learn-
ing. DFMF required 18 minutes of runtime on a standard
desktop computer compared to 77 minutes for MKL to fin-
ish one iteration of cross-validation of the whole-genome
variant of gene function prediction task. The factorization
algorithm of DFMF also took less time to execute than tri-
SPMF due to redundant representation of fusion system
required by tri-SPMF.
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that were identified with at least one pharmacologic action
in the PubChem Compound database. In that way, every
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that described its pharmacologic actions and corresponded
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Matrix Service.
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ces for chemicals from R13, R14, R15 andQ1 (Fig. 3) using the
polynomial kernel of degree 2. We included data on deposi-
tors (R46) by applying a polynomial kernel to R14R46: The
resulting kernel matrices were centered and normalized,
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early integration by random forests and tri-SPMF learning
followed the same procedures as described in Sections 4.1.3
and 4.1.4, respectively. The prediction task was defined by
the associations of chemicals to pharmacologic actions given
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We estimated the quality of inferred models by ten-fold
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on genes (chemicals) from the test set was entirely omitted
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substantially higher than that of early integration by ran-
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fusion approaches improved.

Poorer performance of tri-SPMF was most probably due
to required introduction of relations into factorized system
that were not present in the input data. Consequently, the
ability of tri-SPMF to infer relations of interest between
other object types deteriorated considerably. Notice also
that tri-SPMF could not be applied if fusion schemes in
Figs. 2 or 3 would contain asymmetric or one-way relations,
such as those from the analysis of signed networks [67] and
computational biology [68], among others. We also
observed numerical instability with tri-SPMF, which was
exhibited as an increase in the value of objective function
between successive iterations. In contrast, DFMF exhibited
numerical stability in all experiments (results not shown).

The accuracy for nine GO terms selected by domain
expert is given in Table 2. The DFMF performs consistently
better than the other three approaches. Again, the early
integration by random forests is inferior to all three interme-
diate integration methods. Notice that, with only a few
exceptions, both F1 and AUC scores of DFMF are high. This
is important, as all nine gene processes and functions
observed are relevant for current research of D. discoideum
where the methods for data fusion can yield new candidate
genes for focused experimental studies.

Our fusion approach is faster than multiple kernel learn-
ing. DFMF required 18 minutes of runtime on a standard
desktop computer compared to 77 minutes for MKL to fin-
ish one iteration of cross-validation of the whole-genome
variant of gene function prediction task. The factorization
algorithm of DFMF also took less time to execute than tri-
SPMF due to redundant representation of fusion system
required by tri-SPMF.

TABLE 1
Cross-Validated F1 and AUC Accuracy Scores for Fusion by Matrix Factorization (DFMF), Kernel-Based Method (MKL),

Random Forests (RF) and Relational Learning-Based Matrix Factorization (tri-SPMF)

Prediction task DFMF MKL RF tri-SPMF

F1 AUC F1 AUC F1 AUC F1 AUC

100 D. discoideum genes 0.799 0.801 0.781 0.788 0.761 0.785 0.731 0.724
1000 D. discoideum genes 0.826 0.823 0.787 0.798 0.767 0.788 0.756 0.741
Whole D. discoideum genome 0.831 0.849 0.800 0.821 0.782 0.801 0.778 0.787
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chemical substances (type 4) and their categorization
(type 6), and PubChem substructure fingerprints (type 5).

The data included 1;260 chemicals extracted from the
complete DrugBank [66] database (accessed in Feb. 2014)
that were identified with at least one pharmacologic action
in the PubChem Compound database. In that way, every
chemical (drug) was assigned one or more MeSH headings
that described its pharmacologic actions and corresponded
to D27.505 tree of the 2014 MeSH Tree Structure (target rela-
tion R12). For example, established pharmacologic actions
for Aspirin include “Anti-Inflammatory Agents, Non-
Steroidal”, “Fibrinolytic Agents” and “Antipyretics.” To
increase the number of chemicals assigned to a particular
pharmacologic action, the actions of the chemical also
included those from its direct parents in the D27.505 tree.

Other data considered were publications from the
PubMed database (R13), data on depositors who submitted
substances of the chemicals present in PubChem Com-
pound records (R14), categories of data depositors (R46) and
PubChem substructure fingerprints (R15). These finger-
prints consist of a series of 881 binary indicators, each
denoting the presence or absence of a particular substruc-
ture in a molecule. Collectively, these binary keys provide a
“fingerprint” of a particular chemical structure form. Chem-
icals are constrained by a matrix of substructure-based Tani-
moto 2D similarity (Q1) obtained through PubChem Score
Matrix Service.

4.2.2 Preprocessing for Alternative Learning Methods

For the kernel-based fusion, we generated the kernel matri-
ces for chemicals from R13, R14, R15 andQ1 (Fig. 3) using the
polynomial kernel of degree 2. We included data on deposi-
tors (R46) by applying a polynomial kernel to R14R46: The
resulting kernel matrices were centered and normalized,
and the kernel parameters were selected in internal cross-
validation (see Section 4.1.2 for details). Preprocessing for
early integration by random forests and tri-SPMF learning
followed the same procedures as described in Sections 4.1.3
and 4.1.4, respectively. The prediction task was defined by
the associations of chemicals to pharmacologic actions given
by R12 (Fig. 3).

4.3 Scoring
We estimated the quality of inferred models by ten-fold
cross-validation. In each iteration, we split the set of genes
(chemicals) to a train and test set. The corresponding data
on genes (chemicals) from the test set was entirely omitted
from the training data. We developed prediction models

from the training data and tested them on the genes (chemi-
cals) from the test set. The performance was evaluated using
an F1 score, a harmonic mean of precision and recall, and
area under ROC curve (AUC). Both scores were averaged
across cross-validation runs.

5 RESULTS AND DISCUSSION

5.1 Predictive Performance
Table 1 presents the cross-validated F1 and AUC scores for
both gene function prediction (data set of slim GO
terms) and prediction of pharmacologic actions. The
accuracy of DFMF is at least comparable to MKL and
substantially higher than that of early integration by ran-
dom forests and relational learning by tri-SPMF. When
more genes and hence more data were considered for
the gene function prediction the performance of all four
fusion approaches improved.

Poorer performance of tri-SPMF was most probably due
to required introduction of relations into factorized system
that were not present in the input data. Consequently, the
ability of tri-SPMF to infer relations of interest between
other object types deteriorated considerably. Notice also
that tri-SPMF could not be applied if fusion schemes in
Figs. 2 or 3 would contain asymmetric or one-way relations,
such as those from the analysis of signed networks [67] and
computational biology [68], among others. We also
observed numerical instability with tri-SPMF, which was
exhibited as an increase in the value of objective function
between successive iterations. In contrast, DFMF exhibited
numerical stability in all experiments (results not shown).

The accuracy for nine GO terms selected by domain
expert is given in Table 2. The DFMF performs consistently
better than the other three approaches. Again, the early
integration by random forests is inferior to all three interme-
diate integration methods. Notice that, with only a few
exceptions, both F1 and AUC scores of DFMF are high. This
is important, as all nine gene processes and functions
observed are relevant for current research of D. discoideum
where the methods for data fusion can yield new candidate
genes for focused experimental studies.

Our fusion approach is faster than multiple kernel learn-
ing. DFMF required 18 minutes of runtime on a standard
desktop computer compared to 77 minutes for MKL to fin-
ish one iteration of cross-validation of the whole-genome
variant of gene function prediction task. The factorization
algorithm of DFMF also took less time to execute than tri-
SPMF due to redundant representation of fusion system
required by tri-SPMF.

TABLE 1
Cross-Validated F1 and AUC Accuracy Scores for Fusion by Matrix Factorization (DFMF), Kernel-Based Method (MKL),

Random Forests (RF) and Relational Learning-Based Matrix Factorization (tri-SPMF)

Prediction task DFMF MKL RF tri-SPMF

F1 AUC F1 AUC F1 AUC F1 AUC

100 D. discoideum genes 0.799 0.801 0.781 0.788 0.761 0.785 0.731 0.724
1000 D. discoideum genes 0.826 0.823 0.787 0.798 0.767 0.788 0.756 0.741
Whole D. discoideum genome 0.831 0.849 0.800 0.821 0.782 0.801 0.778 0.787
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chemical substances (type 4) and their categorization
(type 6), and PubChem substructure fingerprints (type 5).

The data included 1;260 chemicals extracted from the
complete DrugBank [66] database (accessed in Feb. 2014)
that were identified with at least one pharmacologic action
in the PubChem Compound database. In that way, every
chemical (drug) was assigned one or more MeSH headings
that described its pharmacologic actions and corresponded
to D27.505 tree of the 2014 MeSH Tree Structure (target rela-
tion R12). For example, established pharmacologic actions
for Aspirin include “Anti-Inflammatory Agents, Non-
Steroidal”, “Fibrinolytic Agents” and “Antipyretics.” To
increase the number of chemicals assigned to a particular
pharmacologic action, the actions of the chemical also
included those from its direct parents in the D27.505 tree.

Other data considered were publications from the
PubMed database (R13), data on depositors who submitted
substances of the chemicals present in PubChem Com-
pound records (R14), categories of data depositors (R46) and
PubChem substructure fingerprints (R15). These finger-
prints consist of a series of 881 binary indicators, each
denoting the presence or absence of a particular substruc-
ture in a molecule. Collectively, these binary keys provide a
“fingerprint” of a particular chemical structure form. Chem-
icals are constrained by a matrix of substructure-based Tani-
moto 2D similarity (Q1) obtained through PubChem Score
Matrix Service.

4.2.2 Preprocessing for Alternative Learning Methods

For the kernel-based fusion, we generated the kernel matri-
ces for chemicals from R13, R14, R15 andQ1 (Fig. 3) using the
polynomial kernel of degree 2. We included data on deposi-
tors (R46) by applying a polynomial kernel to R14R46: The
resulting kernel matrices were centered and normalized,
and the kernel parameters were selected in internal cross-
validation (see Section 4.1.2 for details). Preprocessing for
early integration by random forests and tri-SPMF learning
followed the same procedures as described in Sections 4.1.3
and 4.1.4, respectively. The prediction task was defined by
the associations of chemicals to pharmacologic actions given
by R12 (Fig. 3).

4.3 Scoring
We estimated the quality of inferred models by ten-fold
cross-validation. In each iteration, we split the set of genes
(chemicals) to a train and test set. The corresponding data
on genes (chemicals) from the test set was entirely omitted
from the training data. We developed prediction models

from the training data and tested them on the genes (chemi-
cals) from the test set. The performance was evaluated using
an F1 score, a harmonic mean of precision and recall, and
area under ROC curve (AUC). Both scores were averaged
across cross-validation runs.

5 RESULTS AND DISCUSSION

5.1 Predictive Performance
Table 1 presents the cross-validated F1 and AUC scores for
both gene function prediction (data set of slim GO
terms) and prediction of pharmacologic actions. The
accuracy of DFMF is at least comparable to MKL and
substantially higher than that of early integration by ran-
dom forests and relational learning by tri-SPMF. When
more genes and hence more data were considered for
the gene function prediction the performance of all four
fusion approaches improved.

Poorer performance of tri-SPMF was most probably due
to required introduction of relations into factorized system
that were not present in the input data. Consequently, the
ability of tri-SPMF to infer relations of interest between
other object types deteriorated considerably. Notice also
that tri-SPMF could not be applied if fusion schemes in
Figs. 2 or 3 would contain asymmetric or one-way relations,
such as those from the analysis of signed networks [67] and
computational biology [68], among others. We also
observed numerical instability with tri-SPMF, which was
exhibited as an increase in the value of objective function
between successive iterations. In contrast, DFMF exhibited
numerical stability in all experiments (results not shown).

The accuracy for nine GO terms selected by domain
expert is given in Table 2. The DFMF performs consistently
better than the other three approaches. Again, the early
integration by random forests is inferior to all three interme-
diate integration methods. Notice that, with only a few
exceptions, both F1 and AUC scores of DFMF are high. This
is important, as all nine gene processes and functions
observed are relevant for current research of D. discoideum
where the methods for data fusion can yield new candidate
genes for focused experimental studies.

Our fusion approach is faster than multiple kernel learn-
ing. DFMF required 18 minutes of runtime on a standard
desktop computer compared to 77 minutes for MKL to fin-
ish one iteration of cross-validation of the whole-genome
variant of gene function prediction task. The factorization
algorithm of DFMF also took less time to execute than tri-
SPMF due to redundant representation of fusion system
required by tri-SPMF.

TABLE 1
Cross-Validated F1 and AUC Accuracy Scores for Fusion by Matrix Factorization (DFMF), Kernel-Based Method (MKL),

Random Forests (RF) and Relational Learning-Based Matrix Factorization (tri-SPMF)

Prediction task DFMF MKL RF tri-SPMF

F1 AUC F1 AUC F1 AUC F1 AUC

100 D. discoideum genes 0.799 0.801 0.781 0.788 0.761 0.785 0.731 0.724
1000 D. discoideum genes 0.826 0.823 0.787 0.798 0.767 0.788 0.756 0.741
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chemical substances (type 4) and their categorization
(type 6), and PubChem substructure fingerprints (type 5).

The data included 1;260 chemicals extracted from the
complete DrugBank [66] database (accessed in Feb. 2014)
that were identified with at least one pharmacologic action
in the PubChem Compound database. In that way, every
chemical (drug) was assigned one or more MeSH headings
that described its pharmacologic actions and corresponded
to D27.505 tree of the 2014 MeSH Tree Structure (target rela-
tion R12). For example, established pharmacologic actions
for Aspirin include “Anti-Inflammatory Agents, Non-
Steroidal”, “Fibrinolytic Agents” and “Antipyretics.” To
increase the number of chemicals assigned to a particular
pharmacologic action, the actions of the chemical also
included those from its direct parents in the D27.505 tree.

Other data considered were publications from the
PubMed database (R13), data on depositors who submitted
substances of the chemicals present in PubChem Com-
pound records (R14), categories of data depositors (R46) and
PubChem substructure fingerprints (R15). These finger-
prints consist of a series of 881 binary indicators, each
denoting the presence or absence of a particular substruc-
ture in a molecule. Collectively, these binary keys provide a
“fingerprint” of a particular chemical structure form. Chem-
icals are constrained by a matrix of substructure-based Tani-
moto 2D similarity (Q1) obtained through PubChem Score
Matrix Service.

4.2.2 Preprocessing for Alternative Learning Methods

For the kernel-based fusion, we generated the kernel matri-
ces for chemicals from R13, R14, R15 andQ1 (Fig. 3) using the
polynomial kernel of degree 2. We included data on deposi-
tors (R46) by applying a polynomial kernel to R14R46: The
resulting kernel matrices were centered and normalized,
and the kernel parameters were selected in internal cross-
validation (see Section 4.1.2 for details). Preprocessing for
early integration by random forests and tri-SPMF learning
followed the same procedures as described in Sections 4.1.3
and 4.1.4, respectively. The prediction task was defined by
the associations of chemicals to pharmacologic actions given
by R12 (Fig. 3).

4.3 Scoring
We estimated the quality of inferred models by ten-fold
cross-validation. In each iteration, we split the set of genes
(chemicals) to a train and test set. The corresponding data
on genes (chemicals) from the test set was entirely omitted
from the training data. We developed prediction models

from the training data and tested them on the genes (chemi-
cals) from the test set. The performance was evaluated using
an F1 score, a harmonic mean of precision and recall, and
area under ROC curve (AUC). Both scores were averaged
across cross-validation runs.

5 RESULTS AND DISCUSSION

5.1 Predictive Performance
Table 1 presents the cross-validated F1 and AUC scores for
both gene function prediction (data set of slim GO
terms) and prediction of pharmacologic actions. The
accuracy of DFMF is at least comparable to MKL and
substantially higher than that of early integration by ran-
dom forests and relational learning by tri-SPMF. When
more genes and hence more data were considered for
the gene function prediction the performance of all four
fusion approaches improved.

Poorer performance of tri-SPMF was most probably due
to required introduction of relations into factorized system
that were not present in the input data. Consequently, the
ability of tri-SPMF to infer relations of interest between
other object types deteriorated considerably. Notice also
that tri-SPMF could not be applied if fusion schemes in
Figs. 2 or 3 would contain asymmetric or one-way relations,
such as those from the analysis of signed networks [67] and
computational biology [68], among others. We also
observed numerical instability with tri-SPMF, which was
exhibited as an increase in the value of objective function
between successive iterations. In contrast, DFMF exhibited
numerical stability in all experiments (results not shown).

The accuracy for nine GO terms selected by domain
expert is given in Table 2. The DFMF performs consistently
better than the other three approaches. Again, the early
integration by random forests is inferior to all three interme-
diate integration methods. Notice that, with only a few
exceptions, both F1 and AUC scores of DFMF are high. This
is important, as all nine gene processes and functions
observed are relevant for current research of D. discoideum
where the methods for data fusion can yield new candidate
genes for focused experimental studies.

Our fusion approach is faster than multiple kernel learn-
ing. DFMF required 18 minutes of runtime on a standard
desktop computer compared to 77 minutes for MKL to fin-
ish one iteration of cross-validation of the whole-genome
variant of gene function prediction task. The factorization
algorithm of DFMF also took less time to execute than tri-
SPMF due to redundant representation of fusion system
required by tri-SPMF.

TABLE 1
Cross-Validated F1 and AUC Accuracy Scores for Fusion by Matrix Factorization (DFMF), Kernel-Based Method (MKL),

Random Forests (RF) and Relational Learning-Based Matrix Factorization (tri-SPMF)

Prediction task DFMF MKL RF tri-SPMF
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chemical substances (type 4) and their categorization
(type 6), and PubChem substructure fingerprints (type 5).

The data included 1;260 chemicals extracted from the
complete DrugBank [66] database (accessed in Feb. 2014)
that were identified with at least one pharmacologic action
in the PubChem Compound database. In that way, every
chemical (drug) was assigned one or more MeSH headings
that described its pharmacologic actions and corresponded
to D27.505 tree of the 2014 MeSH Tree Structure (target rela-
tion R12). For example, established pharmacologic actions
for Aspirin include “Anti-Inflammatory Agents, Non-
Steroidal”, “Fibrinolytic Agents” and “Antipyretics.” To
increase the number of chemicals assigned to a particular
pharmacologic action, the actions of the chemical also
included those from its direct parents in the D27.505 tree.

Other data considered were publications from the
PubMed database (R13), data on depositors who submitted
substances of the chemicals present in PubChem Com-
pound records (R14), categories of data depositors (R46) and
PubChem substructure fingerprints (R15). These finger-
prints consist of a series of 881 binary indicators, each
denoting the presence or absence of a particular substruc-
ture in a molecule. Collectively, these binary keys provide a
“fingerprint” of a particular chemical structure form. Chem-
icals are constrained by a matrix of substructure-based Tani-
moto 2D similarity (Q1) obtained through PubChem Score
Matrix Service.

4.2.2 Preprocessing for Alternative Learning Methods

For the kernel-based fusion, we generated the kernel matri-
ces for chemicals from R13, R14, R15 andQ1 (Fig. 3) using the
polynomial kernel of degree 2. We included data on deposi-
tors (R46) by applying a polynomial kernel to R14R46: The
resulting kernel matrices were centered and normalized,
and the kernel parameters were selected in internal cross-
validation (see Section 4.1.2 for details). Preprocessing for
early integration by random forests and tri-SPMF learning
followed the same procedures as described in Sections 4.1.3
and 4.1.4, respectively. The prediction task was defined by
the associations of chemicals to pharmacologic actions given
by R12 (Fig. 3).

4.3 Scoring
We estimated the quality of inferred models by ten-fold
cross-validation. In each iteration, we split the set of genes
(chemicals) to a train and test set. The corresponding data
on genes (chemicals) from the test set was entirely omitted
from the training data. We developed prediction models

from the training data and tested them on the genes (chemi-
cals) from the test set. The performance was evaluated using
an F1 score, a harmonic mean of precision and recall, and
area under ROC curve (AUC). Both scores were averaged
across cross-validation runs.

5 RESULTS AND DISCUSSION

5.1 Predictive Performance
Table 1 presents the cross-validated F1 and AUC scores for
both gene function prediction (data set of slim GO
terms) and prediction of pharmacologic actions. The
accuracy of DFMF is at least comparable to MKL and
substantially higher than that of early integration by ran-
dom forests and relational learning by tri-SPMF. When
more genes and hence more data were considered for
the gene function prediction the performance of all four
fusion approaches improved.

Poorer performance of tri-SPMF was most probably due
to required introduction of relations into factorized system
that were not present in the input data. Consequently, the
ability of tri-SPMF to infer relations of interest between
other object types deteriorated considerably. Notice also
that tri-SPMF could not be applied if fusion schemes in
Figs. 2 or 3 would contain asymmetric or one-way relations,
such as those from the analysis of signed networks [67] and
computational biology [68], among others. We also
observed numerical instability with tri-SPMF, which was
exhibited as an increase in the value of objective function
between successive iterations. In contrast, DFMF exhibited
numerical stability in all experiments (results not shown).

The accuracy for nine GO terms selected by domain
expert is given in Table 2. The DFMF performs consistently
better than the other three approaches. Again, the early
integration by random forests is inferior to all three interme-
diate integration methods. Notice that, with only a few
exceptions, both F1 and AUC scores of DFMF are high. This
is important, as all nine gene processes and functions
observed are relevant for current research of D. discoideum
where the methods for data fusion can yield new candidate
genes for focused experimental studies.

Our fusion approach is faster than multiple kernel learn-
ing. DFMF required 18 minutes of runtime on a standard
desktop computer compared to 77 minutes for MKL to fin-
ish one iteration of cross-validation of the whole-genome
variant of gene function prediction task. The factorization
algorithm of DFMF also took less time to execute than tri-
SPMF due to redundant representation of fusion system
required by tri-SPMF.

TABLE 1
Cross-Validated F1 and AUC Accuracy Scores for Fusion by Matrix Factorization (DFMF), Kernel-Based Method (MKL),

Random Forests (RF) and Relational Learning-Based Matrix Factorization (tri-SPMF)

Prediction task DFMF MKL RF tri-SPMF
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chemical substances (type 4) and their categorization
(type 6), and PubChem substructure fingerprints (type 5).

The data included 1;260 chemicals extracted from the
complete DrugBank [66] database (accessed in Feb. 2014)
that were identified with at least one pharmacologic action
in the PubChem Compound database. In that way, every
chemical (drug) was assigned one or more MeSH headings
that described its pharmacologic actions and corresponded
to D27.505 tree of the 2014 MeSH Tree Structure (target rela-
tion R12). For example, established pharmacologic actions
for Aspirin include “Anti-Inflammatory Agents, Non-
Steroidal”, “Fibrinolytic Agents” and “Antipyretics.” To
increase the number of chemicals assigned to a particular
pharmacologic action, the actions of the chemical also
included those from its direct parents in the D27.505 tree.

Other data considered were publications from the
PubMed database (R13), data on depositors who submitted
substances of the chemicals present in PubChem Com-
pound records (R14), categories of data depositors (R46) and
PubChem substructure fingerprints (R15). These finger-
prints consist of a series of 881 binary indicators, each
denoting the presence or absence of a particular substruc-
ture in a molecule. Collectively, these binary keys provide a
“fingerprint” of a particular chemical structure form. Chem-
icals are constrained by a matrix of substructure-based Tani-
moto 2D similarity (Q1) obtained through PubChem Score
Matrix Service.

4.2.2 Preprocessing for Alternative Learning Methods

For the kernel-based fusion, we generated the kernel matri-
ces for chemicals from R13, R14, R15 andQ1 (Fig. 3) using the
polynomial kernel of degree 2. We included data on deposi-
tors (R46) by applying a polynomial kernel to R14R46: The
resulting kernel matrices were centered and normalized,
and the kernel parameters were selected in internal cross-
validation (see Section 4.1.2 for details). Preprocessing for
early integration by random forests and tri-SPMF learning
followed the same procedures as described in Sections 4.1.3
and 4.1.4, respectively. The prediction task was defined by
the associations of chemicals to pharmacologic actions given
by R12 (Fig. 3).

4.3 Scoring
We estimated the quality of inferred models by ten-fold
cross-validation. In each iteration, we split the set of genes
(chemicals) to a train and test set. The corresponding data
on genes (chemicals) from the test set was entirely omitted
from the training data. We developed prediction models

from the training data and tested them on the genes (chemi-
cals) from the test set. The performance was evaluated using
an F1 score, a harmonic mean of precision and recall, and
area under ROC curve (AUC). Both scores were averaged
across cross-validation runs.

5 RESULTS AND DISCUSSION

5.1 Predictive Performance
Table 1 presents the cross-validated F1 and AUC scores for
both gene function prediction (data set of slim GO
terms) and prediction of pharmacologic actions. The
accuracy of DFMF is at least comparable to MKL and
substantially higher than that of early integration by ran-
dom forests and relational learning by tri-SPMF. When
more genes and hence more data were considered for
the gene function prediction the performance of all four
fusion approaches improved.

Poorer performance of tri-SPMF was most probably due
to required introduction of relations into factorized system
that were not present in the input data. Consequently, the
ability of tri-SPMF to infer relations of interest between
other object types deteriorated considerably. Notice also
that tri-SPMF could not be applied if fusion schemes in
Figs. 2 or 3 would contain asymmetric or one-way relations,
such as those from the analysis of signed networks [67] and
computational biology [68], among others. We also
observed numerical instability with tri-SPMF, which was
exhibited as an increase in the value of objective function
between successive iterations. In contrast, DFMF exhibited
numerical stability in all experiments (results not shown).

The accuracy for nine GO terms selected by domain
expert is given in Table 2. The DFMF performs consistently
better than the other three approaches. Again, the early
integration by random forests is inferior to all three interme-
diate integration methods. Notice that, with only a few
exceptions, both F1 and AUC scores of DFMF are high. This
is important, as all nine gene processes and functions
observed are relevant for current research of D. discoideum
where the methods for data fusion can yield new candidate
genes for focused experimental studies.

Our fusion approach is faster than multiple kernel learn-
ing. DFMF required 18 minutes of runtime on a standard
desktop computer compared to 77 minutes for MKL to fin-
ish one iteration of cross-validation of the whole-genome
variant of gene function prediction task. The factorization
algorithm of DFMF also took less time to execute than tri-
SPMF due to redundant representation of fusion system
required by tri-SPMF.

TABLE 1
Cross-Validated F1 and AUC Accuracy Scores for Fusion by Matrix Factorization (DFMF), Kernel-Based Method (MKL),

Random Forests (RF) and Relational Learning-Based Matrix Factorization (tri-SPMF)

Prediction task DFMF MKL RF tri-SPMF

F1 AUC F1 AUC F1 AUC F1 AUC

100 D. discoideum genes 0.799 0.801 0.781 0.788 0.761 0.785 0.731 0.724
1000 D. discoideum genes 0.826 0.823 0.787 0.798 0.767 0.788 0.756 0.741
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chemical substances (type 4) and their categorization
(type 6), and PubChem substructure fingerprints (type 5).

The data included 1;260 chemicals extracted from the
complete DrugBank [66] database (accessed in Feb. 2014)
that were identified with at least one pharmacologic action
in the PubChem Compound database. In that way, every
chemical (drug) was assigned one or more MeSH headings
that described its pharmacologic actions and corresponded
to D27.505 tree of the 2014 MeSH Tree Structure (target rela-
tion R12). For example, established pharmacologic actions
for Aspirin include “Anti-Inflammatory Agents, Non-
Steroidal”, “Fibrinolytic Agents” and “Antipyretics.” To
increase the number of chemicals assigned to a particular
pharmacologic action, the actions of the chemical also
included those from its direct parents in the D27.505 tree.

Other data considered were publications from the
PubMed database (R13), data on depositors who submitted
substances of the chemicals present in PubChem Com-
pound records (R14), categories of data depositors (R46) and
PubChem substructure fingerprints (R15). These finger-
prints consist of a series of 881 binary indicators, each
denoting the presence or absence of a particular substruc-
ture in a molecule. Collectively, these binary keys provide a
“fingerprint” of a particular chemical structure form. Chem-
icals are constrained by a matrix of substructure-based Tani-
moto 2D similarity (Q1) obtained through PubChem Score
Matrix Service.

4.2.2 Preprocessing for Alternative Learning Methods

For the kernel-based fusion, we generated the kernel matri-
ces for chemicals from R13, R14, R15 andQ1 (Fig. 3) using the
polynomial kernel of degree 2. We included data on deposi-
tors (R46) by applying a polynomial kernel to R14R46: The
resulting kernel matrices were centered and normalized,
and the kernel parameters were selected in internal cross-
validation (see Section 4.1.2 for details). Preprocessing for
early integration by random forests and tri-SPMF learning
followed the same procedures as described in Sections 4.1.3
and 4.1.4, respectively. The prediction task was defined by
the associations of chemicals to pharmacologic actions given
by R12 (Fig. 3).

4.3 Scoring
We estimated the quality of inferred models by ten-fold
cross-validation. In each iteration, we split the set of genes
(chemicals) to a train and test set. The corresponding data
on genes (chemicals) from the test set was entirely omitted
from the training data. We developed prediction models

from the training data and tested them on the genes (chemi-
cals) from the test set. The performance was evaluated using
an F1 score, a harmonic mean of precision and recall, and
area under ROC curve (AUC). Both scores were averaged
across cross-validation runs.

5 RESULTS AND DISCUSSION

5.1 Predictive Performance
Table 1 presents the cross-validated F1 and AUC scores for
both gene function prediction (data set of slim GO
terms) and prediction of pharmacologic actions. The
accuracy of DFMF is at least comparable to MKL and
substantially higher than that of early integration by ran-
dom forests and relational learning by tri-SPMF. When
more genes and hence more data were considered for
the gene function prediction the performance of all four
fusion approaches improved.

Poorer performance of tri-SPMF was most probably due
to required introduction of relations into factorized system
that were not present in the input data. Consequently, the
ability of tri-SPMF to infer relations of interest between
other object types deteriorated considerably. Notice also
that tri-SPMF could not be applied if fusion schemes in
Figs. 2 or 3 would contain asymmetric or one-way relations,
such as those from the analysis of signed networks [67] and
computational biology [68], among others. We also
observed numerical instability with tri-SPMF, which was
exhibited as an increase in the value of objective function
between successive iterations. In contrast, DFMF exhibited
numerical stability in all experiments (results not shown).

The accuracy for nine GO terms selected by domain
expert is given in Table 2. The DFMF performs consistently
better than the other three approaches. Again, the early
integration by random forests is inferior to all three interme-
diate integration methods. Notice that, with only a few
exceptions, both F1 and AUC scores of DFMF are high. This
is important, as all nine gene processes and functions
observed are relevant for current research of D. discoideum
where the methods for data fusion can yield new candidate
genes for focused experimental studies.

Our fusion approach is faster than multiple kernel learn-
ing. DFMF required 18 minutes of runtime on a standard
desktop computer compared to 77 minutes for MKL to fin-
ish one iteration of cross-validation of the whole-genome
variant of gene function prediction task. The factorization
algorithm of DFMF also took less time to execute than tri-
SPMF due to redundant representation of fusion system
required by tri-SPMF.

TABLE 1
Cross-Validated F1 and AUC Accuracy Scores for Fusion by Matrix Factorization (DFMF), Kernel-Based Method (MKL),

Random Forests (RF) and Relational Learning-Based Matrix Factorization (tri-SPMF)

Prediction task DFMF MKL RF tri-SPMF

F1 AUC F1 AUC F1 AUC F1 AUC

100 D. discoideum genes 0.799 0.801 0.781 0.788 0.761 0.785 0.731 0.724
1000 D. discoideum genes 0.826 0.823 0.787 0.798 0.767 0.788 0.756 0.741
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!ZITNIK AND ZUPAN: DATA FUSION BY MATRIX FACTORIZATION 49

chemical substances (type 4) and their categorization
(type 6), and PubChem substructure fingerprints (type 5).

The data included 1;260 chemicals extracted from the
complete DrugBank [66] database (accessed in Feb. 2014)
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that described its pharmacologic actions and corresponded
to D27.505 tree of the 2014 MeSH Tree Structure (target rela-
tion R12). For example, established pharmacologic actions
for Aspirin include “Anti-Inflammatory Agents, Non-
Steroidal”, “Fibrinolytic Agents” and “Antipyretics.” To
increase the number of chemicals assigned to a particular
pharmacologic action, the actions of the chemical also
included those from its direct parents in the D27.505 tree.
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icals are constrained by a matrix of substructure-based Tani-
moto 2D similarity (Q1) obtained through PubChem Score
Matrix Service.
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For the kernel-based fusion, we generated the kernel matri-
ces for chemicals from R13, R14, R15 andQ1 (Fig. 3) using the
polynomial kernel of degree 2. We included data on deposi-
tors (R46) by applying a polynomial kernel to R14R46: The
resulting kernel matrices were centered and normalized,
and the kernel parameters were selected in internal cross-
validation (see Section 4.1.2 for details). Preprocessing for
early integration by random forests and tri-SPMF learning
followed the same procedures as described in Sections 4.1.3
and 4.1.4, respectively. The prediction task was defined by
the associations of chemicals to pharmacologic actions given
by R12 (Fig. 3).

4.3 Scoring
We estimated the quality of inferred models by ten-fold
cross-validation. In each iteration, we split the set of genes
(chemicals) to a train and test set. The corresponding data
on genes (chemicals) from the test set was entirely omitted
from the training data. We developed prediction models

from the training data and tested them on the genes (chemi-
cals) from the test set. The performance was evaluated using
an F1 score, a harmonic mean of precision and recall, and
area under ROC curve (AUC). Both scores were averaged
across cross-validation runs.

5 RESULTS AND DISCUSSION

5.1 Predictive Performance
Table 1 presents the cross-validated F1 and AUC scores for
both gene function prediction (data set of slim GO
terms) and prediction of pharmacologic actions. The
accuracy of DFMF is at least comparable to MKL and
substantially higher than that of early integration by ran-
dom forests and relational learning by tri-SPMF. When
more genes and hence more data were considered for
the gene function prediction the performance of all four
fusion approaches improved.

Poorer performance of tri-SPMF was most probably due
to required introduction of relations into factorized system
that were not present in the input data. Consequently, the
ability of tri-SPMF to infer relations of interest between
other object types deteriorated considerably. Notice also
that tri-SPMF could not be applied if fusion schemes in
Figs. 2 or 3 would contain asymmetric or one-way relations,
such as those from the analysis of signed networks [67] and
computational biology [68], among others. We also
observed numerical instability with tri-SPMF, which was
exhibited as an increase in the value of objective function
between successive iterations. In contrast, DFMF exhibited
numerical stability in all experiments (results not shown).

The accuracy for nine GO terms selected by domain
expert is given in Table 2. The DFMF performs consistently
better than the other three approaches. Again, the early
integration by random forests is inferior to all three interme-
diate integration methods. Notice that, with only a few
exceptions, both F1 and AUC scores of DFMF are high. This
is important, as all nine gene processes and functions
observed are relevant for current research of D. discoideum
where the methods for data fusion can yield new candidate
genes for focused experimental studies.

Our fusion approach is faster than multiple kernel learn-
ing. DFMF required 18 minutes of runtime on a standard
desktop computer compared to 77 minutes for MKL to fin-
ish one iteration of cross-validation of the whole-genome
variant of gene function prediction task. The factorization
algorithm of DFMF also took less time to execute than tri-
SPMF due to redundant representation of fusion system
required by tri-SPMF.

TABLE 1
Cross-Validated F1 and AUC Accuracy Scores for Fusion by Matrix Factorization (DFMF), Kernel-Based Method (MKL),
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included those from its direct parents in the D27.505 tree.

Other data considered were publications from the
PubMed database (R13), data on depositors who submitted
substances of the chemicals present in PubChem Com-
pound records (R14), categories of data depositors (R46) and
PubChem substructure fingerprints (R15). These finger-
prints consist of a series of 881 binary indicators, each
denoting the presence or absence of a particular substruc-
ture in a molecule. Collectively, these binary keys provide a
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icals are constrained by a matrix of substructure-based Tani-
moto 2D similarity (Q1) obtained through PubChem Score
Matrix Service.

4.2.2 Preprocessing for Alternative Learning Methods

For the kernel-based fusion, we generated the kernel matri-
ces for chemicals from R13, R14, R15 andQ1 (Fig. 3) using the
polynomial kernel of degree 2. We included data on deposi-
tors (R46) by applying a polynomial kernel to R14R46: The
resulting kernel matrices were centered and normalized,
and the kernel parameters were selected in internal cross-
validation (see Section 4.1.2 for details). Preprocessing for
early integration by random forests and tri-SPMF learning
followed the same procedures as described in Sections 4.1.3
and 4.1.4, respectively. The prediction task was defined by
the associations of chemicals to pharmacologic actions given
by R12 (Fig. 3).

4.3 Scoring
We estimated the quality of inferred models by ten-fold
cross-validation. In each iteration, we split the set of genes
(chemicals) to a train and test set. The corresponding data
on genes (chemicals) from the test set was entirely omitted
from the training data. We developed prediction models
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an F1 score, a harmonic mean of precision and recall, and
area under ROC curve (AUC). Both scores were averaged
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both gene function prediction (data set of slim GO
terms) and prediction of pharmacologic actions. The
accuracy of DFMF is at least comparable to MKL and
substantially higher than that of early integration by ran-
dom forests and relational learning by tri-SPMF. When
more genes and hence more data were considered for
the gene function prediction the performance of all four
fusion approaches improved.

Poorer performance of tri-SPMF was most probably due
to required introduction of relations into factorized system
that were not present in the input data. Consequently, the
ability of tri-SPMF to infer relations of interest between
other object types deteriorated considerably. Notice also
that tri-SPMF could not be applied if fusion schemes in
Figs. 2 or 3 would contain asymmetric or one-way relations,
such as those from the analysis of signed networks [67] and
computational biology [68], among others. We also
observed numerical instability with tri-SPMF, which was
exhibited as an increase in the value of objective function
between successive iterations. In contrast, DFMF exhibited
numerical stability in all experiments (results not shown).

The accuracy for nine GO terms selected by domain
expert is given in Table 2. The DFMF performs consistently
better than the other three approaches. Again, the early
integration by random forests is inferior to all three interme-
diate integration methods. Notice that, with only a few
exceptions, both F1 and AUC scores of DFMF are high. This
is important, as all nine gene processes and functions
observed are relevant for current research of D. discoideum
where the methods for data fusion can yield new candidate
genes for focused experimental studies.

Our fusion approach is faster than multiple kernel learn-
ing. DFMF required 18 minutes of runtime on a standard
desktop computer compared to 77 minutes for MKL to fin-
ish one iteration of cross-validation of the whole-genome
variant of gene function prediction task. The factorization
algorithm of DFMF also took less time to execute than tri-
SPMF due to redundant representation of fusion system
required by tri-SPMF.
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Random Forests (RF) and Relational Learning-Based Matrix Factorization (tri-SPMF)
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chemical substances (type 4) and their categorization
(type 6), and PubChem substructure fingerprints (type 5).

The data included 1;260 chemicals extracted from the
complete DrugBank [66] database (accessed in Feb. 2014)
that were identified with at least one pharmacologic action
in the PubChem Compound database. In that way, every
chemical (drug) was assigned one or more MeSH headings
that described its pharmacologic actions and corresponded
to D27.505 tree of the 2014 MeSH Tree Structure (target rela-
tion R12). For example, established pharmacologic actions
for Aspirin include “Anti-Inflammatory Agents, Non-
Steroidal”, “Fibrinolytic Agents” and “Antipyretics.” To
increase the number of chemicals assigned to a particular
pharmacologic action, the actions of the chemical also
included those from its direct parents in the D27.505 tree.

Other data considered were publications from the
PubMed database (R13), data on depositors who submitted
substances of the chemicals present in PubChem Com-
pound records (R14), categories of data depositors (R46) and
PubChem substructure fingerprints (R15). These finger-
prints consist of a series of 881 binary indicators, each
denoting the presence or absence of a particular substruc-
ture in a molecule. Collectively, these binary keys provide a
“fingerprint” of a particular chemical structure form. Chem-
icals are constrained by a matrix of substructure-based Tani-
moto 2D similarity (Q1) obtained through PubChem Score
Matrix Service.

4.2.2 Preprocessing for Alternative Learning Methods

For the kernel-based fusion, we generated the kernel matri-
ces for chemicals from R13, R14, R15 andQ1 (Fig. 3) using the
polynomial kernel of degree 2. We included data on deposi-
tors (R46) by applying a polynomial kernel to R14R46: The
resulting kernel matrices were centered and normalized,
and the kernel parameters were selected in internal cross-
validation (see Section 4.1.2 for details). Preprocessing for
early integration by random forests and tri-SPMF learning
followed the same procedures as described in Sections 4.1.3
and 4.1.4, respectively. The prediction task was defined by
the associations of chemicals to pharmacologic actions given
by R12 (Fig. 3).

4.3 Scoring
We estimated the quality of inferred models by ten-fold
cross-validation. In each iteration, we split the set of genes
(chemicals) to a train and test set. The corresponding data
on genes (chemicals) from the test set was entirely omitted
from the training data. We developed prediction models

from the training data and tested them on the genes (chemi-
cals) from the test set. The performance was evaluated using
an F1 score, a harmonic mean of precision and recall, and
area under ROC curve (AUC). Both scores were averaged
across cross-validation runs.

5 RESULTS AND DISCUSSION

5.1 Predictive Performance
Table 1 presents the cross-validated F1 and AUC scores for
both gene function prediction (data set of slim GO
terms) and prediction of pharmacologic actions. The
accuracy of DFMF is at least comparable to MKL and
substantially higher than that of early integration by ran-
dom forests and relational learning by tri-SPMF. When
more genes and hence more data were considered for
the gene function prediction the performance of all four
fusion approaches improved.

Poorer performance of tri-SPMF was most probably due
to required introduction of relations into factorized system
that were not present in the input data. Consequently, the
ability of tri-SPMF to infer relations of interest between
other object types deteriorated considerably. Notice also
that tri-SPMF could not be applied if fusion schemes in
Figs. 2 or 3 would contain asymmetric or one-way relations,
such as those from the analysis of signed networks [67] and
computational biology [68], among others. We also
observed numerical instability with tri-SPMF, which was
exhibited as an increase in the value of objective function
between successive iterations. In contrast, DFMF exhibited
numerical stability in all experiments (results not shown).

The accuracy for nine GO terms selected by domain
expert is given in Table 2. The DFMF performs consistently
better than the other three approaches. Again, the early
integration by random forests is inferior to all three interme-
diate integration methods. Notice that, with only a few
exceptions, both F1 and AUC scores of DFMF are high. This
is important, as all nine gene processes and functions
observed are relevant for current research of D. discoideum
where the methods for data fusion can yield new candidate
genes for focused experimental studies.

Our fusion approach is faster than multiple kernel learn-
ing. DFMF required 18 minutes of runtime on a standard
desktop computer compared to 77 minutes for MKL to fin-
ish one iteration of cross-validation of the whole-genome
variant of gene function prediction task. The factorization
algorithm of DFMF also took less time to execute than tri-
SPMF due to redundant representation of fusion system
required by tri-SPMF.

TABLE 1
Cross-Validated F1 and AUC Accuracy Scores for Fusion by Matrix Factorization (DFMF), Kernel-Based Method (MKL),

Random Forests (RF) and Relational Learning-Based Matrix Factorization (tri-SPMF)

Prediction task DFMF MKL RF tri-SPMF

F1 AUC F1 AUC F1 AUC F1 AUC

100 D. discoideum genes 0.799 0.801 0.781 0.788 0.761 0.785 0.731 0.724
1000 D. discoideum genes 0.826 0.823 0.787 0.798 0.767 0.788 0.756 0.741
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chemical substances (type 4) and their categorization
(type 6), and PubChem substructure fingerprints (type 5).

The data included 1;260 chemicals extracted from the
complete DrugBank [66] database (accessed in Feb. 2014)
that were identified with at least one pharmacologic action
in the PubChem Compound database. In that way, every
chemical (drug) was assigned one or more MeSH headings
that described its pharmacologic actions and corresponded
to D27.505 tree of the 2014 MeSH Tree Structure (target rela-
tion R12). For example, established pharmacologic actions
for Aspirin include “Anti-Inflammatory Agents, Non-
Steroidal”, “Fibrinolytic Agents” and “Antipyretics.” To
increase the number of chemicals assigned to a particular
pharmacologic action, the actions of the chemical also
included those from its direct parents in the D27.505 tree.

Other data considered were publications from the
PubMed database (R13), data on depositors who submitted
substances of the chemicals present in PubChem Com-
pound records (R14), categories of data depositors (R46) and
PubChem substructure fingerprints (R15). These finger-
prints consist of a series of 881 binary indicators, each
denoting the presence or absence of a particular substruc-
ture in a molecule. Collectively, these binary keys provide a
“fingerprint” of a particular chemical structure form. Chem-
icals are constrained by a matrix of substructure-based Tani-
moto 2D similarity (Q1) obtained through PubChem Score
Matrix Service.

4.2.2 Preprocessing for Alternative Learning Methods

For the kernel-based fusion, we generated the kernel matri-
ces for chemicals from R13, R14, R15 andQ1 (Fig. 3) using the
polynomial kernel of degree 2. We included data on deposi-
tors (R46) by applying a polynomial kernel to R14R46: The
resulting kernel matrices were centered and normalized,
and the kernel parameters were selected in internal cross-
validation (see Section 4.1.2 for details). Preprocessing for
early integration by random forests and tri-SPMF learning
followed the same procedures as described in Sections 4.1.3
and 4.1.4, respectively. The prediction task was defined by
the associations of chemicals to pharmacologic actions given
by R12 (Fig. 3).

4.3 Scoring
We estimated the quality of inferred models by ten-fold
cross-validation. In each iteration, we split the set of genes
(chemicals) to a train and test set. The corresponding data
on genes (chemicals) from the test set was entirely omitted
from the training data. We developed prediction models

from the training data and tested them on the genes (chemi-
cals) from the test set. The performance was evaluated using
an F1 score, a harmonic mean of precision and recall, and
area under ROC curve (AUC). Both scores were averaged
across cross-validation runs.

5 RESULTS AND DISCUSSION

5.1 Predictive Performance
Table 1 presents the cross-validated F1 and AUC scores for
both gene function prediction (data set of slim GO
terms) and prediction of pharmacologic actions. The
accuracy of DFMF is at least comparable to MKL and
substantially higher than that of early integration by ran-
dom forests and relational learning by tri-SPMF. When
more genes and hence more data were considered for
the gene function prediction the performance of all four
fusion approaches improved.

Poorer performance of tri-SPMF was most probably due
to required introduction of relations into factorized system
that were not present in the input data. Consequently, the
ability of tri-SPMF to infer relations of interest between
other object types deteriorated considerably. Notice also
that tri-SPMF could not be applied if fusion schemes in
Figs. 2 or 3 would contain asymmetric or one-way relations,
such as those from the analysis of signed networks [67] and
computational biology [68], among others. We also
observed numerical instability with tri-SPMF, which was
exhibited as an increase in the value of objective function
between successive iterations. In contrast, DFMF exhibited
numerical stability in all experiments (results not shown).

The accuracy for nine GO terms selected by domain
expert is given in Table 2. The DFMF performs consistently
better than the other three approaches. Again, the early
integration by random forests is inferior to all three interme-
diate integration methods. Notice that, with only a few
exceptions, both F1 and AUC scores of DFMF are high. This
is important, as all nine gene processes and functions
observed are relevant for current research of D. discoideum
where the methods for data fusion can yield new candidate
genes for focused experimental studies.

Our fusion approach is faster than multiple kernel learn-
ing. DFMF required 18 minutes of runtime on a standard
desktop computer compared to 77 minutes for MKL to fin-
ish one iteration of cross-validation of the whole-genome
variant of gene function prediction task. The factorization
algorithm of DFMF also took less time to execute than tri-
SPMF due to redundant representation of fusion system
required by tri-SPMF.
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Cross-Validated F1 and AUC Accuracy Scores for Fusion by Matrix Factorization (DFMF), Kernel-Based Method (MKL),

Random Forests (RF) and Relational Learning-Based Matrix Factorization (tri-SPMF)
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The data included 1;260 chemicals extracted from the
complete DrugBank [66] database (accessed in Feb. 2014)
that were identified with at least one pharmacologic action
in the PubChem Compound database. In that way, every
chemical (drug) was assigned one or more MeSH headings
that described its pharmacologic actions and corresponded
to D27.505 tree of the 2014 MeSH Tree Structure (target rela-
tion R12). For example, established pharmacologic actions
for Aspirin include “Anti-Inflammatory Agents, Non-
Steroidal”, “Fibrinolytic Agents” and “Antipyretics.” To
increase the number of chemicals assigned to a particular
pharmacologic action, the actions of the chemical also
included those from its direct parents in the D27.505 tree.

Other data considered were publications from the
PubMed database (R13), data on depositors who submitted
substances of the chemicals present in PubChem Com-
pound records (R14), categories of data depositors (R46) and
PubChem substructure fingerprints (R15). These finger-
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ture in a molecule. Collectively, these binary keys provide a
“fingerprint” of a particular chemical structure form. Chem-
icals are constrained by a matrix of substructure-based Tani-
moto 2D similarity (Q1) obtained through PubChem Score
Matrix Service.

4.2.2 Preprocessing for Alternative Learning Methods

For the kernel-based fusion, we generated the kernel matri-
ces for chemicals from R13, R14, R15 andQ1 (Fig. 3) using the
polynomial kernel of degree 2. We included data on deposi-
tors (R46) by applying a polynomial kernel to R14R46: The
resulting kernel matrices were centered and normalized,
and the kernel parameters were selected in internal cross-
validation (see Section 4.1.2 for details). Preprocessing for
early integration by random forests and tri-SPMF learning
followed the same procedures as described in Sections 4.1.3
and 4.1.4, respectively. The prediction task was defined by
the associations of chemicals to pharmacologic actions given
by R12 (Fig. 3).

4.3 Scoring
We estimated the quality of inferred models by ten-fold
cross-validation. In each iteration, we split the set of genes
(chemicals) to a train and test set. The corresponding data
on genes (chemicals) from the test set was entirely omitted
from the training data. We developed prediction models

from the training data and tested them on the genes (chemi-
cals) from the test set. The performance was evaluated using
an F1 score, a harmonic mean of precision and recall, and
area under ROC curve (AUC). Both scores were averaged
across cross-validation runs.

5 RESULTS AND DISCUSSION

5.1 Predictive Performance
Table 1 presents the cross-validated F1 and AUC scores for
both gene function prediction (data set of slim GO
terms) and prediction of pharmacologic actions. The
accuracy of DFMF is at least comparable to MKL and
substantially higher than that of early integration by ran-
dom forests and relational learning by tri-SPMF. When
more genes and hence more data were considered for
the gene function prediction the performance of all four
fusion approaches improved.

Poorer performance of tri-SPMF was most probably due
to required introduction of relations into factorized system
that were not present in the input data. Consequently, the
ability of tri-SPMF to infer relations of interest between
other object types deteriorated considerably. Notice also
that tri-SPMF could not be applied if fusion schemes in
Figs. 2 or 3 would contain asymmetric or one-way relations,
such as those from the analysis of signed networks [67] and
computational biology [68], among others. We also
observed numerical instability with tri-SPMF, which was
exhibited as an increase in the value of objective function
between successive iterations. In contrast, DFMF exhibited
numerical stability in all experiments (results not shown).

The accuracy for nine GO terms selected by domain
expert is given in Table 2. The DFMF performs consistently
better than the other three approaches. Again, the early
integration by random forests is inferior to all three interme-
diate integration methods. Notice that, with only a few
exceptions, both F1 and AUC scores of DFMF are high. This
is important, as all nine gene processes and functions
observed are relevant for current research of D. discoideum
where the methods for data fusion can yield new candidate
genes for focused experimental studies.

Our fusion approach is faster than multiple kernel learn-
ing. DFMF required 18 minutes of runtime on a standard
desktop computer compared to 77 minutes for MKL to fin-
ish one iteration of cross-validation of the whole-genome
variant of gene function prediction task. The factorization
algorithm of DFMF also took less time to execute than tri-
SPMF due to redundant representation of fusion system
required by tri-SPMF.

TABLE 1
Cross-Validated F1 and AUC Accuracy Scores for Fusion by Matrix Factorization (DFMF), Kernel-Based Method (MKL),

Random Forests (RF) and Relational Learning-Based Matrix Factorization (tri-SPMF)
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that were identified with at least one pharmacologic action
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Steroidal”, “Fibrinolytic Agents” and “Antipyretics.” To
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pound records (R14), categories of data depositors (R46) and
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ture in a molecule. Collectively, these binary keys provide a
“fingerprint” of a particular chemical structure form. Chem-
icals are constrained by a matrix of substructure-based Tani-
moto 2D similarity (Q1) obtained through PubChem Score
Matrix Service.

4.2.2 Preprocessing for Alternative Learning Methods

For the kernel-based fusion, we generated the kernel matri-
ces for chemicals from R13, R14, R15 andQ1 (Fig. 3) using the
polynomial kernel of degree 2. We included data on deposi-
tors (R46) by applying a polynomial kernel to R14R46: The
resulting kernel matrices were centered and normalized,
and the kernel parameters were selected in internal cross-
validation (see Section 4.1.2 for details). Preprocessing for
early integration by random forests and tri-SPMF learning
followed the same procedures as described in Sections 4.1.3
and 4.1.4, respectively. The prediction task was defined by
the associations of chemicals to pharmacologic actions given
by R12 (Fig. 3).

4.3 Scoring
We estimated the quality of inferred models by ten-fold
cross-validation. In each iteration, we split the set of genes
(chemicals) to a train and test set. The corresponding data
on genes (chemicals) from the test set was entirely omitted
from the training data. We developed prediction models

from the training data and tested them on the genes (chemi-
cals) from the test set. The performance was evaluated using
an F1 score, a harmonic mean of precision and recall, and
area under ROC curve (AUC). Both scores were averaged
across cross-validation runs.
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5.1 Predictive Performance
Table 1 presents the cross-validated F1 and AUC scores for
both gene function prediction (data set of slim GO
terms) and prediction of pharmacologic actions. The
accuracy of DFMF is at least comparable to MKL and
substantially higher than that of early integration by ran-
dom forests and relational learning by tri-SPMF. When
more genes and hence more data were considered for
the gene function prediction the performance of all four
fusion approaches improved.

Poorer performance of tri-SPMF was most probably due
to required introduction of relations into factorized system
that were not present in the input data. Consequently, the
ability of tri-SPMF to infer relations of interest between
other object types deteriorated considerably. Notice also
that tri-SPMF could not be applied if fusion schemes in
Figs. 2 or 3 would contain asymmetric or one-way relations,
such as those from the analysis of signed networks [67] and
computational biology [68], among others. We also
observed numerical instability with tri-SPMF, which was
exhibited as an increase in the value of objective function
between successive iterations. In contrast, DFMF exhibited
numerical stability in all experiments (results not shown).

The accuracy for nine GO terms selected by domain
expert is given in Table 2. The DFMF performs consistently
better than the other three approaches. Again, the early
integration by random forests is inferior to all three interme-
diate integration methods. Notice that, with only a few
exceptions, both F1 and AUC scores of DFMF are high. This
is important, as all nine gene processes and functions
observed are relevant for current research of D. discoideum
where the methods for data fusion can yield new candidate
genes for focused experimental studies.

Our fusion approach is faster than multiple kernel learn-
ing. DFMF required 18 minutes of runtime on a standard
desktop computer compared to 77 minutes for MKL to fin-
ish one iteration of cross-validation of the whole-genome
variant of gene function prediction task. The factorization
algorithm of DFMF also took less time to execute than tri-
SPMF due to redundant representation of fusion system
required by tri-SPMF.
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chemical substances (type 4) and their categorization
(type 6), and PubChem substructure fingerprints (type 5).

The data included 1;260 chemicals extracted from the
complete DrugBank [66] database (accessed in Feb. 2014)
that were identified with at least one pharmacologic action
in the PubChem Compound database. In that way, every
chemical (drug) was assigned one or more MeSH headings
that described its pharmacologic actions and corresponded
to D27.505 tree of the 2014 MeSH Tree Structure (target rela-
tion R12). For example, established pharmacologic actions
for Aspirin include “Anti-Inflammatory Agents, Non-
Steroidal”, “Fibrinolytic Agents” and “Antipyretics.” To
increase the number of chemicals assigned to a particular
pharmacologic action, the actions of the chemical also
included those from its direct parents in the D27.505 tree.

Other data considered were publications from the
PubMed database (R13), data on depositors who submitted
substances of the chemicals present in PubChem Com-
pound records (R14), categories of data depositors (R46) and
PubChem substructure fingerprints (R15). These finger-
prints consist of a series of 881 binary indicators, each
denoting the presence or absence of a particular substruc-
ture in a molecule. Collectively, these binary keys provide a
“fingerprint” of a particular chemical structure form. Chem-
icals are constrained by a matrix of substructure-based Tani-
moto 2D similarity (Q1) obtained through PubChem Score
Matrix Service.

4.2.2 Preprocessing for Alternative Learning Methods

For the kernel-based fusion, we generated the kernel matri-
ces for chemicals from R13, R14, R15 andQ1 (Fig. 3) using the
polynomial kernel of degree 2. We included data on deposi-
tors (R46) by applying a polynomial kernel to R14R46: The
resulting kernel matrices were centered and normalized,
and the kernel parameters were selected in internal cross-
validation (see Section 4.1.2 for details). Preprocessing for
early integration by random forests and tri-SPMF learning
followed the same procedures as described in Sections 4.1.3
and 4.1.4, respectively. The prediction task was defined by
the associations of chemicals to pharmacologic actions given
by R12 (Fig. 3).

4.3 Scoring
We estimated the quality of inferred models by ten-fold
cross-validation. In each iteration, we split the set of genes
(chemicals) to a train and test set. The corresponding data
on genes (chemicals) from the test set was entirely omitted
from the training data. We developed prediction models

from the training data and tested them on the genes (chemi-
cals) from the test set. The performance was evaluated using
an F1 score, a harmonic mean of precision and recall, and
area under ROC curve (AUC). Both scores were averaged
across cross-validation runs.

5 RESULTS AND DISCUSSION

5.1 Predictive Performance
Table 1 presents the cross-validated F1 and AUC scores for
both gene function prediction (data set of slim GO
terms) and prediction of pharmacologic actions. The
accuracy of DFMF is at least comparable to MKL and
substantially higher than that of early integration by ran-
dom forests and relational learning by tri-SPMF. When
more genes and hence more data were considered for
the gene function prediction the performance of all four
fusion approaches improved.

Poorer performance of tri-SPMF was most probably due
to required introduction of relations into factorized system
that were not present in the input data. Consequently, the
ability of tri-SPMF to infer relations of interest between
other object types deteriorated considerably. Notice also
that tri-SPMF could not be applied if fusion schemes in
Figs. 2 or 3 would contain asymmetric or one-way relations,
such as those from the analysis of signed networks [67] and
computational biology [68], among others. We also
observed numerical instability with tri-SPMF, which was
exhibited as an increase in the value of objective function
between successive iterations. In contrast, DFMF exhibited
numerical stability in all experiments (results not shown).

The accuracy for nine GO terms selected by domain
expert is given in Table 2. The DFMF performs consistently
better than the other three approaches. Again, the early
integration by random forests is inferior to all three interme-
diate integration methods. Notice that, with only a few
exceptions, both F1 and AUC scores of DFMF are high. This
is important, as all nine gene processes and functions
observed are relevant for current research of D. discoideum
where the methods for data fusion can yield new candidate
genes for focused experimental studies.

Our fusion approach is faster than multiple kernel learn-
ing. DFMF required 18 minutes of runtime on a standard
desktop computer compared to 77 minutes for MKL to fin-
ish one iteration of cross-validation of the whole-genome
variant of gene function prediction task. The factorization
algorithm of DFMF also took less time to execute than tri-
SPMF due to redundant representation of fusion system
required by tri-SPMF.

TABLE 1
Cross-Validated F1 and AUC Accuracy Scores for Fusion by Matrix Factorization (DFMF), Kernel-Based Method (MKL),

Random Forests (RF) and Relational Learning-Based Matrix Factorization (tri-SPMF)

Prediction task DFMF MKL RF tri-SPMF

F1 AUC F1 AUC F1 AUC F1 AUC

100 D. discoideum genes 0.799 0.801 0.781 0.788 0.761 0.785 0.731 0.724
1000 D. discoideum genes 0.826 0.823 0.787 0.798 0.767 0.788 0.756 0.741
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chemical substances (type 4) and their categorization
(type 6), and PubChem substructure fingerprints (type 5).

The data included 1;260 chemicals extracted from the
complete DrugBank [66] database (accessed in Feb. 2014)
that were identified with at least one pharmacologic action
in the PubChem Compound database. In that way, every
chemical (drug) was assigned one or more MeSH headings
that described its pharmacologic actions and corresponded
to D27.505 tree of the 2014 MeSH Tree Structure (target rela-
tion R12). For example, established pharmacologic actions
for Aspirin include “Anti-Inflammatory Agents, Non-
Steroidal”, “Fibrinolytic Agents” and “Antipyretics.” To
increase the number of chemicals assigned to a particular
pharmacologic action, the actions of the chemical also
included those from its direct parents in the D27.505 tree.

Other data considered were publications from the
PubMed database (R13), data on depositors who submitted
substances of the chemicals present in PubChem Com-
pound records (R14), categories of data depositors (R46) and
PubChem substructure fingerprints (R15). These finger-
prints consist of a series of 881 binary indicators, each
denoting the presence or absence of a particular substruc-
ture in a molecule. Collectively, these binary keys provide a
“fingerprint” of a particular chemical structure form. Chem-
icals are constrained by a matrix of substructure-based Tani-
moto 2D similarity (Q1) obtained through PubChem Score
Matrix Service.

4.2.2 Preprocessing for Alternative Learning Methods

For the kernel-based fusion, we generated the kernel matri-
ces for chemicals from R13, R14, R15 andQ1 (Fig. 3) using the
polynomial kernel of degree 2. We included data on deposi-
tors (R46) by applying a polynomial kernel to R14R46: The
resulting kernel matrices were centered and normalized,
and the kernel parameters were selected in internal cross-
validation (see Section 4.1.2 for details). Preprocessing for
early integration by random forests and tri-SPMF learning
followed the same procedures as described in Sections 4.1.3
and 4.1.4, respectively. The prediction task was defined by
the associations of chemicals to pharmacologic actions given
by R12 (Fig. 3).

4.3 Scoring
We estimated the quality of inferred models by ten-fold
cross-validation. In each iteration, we split the set of genes
(chemicals) to a train and test set. The corresponding data
on genes (chemicals) from the test set was entirely omitted
from the training data. We developed prediction models

from the training data and tested them on the genes (chemi-
cals) from the test set. The performance was evaluated using
an F1 score, a harmonic mean of precision and recall, and
area under ROC curve (AUC). Both scores were averaged
across cross-validation runs.

5 RESULTS AND DISCUSSION

5.1 Predictive Performance
Table 1 presents the cross-validated F1 and AUC scores for
both gene function prediction (data set of slim GO
terms) and prediction of pharmacologic actions. The
accuracy of DFMF is at least comparable to MKL and
substantially higher than that of early integration by ran-
dom forests and relational learning by tri-SPMF. When
more genes and hence more data were considered for
the gene function prediction the performance of all four
fusion approaches improved.

Poorer performance of tri-SPMF was most probably due
to required introduction of relations into factorized system
that were not present in the input data. Consequently, the
ability of tri-SPMF to infer relations of interest between
other object types deteriorated considerably. Notice also
that tri-SPMF could not be applied if fusion schemes in
Figs. 2 or 3 would contain asymmetric or one-way relations,
such as those from the analysis of signed networks [67] and
computational biology [68], among others. We also
observed numerical instability with tri-SPMF, which was
exhibited as an increase in the value of objective function
between successive iterations. In contrast, DFMF exhibited
numerical stability in all experiments (results not shown).

The accuracy for nine GO terms selected by domain
expert is given in Table 2. The DFMF performs consistently
better than the other three approaches. Again, the early
integration by random forests is inferior to all three interme-
diate integration methods. Notice that, with only a few
exceptions, both F1 and AUC scores of DFMF are high. This
is important, as all nine gene processes and functions
observed are relevant for current research of D. discoideum
where the methods for data fusion can yield new candidate
genes for focused experimental studies.

Our fusion approach is faster than multiple kernel learn-
ing. DFMF required 18 minutes of runtime on a standard
desktop computer compared to 77 minutes for MKL to fin-
ish one iteration of cross-validation of the whole-genome
variant of gene function prediction task. The factorization
algorithm of DFMF also took less time to execute than tri-
SPMF due to redundant representation of fusion system
required by tri-SPMF.

TABLE 1
Cross-Validated F1 and AUC Accuracy Scores for Fusion by Matrix Factorization (DFMF), Kernel-Based Method (MKL),

Random Forests (RF) and Relational Learning-Based Matrix Factorization (tri-SPMF)

Prediction task DFMF MKL RF tri-SPMF

F1 AUC F1 AUC F1 AUC F1 AUC

100 D. discoideum genes 0.799 0.801 0.781 0.788 0.761 0.785 0.731 0.724
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chemical substances (type 4) and their categorization
(type 6), and PubChem substructure fingerprints (type 5).

The data included 1;260 chemicals extracted from the
complete DrugBank [66] database (accessed in Feb. 2014)
that were identified with at least one pharmacologic action
in the PubChem Compound database. In that way, every
chemical (drug) was assigned one or more MeSH headings
that described its pharmacologic actions and corresponded
to D27.505 tree of the 2014 MeSH Tree Structure (target rela-
tion R12). For example, established pharmacologic actions
for Aspirin include “Anti-Inflammatory Agents, Non-
Steroidal”, “Fibrinolytic Agents” and “Antipyretics.” To
increase the number of chemicals assigned to a particular
pharmacologic action, the actions of the chemical also
included those from its direct parents in the D27.505 tree.

Other data considered were publications from the
PubMed database (R13), data on depositors who submitted
substances of the chemicals present in PubChem Com-
pound records (R14), categories of data depositors (R46) and
PubChem substructure fingerprints (R15). These finger-
prints consist of a series of 881 binary indicators, each
denoting the presence or absence of a particular substruc-
ture in a molecule. Collectively, these binary keys provide a
“fingerprint” of a particular chemical structure form. Chem-
icals are constrained by a matrix of substructure-based Tani-
moto 2D similarity (Q1) obtained through PubChem Score
Matrix Service.

4.2.2 Preprocessing for Alternative Learning Methods

For the kernel-based fusion, we generated the kernel matri-
ces for chemicals from R13, R14, R15 andQ1 (Fig. 3) using the
polynomial kernel of degree 2. We included data on deposi-
tors (R46) by applying a polynomial kernel to R14R46: The
resulting kernel matrices were centered and normalized,
and the kernel parameters were selected in internal cross-
validation (see Section 4.1.2 for details). Preprocessing for
early integration by random forests and tri-SPMF learning
followed the same procedures as described in Sections 4.1.3
and 4.1.4, respectively. The prediction task was defined by
the associations of chemicals to pharmacologic actions given
by R12 (Fig. 3).

4.3 Scoring
We estimated the quality of inferred models by ten-fold
cross-validation. In each iteration, we split the set of genes
(chemicals) to a train and test set. The corresponding data
on genes (chemicals) from the test set was entirely omitted
from the training data. We developed prediction models

from the training data and tested them on the genes (chemi-
cals) from the test set. The performance was evaluated using
an F1 score, a harmonic mean of precision and recall, and
area under ROC curve (AUC). Both scores were averaged
across cross-validation runs.

5 RESULTS AND DISCUSSION

5.1 Predictive Performance
Table 1 presents the cross-validated F1 and AUC scores for
both gene function prediction (data set of slim GO
terms) and prediction of pharmacologic actions. The
accuracy of DFMF is at least comparable to MKL and
substantially higher than that of early integration by ran-
dom forests and relational learning by tri-SPMF. When
more genes and hence more data were considered for
the gene function prediction the performance of all four
fusion approaches improved.

Poorer performance of tri-SPMF was most probably due
to required introduction of relations into factorized system
that were not present in the input data. Consequently, the
ability of tri-SPMF to infer relations of interest between
other object types deteriorated considerably. Notice also
that tri-SPMF could not be applied if fusion schemes in
Figs. 2 or 3 would contain asymmetric or one-way relations,
such as those from the analysis of signed networks [67] and
computational biology [68], among others. We also
observed numerical instability with tri-SPMF, which was
exhibited as an increase in the value of objective function
between successive iterations. In contrast, DFMF exhibited
numerical stability in all experiments (results not shown).

The accuracy for nine GO terms selected by domain
expert is given in Table 2. The DFMF performs consistently
better than the other three approaches. Again, the early
integration by random forests is inferior to all three interme-
diate integration methods. Notice that, with only a few
exceptions, both F1 and AUC scores of DFMF are high. This
is important, as all nine gene processes and functions
observed are relevant for current research of D. discoideum
where the methods for data fusion can yield new candidate
genes for focused experimental studies.

Our fusion approach is faster than multiple kernel learn-
ing. DFMF required 18 minutes of runtime on a standard
desktop computer compared to 77 minutes for MKL to fin-
ish one iteration of cross-validation of the whole-genome
variant of gene function prediction task. The factorization
algorithm of DFMF also took less time to execute than tri-
SPMF due to redundant representation of fusion system
required by tri-SPMF.

TABLE 1
Cross-Validated F1 and AUC Accuracy Scores for Fusion by Matrix Factorization (DFMF), Kernel-Based Method (MKL),
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complete DrugBank [66] database (accessed in Feb. 2014)
that were identified with at least one pharmacologic action
in the PubChem Compound database. In that way, every
chemical (drug) was assigned one or more MeSH headings
that described its pharmacologic actions and corresponded
to D27.505 tree of the 2014 MeSH Tree Structure (target rela-
tion R12). For example, established pharmacologic actions
for Aspirin include “Anti-Inflammatory Agents, Non-
Steroidal”, “Fibrinolytic Agents” and “Antipyretics.” To
increase the number of chemicals assigned to a particular
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icals are constrained by a matrix of substructure-based Tani-
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Matrix Service.
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For the kernel-based fusion, we generated the kernel matri-
ces for chemicals from R13, R14, R15 andQ1 (Fig. 3) using the
polynomial kernel of degree 2. We included data on deposi-
tors (R46) by applying a polynomial kernel to R14R46: The
resulting kernel matrices were centered and normalized,
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the associations of chemicals to pharmacologic actions given
by R12 (Fig. 3).
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We estimated the quality of inferred models by ten-fold
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on genes (chemicals) from the test set was entirely omitted
from the training data. We developed prediction models
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substantially higher than that of early integration by ran-
dom forests and relational learning by tri-SPMF. When
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the gene function prediction the performance of all four
fusion approaches improved.

Poorer performance of tri-SPMF was most probably due
to required introduction of relations into factorized system
that were not present in the input data. Consequently, the
ability of tri-SPMF to infer relations of interest between
other object types deteriorated considerably. Notice also
that tri-SPMF could not be applied if fusion schemes in
Figs. 2 or 3 would contain asymmetric or one-way relations,
such as those from the analysis of signed networks [67] and
computational biology [68], among others. We also
observed numerical instability with tri-SPMF, which was
exhibited as an increase in the value of objective function
between successive iterations. In contrast, DFMF exhibited
numerical stability in all experiments (results not shown).

The accuracy for nine GO terms selected by domain
expert is given in Table 2. The DFMF performs consistently
better than the other three approaches. Again, the early
integration by random forests is inferior to all three interme-
diate integration methods. Notice that, with only a few
exceptions, both F1 and AUC scores of DFMF are high. This
is important, as all nine gene processes and functions
observed are relevant for current research of D. discoideum
where the methods for data fusion can yield new candidate
genes for focused experimental studies.

Our fusion approach is faster than multiple kernel learn-
ing. DFMF required 18 minutes of runtime on a standard
desktop computer compared to 77 minutes for MKL to fin-
ish one iteration of cross-validation of the whole-genome
variant of gene function prediction task. The factorization
algorithm of DFMF also took less time to execute than tri-
SPMF due to redundant representation of fusion system
required by tri-SPMF.

TABLE 1
Cross-Validated F1 and AUC Accuracy Scores for Fusion by Matrix Factorization (DFMF), Kernel-Based Method (MKL),

Random Forests (RF) and Relational Learning-Based Matrix Factorization (tri-SPMF)

Prediction task DFMF MKL RF tri-SPMF

F1 AUC F1 AUC F1 AUC F1 AUC

100 D. discoideum genes 0.799 0.801 0.781 0.788 0.761 0.785 0.731 0.724
1000 D. discoideum genes 0.826 0.823 0.787 0.798 0.767 0.788 0.756 0.741
Whole D. discoideum genome 0.831 0.849 0.800 0.821 0.782 0.801 0.778 0.787
Pharmacologic actions 0.663 0.834 0.639 0.811 0.643 0.819 0.641 0.810
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chemical substances (type 4) and their categorization
(type 6), and PubChem substructure fingerprints (type 5).

The data included 1;260 chemicals extracted from the
complete DrugBank [66] database (accessed in Feb. 2014)
that were identified with at least one pharmacologic action
in the PubChem Compound database. In that way, every
chemical (drug) was assigned one or more MeSH headings
that described its pharmacologic actions and corresponded
to D27.505 tree of the 2014 MeSH Tree Structure (target rela-
tion R12). For example, established pharmacologic actions
for Aspirin include “Anti-Inflammatory Agents, Non-
Steroidal”, “Fibrinolytic Agents” and “Antipyretics.” To
increase the number of chemicals assigned to a particular
pharmacologic action, the actions of the chemical also
included those from its direct parents in the D27.505 tree.

Other data considered were publications from the
PubMed database (R13), data on depositors who submitted
substances of the chemicals present in PubChem Com-
pound records (R14), categories of data depositors (R46) and
PubChem substructure fingerprints (R15). These finger-
prints consist of a series of 881 binary indicators, each
denoting the presence or absence of a particular substruc-
ture in a molecule. Collectively, these binary keys provide a
“fingerprint” of a particular chemical structure form. Chem-
icals are constrained by a matrix of substructure-based Tani-
moto 2D similarity (Q1) obtained through PubChem Score
Matrix Service.

4.2.2 Preprocessing for Alternative Learning Methods

For the kernel-based fusion, we generated the kernel matri-
ces for chemicals from R13, R14, R15 andQ1 (Fig. 3) using the
polynomial kernel of degree 2. We included data on deposi-
tors (R46) by applying a polynomial kernel to R14R46: The
resulting kernel matrices were centered and normalized,
and the kernel parameters were selected in internal cross-
validation (see Section 4.1.2 for details). Preprocessing for
early integration by random forests and tri-SPMF learning
followed the same procedures as described in Sections 4.1.3
and 4.1.4, respectively. The prediction task was defined by
the associations of chemicals to pharmacologic actions given
by R12 (Fig. 3).

4.3 Scoring
We estimated the quality of inferred models by ten-fold
cross-validation. In each iteration, we split the set of genes
(chemicals) to a train and test set. The corresponding data
on genes (chemicals) from the test set was entirely omitted
from the training data. We developed prediction models

from the training data and tested them on the genes (chemi-
cals) from the test set. The performance was evaluated using
an F1 score, a harmonic mean of precision and recall, and
area under ROC curve (AUC). Both scores were averaged
across cross-validation runs.

5 RESULTS AND DISCUSSION

5.1 Predictive Performance
Table 1 presents the cross-validated F1 and AUC scores for
both gene function prediction (data set of slim GO
terms) and prediction of pharmacologic actions. The
accuracy of DFMF is at least comparable to MKL and
substantially higher than that of early integration by ran-
dom forests and relational learning by tri-SPMF. When
more genes and hence more data were considered for
the gene function prediction the performance of all four
fusion approaches improved.

Poorer performance of tri-SPMF was most probably due
to required introduction of relations into factorized system
that were not present in the input data. Consequently, the
ability of tri-SPMF to infer relations of interest between
other object types deteriorated considerably. Notice also
that tri-SPMF could not be applied if fusion schemes in
Figs. 2 or 3 would contain asymmetric or one-way relations,
such as those from the analysis of signed networks [67] and
computational biology [68], among others. We also
observed numerical instability with tri-SPMF, which was
exhibited as an increase in the value of objective function
between successive iterations. In contrast, DFMF exhibited
numerical stability in all experiments (results not shown).

The accuracy for nine GO terms selected by domain
expert is given in Table 2. The DFMF performs consistently
better than the other three approaches. Again, the early
integration by random forests is inferior to all three interme-
diate integration methods. Notice that, with only a few
exceptions, both F1 and AUC scores of DFMF are high. This
is important, as all nine gene processes and functions
observed are relevant for current research of D. discoideum
where the methods for data fusion can yield new candidate
genes for focused experimental studies.

Our fusion approach is faster than multiple kernel learn-
ing. DFMF required 18 minutes of runtime on a standard
desktop computer compared to 77 minutes for MKL to fin-
ish one iteration of cross-validation of the whole-genome
variant of gene function prediction task. The factorization
algorithm of DFMF also took less time to execute than tri-
SPMF due to redundant representation of fusion system
required by tri-SPMF.

TABLE 1
Cross-Validated F1 and AUC Accuracy Scores for Fusion by Matrix Factorization (DFMF), Kernel-Based Method (MKL),

Random Forests (RF) and Relational Learning-Based Matrix Factorization (tri-SPMF)

Prediction task DFMF MKL RF tri-SPMF

F1 AUC F1 AUC F1 AUC F1 AUC

100 D. discoideum genes 0.799 0.801 0.781 0.788 0.761 0.785 0.731 0.724
1000 D. discoideum genes 0.826 0.823 0.787 0.798 0.767 0.788 0.756 0.741
Whole D. discoideum genome 0.831 0.849 0.800 0.821 0.782 0.801 0.778 0.787
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chemical substances (type 4) and their categorization
(type 6), and PubChem substructure fingerprints (type 5).

The data included 1;260 chemicals extracted from the
complete DrugBank [66] database (accessed in Feb. 2014)
that were identified with at least one pharmacologic action
in the PubChem Compound database. In that way, every
chemical (drug) was assigned one or more MeSH headings
that described its pharmacologic actions and corresponded
to D27.505 tree of the 2014 MeSH Tree Structure (target rela-
tion R12). For example, established pharmacologic actions
for Aspirin include “Anti-Inflammatory Agents, Non-
Steroidal”, “Fibrinolytic Agents” and “Antipyretics.” To
increase the number of chemicals assigned to a particular
pharmacologic action, the actions of the chemical also
included those from its direct parents in the D27.505 tree.

Other data considered were publications from the
PubMed database (R13), data on depositors who submitted
substances of the chemicals present in PubChem Com-
pound records (R14), categories of data depositors (R46) and
PubChem substructure fingerprints (R15). These finger-
prints consist of a series of 881 binary indicators, each
denoting the presence or absence of a particular substruc-
ture in a molecule. Collectively, these binary keys provide a
“fingerprint” of a particular chemical structure form. Chem-
icals are constrained by a matrix of substructure-based Tani-
moto 2D similarity (Q1) obtained through PubChem Score
Matrix Service.

4.2.2 Preprocessing for Alternative Learning Methods

For the kernel-based fusion, we generated the kernel matri-
ces for chemicals from R13, R14, R15 andQ1 (Fig. 3) using the
polynomial kernel of degree 2. We included data on deposi-
tors (R46) by applying a polynomial kernel to R14R46: The
resulting kernel matrices were centered and normalized,
and the kernel parameters were selected in internal cross-
validation (see Section 4.1.2 for details). Preprocessing for
early integration by random forests and tri-SPMF learning
followed the same procedures as described in Sections 4.1.3
and 4.1.4, respectively. The prediction task was defined by
the associations of chemicals to pharmacologic actions given
by R12 (Fig. 3).

4.3 Scoring
We estimated the quality of inferred models by ten-fold
cross-validation. In each iteration, we split the set of genes
(chemicals) to a train and test set. The corresponding data
on genes (chemicals) from the test set was entirely omitted
from the training data. We developed prediction models

from the training data and tested them on the genes (chemi-
cals) from the test set. The performance was evaluated using
an F1 score, a harmonic mean of precision and recall, and
area under ROC curve (AUC). Both scores were averaged
across cross-validation runs.

5 RESULTS AND DISCUSSION

5.1 Predictive Performance
Table 1 presents the cross-validated F1 and AUC scores for
both gene function prediction (data set of slim GO
terms) and prediction of pharmacologic actions. The
accuracy of DFMF is at least comparable to MKL and
substantially higher than that of early integration by ran-
dom forests and relational learning by tri-SPMF. When
more genes and hence more data were considered for
the gene function prediction the performance of all four
fusion approaches improved.

Poorer performance of tri-SPMF was most probably due
to required introduction of relations into factorized system
that were not present in the input data. Consequently, the
ability of tri-SPMF to infer relations of interest between
other object types deteriorated considerably. Notice also
that tri-SPMF could not be applied if fusion schemes in
Figs. 2 or 3 would contain asymmetric or one-way relations,
such as those from the analysis of signed networks [67] and
computational biology [68], among others. We also
observed numerical instability with tri-SPMF, which was
exhibited as an increase in the value of objective function
between successive iterations. In contrast, DFMF exhibited
numerical stability in all experiments (results not shown).

The accuracy for nine GO terms selected by domain
expert is given in Table 2. The DFMF performs consistently
better than the other three approaches. Again, the early
integration by random forests is inferior to all three interme-
diate integration methods. Notice that, with only a few
exceptions, both F1 and AUC scores of DFMF are high. This
is important, as all nine gene processes and functions
observed are relevant for current research of D. discoideum
where the methods for data fusion can yield new candidate
genes for focused experimental studies.

Our fusion approach is faster than multiple kernel learn-
ing. DFMF required 18 minutes of runtime on a standard
desktop computer compared to 77 minutes for MKL to fin-
ish one iteration of cross-validation of the whole-genome
variant of gene function prediction task. The factorization
algorithm of DFMF also took less time to execute than tri-
SPMF due to redundant representation of fusion system
required by tri-SPMF.

TABLE 1
Cross-Validated F1 and AUC Accuracy Scores for Fusion by Matrix Factorization (DFMF), Kernel-Based Method (MKL),

Random Forests (RF) and Relational Learning-Based Matrix Factorization (tri-SPMF)

Prediction task DFMF MKL RF tri-SPMF

F1 AUC F1 AUC F1 AUC F1 AUC

100 D. discoideum genes 0.799 0.801 0.781 0.788 0.761 0.785 0.731 0.724
1000 D. discoideum genes 0.826 0.823 0.787 0.798 0.767 0.788 0.756 0.741
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chemical substances (type 4) and their categorization
(type 6), and PubChem substructure fingerprints (type 5).

The data included 1;260 chemicals extracted from the
complete DrugBank [66] database (accessed in Feb. 2014)
that were identified with at least one pharmacologic action
in the PubChem Compound database. In that way, every
chemical (drug) was assigned one or more MeSH headings
that described its pharmacologic actions and corresponded
to D27.505 tree of the 2014 MeSH Tree Structure (target rela-
tion R12). For example, established pharmacologic actions
for Aspirin include “Anti-Inflammatory Agents, Non-
Steroidal”, “Fibrinolytic Agents” and “Antipyretics.” To
increase the number of chemicals assigned to a particular
pharmacologic action, the actions of the chemical also
included those from its direct parents in the D27.505 tree.

Other data considered were publications from the
PubMed database (R13), data on depositors who submitted
substances of the chemicals present in PubChem Com-
pound records (R14), categories of data depositors (R46) and
PubChem substructure fingerprints (R15). These finger-
prints consist of a series of 881 binary indicators, each
denoting the presence or absence of a particular substruc-
ture in a molecule. Collectively, these binary keys provide a
“fingerprint” of a particular chemical structure form. Chem-
icals are constrained by a matrix of substructure-based Tani-
moto 2D similarity (Q1) obtained through PubChem Score
Matrix Service.

4.2.2 Preprocessing for Alternative Learning Methods

For the kernel-based fusion, we generated the kernel matri-
ces for chemicals from R13, R14, R15 andQ1 (Fig. 3) using the
polynomial kernel of degree 2. We included data on deposi-
tors (R46) by applying a polynomial kernel to R14R46: The
resulting kernel matrices were centered and normalized,
and the kernel parameters were selected in internal cross-
validation (see Section 4.1.2 for details). Preprocessing for
early integration by random forests and tri-SPMF learning
followed the same procedures as described in Sections 4.1.3
and 4.1.4, respectively. The prediction task was defined by
the associations of chemicals to pharmacologic actions given
by R12 (Fig. 3).

4.3 Scoring
We estimated the quality of inferred models by ten-fold
cross-validation. In each iteration, we split the set of genes
(chemicals) to a train and test set. The corresponding data
on genes (chemicals) from the test set was entirely omitted
from the training data. We developed prediction models

from the training data and tested them on the genes (chemi-
cals) from the test set. The performance was evaluated using
an F1 score, a harmonic mean of precision and recall, and
area under ROC curve (AUC). Both scores were averaged
across cross-validation runs.

5 RESULTS AND DISCUSSION

5.1 Predictive Performance
Table 1 presents the cross-validated F1 and AUC scores for
both gene function prediction (data set of slim GO
terms) and prediction of pharmacologic actions. The
accuracy of DFMF is at least comparable to MKL and
substantially higher than that of early integration by ran-
dom forests and relational learning by tri-SPMF. When
more genes and hence more data were considered for
the gene function prediction the performance of all four
fusion approaches improved.

Poorer performance of tri-SPMF was most probably due
to required introduction of relations into factorized system
that were not present in the input data. Consequently, the
ability of tri-SPMF to infer relations of interest between
other object types deteriorated considerably. Notice also
that tri-SPMF could not be applied if fusion schemes in
Figs. 2 or 3 would contain asymmetric or one-way relations,
such as those from the analysis of signed networks [67] and
computational biology [68], among others. We also
observed numerical instability with tri-SPMF, which was
exhibited as an increase in the value of objective function
between successive iterations. In contrast, DFMF exhibited
numerical stability in all experiments (results not shown).

The accuracy for nine GO terms selected by domain
expert is given in Table 2. The DFMF performs consistently
better than the other three approaches. Again, the early
integration by random forests is inferior to all three interme-
diate integration methods. Notice that, with only a few
exceptions, both F1 and AUC scores of DFMF are high. This
is important, as all nine gene processes and functions
observed are relevant for current research of D. discoideum
where the methods for data fusion can yield new candidate
genes for focused experimental studies.

Our fusion approach is faster than multiple kernel learn-
ing. DFMF required 18 minutes of runtime on a standard
desktop computer compared to 77 minutes for MKL to fin-
ish one iteration of cross-validation of the whole-genome
variant of gene function prediction task. The factorization
algorithm of DFMF also took less time to execute than tri-
SPMF due to redundant representation of fusion system
required by tri-SPMF.

TABLE 1
Cross-Validated F1 and AUC Accuracy Scores for Fusion by Matrix Factorization (DFMF), Kernel-Based Method (MKL),

Random Forests (RF) and Relational Learning-Based Matrix Factorization (tri-SPMF)

Prediction task DFMF MKL RF tri-SPMF

F1 AUC F1 AUC F1 AUC F1 AUC

100 D. discoideum genes 0.799 0.801 0.781 0.788 0.761 0.785 0.731 0.724
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chemical substances (type 4) and their categorization
(type 6), and PubChem substructure fingerprints (type 5).

The data included 1;260 chemicals extracted from the
complete DrugBank [66] database (accessed in Feb. 2014)
that were identified with at least one pharmacologic action
in the PubChem Compound database. In that way, every
chemical (drug) was assigned one or more MeSH headings
that described its pharmacologic actions and corresponded
to D27.505 tree of the 2014 MeSH Tree Structure (target rela-
tion R12). For example, established pharmacologic actions
for Aspirin include “Anti-Inflammatory Agents, Non-
Steroidal”, “Fibrinolytic Agents” and “Antipyretics.” To
increase the number of chemicals assigned to a particular
pharmacologic action, the actions of the chemical also
included those from its direct parents in the D27.505 tree.

Other data considered were publications from the
PubMed database (R13), data on depositors who submitted
substances of the chemicals present in PubChem Com-
pound records (R14), categories of data depositors (R46) and
PubChem substructure fingerprints (R15). These finger-
prints consist of a series of 881 binary indicators, each
denoting the presence or absence of a particular substruc-
ture in a molecule. Collectively, these binary keys provide a
“fingerprint” of a particular chemical structure form. Chem-
icals are constrained by a matrix of substructure-based Tani-
moto 2D similarity (Q1) obtained through PubChem Score
Matrix Service.

4.2.2 Preprocessing for Alternative Learning Methods

For the kernel-based fusion, we generated the kernel matri-
ces for chemicals from R13, R14, R15 andQ1 (Fig. 3) using the
polynomial kernel of degree 2. We included data on deposi-
tors (R46) by applying a polynomial kernel to R14R46: The
resulting kernel matrices were centered and normalized,
and the kernel parameters were selected in internal cross-
validation (see Section 4.1.2 for details). Preprocessing for
early integration by random forests and tri-SPMF learning
followed the same procedures as described in Sections 4.1.3
and 4.1.4, respectively. The prediction task was defined by
the associations of chemicals to pharmacologic actions given
by R12 (Fig. 3).

4.3 Scoring
We estimated the quality of inferred models by ten-fold
cross-validation. In each iteration, we split the set of genes
(chemicals) to a train and test set. The corresponding data
on genes (chemicals) from the test set was entirely omitted
from the training data. We developed prediction models

from the training data and tested them on the genes (chemi-
cals) from the test set. The performance was evaluated using
an F1 score, a harmonic mean of precision and recall, and
area under ROC curve (AUC). Both scores were averaged
across cross-validation runs.

5 RESULTS AND DISCUSSION

5.1 Predictive Performance
Table 1 presents the cross-validated F1 and AUC scores for
both gene function prediction (data set of slim GO
terms) and prediction of pharmacologic actions. The
accuracy of DFMF is at least comparable to MKL and
substantially higher than that of early integration by ran-
dom forests and relational learning by tri-SPMF. When
more genes and hence more data were considered for
the gene function prediction the performance of all four
fusion approaches improved.

Poorer performance of tri-SPMF was most probably due
to required introduction of relations into factorized system
that were not present in the input data. Consequently, the
ability of tri-SPMF to infer relations of interest between
other object types deteriorated considerably. Notice also
that tri-SPMF could not be applied if fusion schemes in
Figs. 2 or 3 would contain asymmetric or one-way relations,
such as those from the analysis of signed networks [67] and
computational biology [68], among others. We also
observed numerical instability with tri-SPMF, which was
exhibited as an increase in the value of objective function
between successive iterations. In contrast, DFMF exhibited
numerical stability in all experiments (results not shown).

The accuracy for nine GO terms selected by domain
expert is given in Table 2. The DFMF performs consistently
better than the other three approaches. Again, the early
integration by random forests is inferior to all three interme-
diate integration methods. Notice that, with only a few
exceptions, both F1 and AUC scores of DFMF are high. This
is important, as all nine gene processes and functions
observed are relevant for current research of D. discoideum
where the methods for data fusion can yield new candidate
genes for focused experimental studies.

Our fusion approach is faster than multiple kernel learn-
ing. DFMF required 18 minutes of runtime on a standard
desktop computer compared to 77 minutes for MKL to fin-
ish one iteration of cross-validation of the whole-genome
variant of gene function prediction task. The factorization
algorithm of DFMF also took less time to execute than tri-
SPMF due to redundant representation of fusion system
required by tri-SPMF.

TABLE 1
Cross-Validated F1 and AUC Accuracy Scores for Fusion by Matrix Factorization (DFMF), Kernel-Based Method (MKL),

Random Forests (RF) and Relational Learning-Based Matrix Factorization (tri-SPMF)

Prediction task DFMF MKL RF tri-SPMF

F1 AUC F1 AUC F1 AUC F1 AUC

100 D. discoideum genes 0.799 0.801 0.781 0.788 0.761 0.785 0.731 0.724
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chemical substances (type 4) and their categorization
(type 6), and PubChem substructure fingerprints (type 5).

The data included 1;260 chemicals extracted from the
complete DrugBank [66] database (accessed in Feb. 2014)
that were identified with at least one pharmacologic action
in the PubChem Compound database. In that way, every
chemical (drug) was assigned one or more MeSH headings
that described its pharmacologic actions and corresponded
to D27.505 tree of the 2014 MeSH Tree Structure (target rela-
tion R12). For example, established pharmacologic actions
for Aspirin include “Anti-Inflammatory Agents, Non-
Steroidal”, “Fibrinolytic Agents” and “Antipyretics.” To
increase the number of chemicals assigned to a particular
pharmacologic action, the actions of the chemical also
included those from its direct parents in the D27.505 tree.

Other data considered were publications from the
PubMed database (R13), data on depositors who submitted
substances of the chemicals present in PubChem Com-
pound records (R14), categories of data depositors (R46) and
PubChem substructure fingerprints (R15). These finger-
prints consist of a series of 881 binary indicators, each
denoting the presence or absence of a particular substruc-
ture in a molecule. Collectively, these binary keys provide a
“fingerprint” of a particular chemical structure form. Chem-
icals are constrained by a matrix of substructure-based Tani-
moto 2D similarity (Q1) obtained through PubChem Score
Matrix Service.

4.2.2 Preprocessing for Alternative Learning Methods

For the kernel-based fusion, we generated the kernel matri-
ces for chemicals from R13, R14, R15 andQ1 (Fig. 3) using the
polynomial kernel of degree 2. We included data on deposi-
tors (R46) by applying a polynomial kernel to R14R46: The
resulting kernel matrices were centered and normalized,
and the kernel parameters were selected in internal cross-
validation (see Section 4.1.2 for details). Preprocessing for
early integration by random forests and tri-SPMF learning
followed the same procedures as described in Sections 4.1.3
and 4.1.4, respectively. The prediction task was defined by
the associations of chemicals to pharmacologic actions given
by R12 (Fig. 3).

4.3 Scoring
We estimated the quality of inferred models by ten-fold
cross-validation. In each iteration, we split the set of genes
(chemicals) to a train and test set. The corresponding data
on genes (chemicals) from the test set was entirely omitted
from the training data. We developed prediction models

from the training data and tested them on the genes (chemi-
cals) from the test set. The performance was evaluated using
an F1 score, a harmonic mean of precision and recall, and
area under ROC curve (AUC). Both scores were averaged
across cross-validation runs.

5 RESULTS AND DISCUSSION

5.1 Predictive Performance
Table 1 presents the cross-validated F1 and AUC scores for
both gene function prediction (data set of slim GO
terms) and prediction of pharmacologic actions. The
accuracy of DFMF is at least comparable to MKL and
substantially higher than that of early integration by ran-
dom forests and relational learning by tri-SPMF. When
more genes and hence more data were considered for
the gene function prediction the performance of all four
fusion approaches improved.

Poorer performance of tri-SPMF was most probably due
to required introduction of relations into factorized system
that were not present in the input data. Consequently, the
ability of tri-SPMF to infer relations of interest between
other object types deteriorated considerably. Notice also
that tri-SPMF could not be applied if fusion schemes in
Figs. 2 or 3 would contain asymmetric or one-way relations,
such as those from the analysis of signed networks [67] and
computational biology [68], among others. We also
observed numerical instability with tri-SPMF, which was
exhibited as an increase in the value of objective function
between successive iterations. In contrast, DFMF exhibited
numerical stability in all experiments (results not shown).

The accuracy for nine GO terms selected by domain
expert is given in Table 2. The DFMF performs consistently
better than the other three approaches. Again, the early
integration by random forests is inferior to all three interme-
diate integration methods. Notice that, with only a few
exceptions, both F1 and AUC scores of DFMF are high. This
is important, as all nine gene processes and functions
observed are relevant for current research of D. discoideum
where the methods for data fusion can yield new candidate
genes for focused experimental studies.

Our fusion approach is faster than multiple kernel learn-
ing. DFMF required 18 minutes of runtime on a standard
desktop computer compared to 77 minutes for MKL to fin-
ish one iteration of cross-validation of the whole-genome
variant of gene function prediction task. The factorization
algorithm of DFMF also took less time to execute than tri-
SPMF due to redundant representation of fusion system
required by tri-SPMF.

TABLE 1
Cross-Validated F1 and AUC Accuracy Scores for Fusion by Matrix Factorization (DFMF), Kernel-Based Method (MKL),

Random Forests (RF) and Relational Learning-Based Matrix Factorization (tri-SPMF)

Prediction task DFMF MKL RF tri-SPMF

F1 AUC F1 AUC F1 AUC F1 AUC

100 D. discoideum genes 0.799 0.801 0.781 0.788 0.761 0.785 0.731 0.724
1000 D. discoideum genes 0.826 0.823 0.787 0.798 0.767 0.788 0.756 0.741
Whole D. discoideum genome 0.831 0.849 0.800 0.821 0.782 0.801 0.778 0.787
Pharmacologic actions 0.663 0.834 0.639 0.811 0.643 0.819 0.641 0.810

!ZITNIK AND ZUPAN: DATA FUSION BY MATRIX FACTORIZATION 49

Gene

PMID

R14

Experimental
   ConditionR13

1

GO Term
R12

KEGG
Pathway

R16

2

MeSH
Descriptor

R45

R42

5

6
R62

1

2

3

4 5

6

Chemical

Θ1

Pharmacologic
Action

R12

PMIDR13

Depositor

R14

Substructure
Fingerprint

R15
Depositor
Category

R46

1

2

3

4

5

6

chemical substances (type 4) and their categorization
(type 6), and PubChem substructure fingerprints (type 5).

The data included 1;260 chemicals extracted from the
complete DrugBank [66] database (accessed in Feb. 2014)
that were identified with at least one pharmacologic action
in the PubChem Compound database. In that way, every
chemical (drug) was assigned one or more MeSH headings
that described its pharmacologic actions and corresponded
to D27.505 tree of the 2014 MeSH Tree Structure (target rela-
tion R12). For example, established pharmacologic actions
for Aspirin include “Anti-Inflammatory Agents, Non-
Steroidal”, “Fibrinolytic Agents” and “Antipyretics.” To
increase the number of chemicals assigned to a particular
pharmacologic action, the actions of the chemical also
included those from its direct parents in the D27.505 tree.

Other data considered were publications from the
PubMed database (R13), data on depositors who submitted
substances of the chemicals present in PubChem Com-
pound records (R14), categories of data depositors (R46) and
PubChem substructure fingerprints (R15). These finger-
prints consist of a series of 881 binary indicators, each
denoting the presence or absence of a particular substruc-
ture in a molecule. Collectively, these binary keys provide a
“fingerprint” of a particular chemical structure form. Chem-
icals are constrained by a matrix of substructure-based Tani-
moto 2D similarity (Q1) obtained through PubChem Score
Matrix Service.

4.2.2 Preprocessing for Alternative Learning Methods

For the kernel-based fusion, we generated the kernel matri-
ces for chemicals from R13, R14, R15 andQ1 (Fig. 3) using the
polynomial kernel of degree 2. We included data on deposi-
tors (R46) by applying a polynomial kernel to R14R46: The
resulting kernel matrices were centered and normalized,
and the kernel parameters were selected in internal cross-
validation (see Section 4.1.2 for details). Preprocessing for
early integration by random forests and tri-SPMF learning
followed the same procedures as described in Sections 4.1.3
and 4.1.4, respectively. The prediction task was defined by
the associations of chemicals to pharmacologic actions given
by R12 (Fig. 3).

4.3 Scoring
We estimated the quality of inferred models by ten-fold
cross-validation. In each iteration, we split the set of genes
(chemicals) to a train and test set. The corresponding data
on genes (chemicals) from the test set was entirely omitted
from the training data. We developed prediction models

from the training data and tested them on the genes (chemi-
cals) from the test set. The performance was evaluated using
an F1 score, a harmonic mean of precision and recall, and
area under ROC curve (AUC). Both scores were averaged
across cross-validation runs.

5 RESULTS AND DISCUSSION

5.1 Predictive Performance
Table 1 presents the cross-validated F1 and AUC scores for
both gene function prediction (data set of slim GO
terms) and prediction of pharmacologic actions. The
accuracy of DFMF is at least comparable to MKL and
substantially higher than that of early integration by ran-
dom forests and relational learning by tri-SPMF. When
more genes and hence more data were considered for
the gene function prediction the performance of all four
fusion approaches improved.

Poorer performance of tri-SPMF was most probably due
to required introduction of relations into factorized system
that were not present in the input data. Consequently, the
ability of tri-SPMF to infer relations of interest between
other object types deteriorated considerably. Notice also
that tri-SPMF could not be applied if fusion schemes in
Figs. 2 or 3 would contain asymmetric or one-way relations,
such as those from the analysis of signed networks [67] and
computational biology [68], among others. We also
observed numerical instability with tri-SPMF, which was
exhibited as an increase in the value of objective function
between successive iterations. In contrast, DFMF exhibited
numerical stability in all experiments (results not shown).

The accuracy for nine GO terms selected by domain
expert is given in Table 2. The DFMF performs consistently
better than the other three approaches. Again, the early
integration by random forests is inferior to all three interme-
diate integration methods. Notice that, with only a few
exceptions, both F1 and AUC scores of DFMF are high. This
is important, as all nine gene processes and functions
observed are relevant for current research of D. discoideum
where the methods for data fusion can yield new candidate
genes for focused experimental studies.

Our fusion approach is faster than multiple kernel learn-
ing. DFMF required 18 minutes of runtime on a standard
desktop computer compared to 77 minutes for MKL to fin-
ish one iteration of cross-validation of the whole-genome
variant of gene function prediction task. The factorization
algorithm of DFMF also took less time to execute than tri-
SPMF due to redundant representation of fusion system
required by tri-SPMF.

TABLE 1
Cross-Validated F1 and AUC Accuracy Scores for Fusion by Matrix Factorization (DFMF), Kernel-Based Method (MKL),

Random Forests (RF) and Relational Learning-Based Matrix Factorization (tri-SPMF)

Prediction task DFMF MKL RF tri-SPMF

F1 AUC F1 AUC F1 AUC F1 AUC

100 D. discoideum genes 0.799 0.801 0.781 0.788 0.761 0.785 0.731 0.724
1000 D. discoideum genes 0.826 0.823 0.787 0.798 0.767 0.788 0.756 0.741
Whole D. discoideum genome 0.831 0.849 0.800 0.821 0.782 0.801 0.778 0.787
Pharmacologic actions 0.663 0.834 0.639 0.811 0.643 0.819 0.641 0.810
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