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Today’s Lecture

1) Why figures matter
2) Figures in science
3) How to design effective figures

4) Tools, tips, and guidelines

Disclaimer: The suggestions and remarks in this presentation are based on personal research experience.
Research practices and approaches vary. Exercise your own judgment regarding the suitability of the content.



Today’s Lecture

1) Why figures matter @.

2) Figures in science
3) How to design effective figures

4) Tools, tips, and guidelines



Why do Figures Matter?

= Figures are often the first part of research papers
examined by editors and your peers

= [Informative and well-designed figures:

= Convey facts, ideas, and relationships far more clearly
and concisely than text

* Provide a means for discovering/quantifying patterns,
trends, and comparisons

= Help the audience better understand the objective and
results of your research

Marinka Zitnik -- Stanford / Harvard -- https://cs.stanford.edu/~marinka



Design once, reuse many times

Reuse figures from p
posters, talks, proposals, e
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YEAST GENETICS

A global genetic interaction
network maps a wiring diagram
of cellular function

Michael Costanzo,” Benjamin VanderSluis,” Elizabeth N. Koch,” Anastasia Baryshnikova,"
Carles Pons,” Guihong Tan,” Wen Wang, Matej Usaj, Julia Hanchard, Susan D. Lee,
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INTRODUCTION: Genetic interactions occur
when mutations in two or more genes com-
bine to generate an unexpected phenotype. An
extreme negative or synthetic lethal

interaction occurs when two mutations, neither
lethal individually, combine to cause cell death.
Conversely, positive genetic interactions occur
when two mutations produce a phenotype that
s less severe than expected. Genetic interactions
identify functional relationshi een genes
and can be harnessed for biological discovery
and therapeutic target identification. They may
also explain a considerable component of the
undiscovered genetics associated with human

A global network of genetic interaction profile similarities. (Left) Genes with similar genetic interaction
profiles are connected in a global network, such that genes exhibiting more similar profies are located
closer to each other, whereas genes with less similar profiles are positioned farther apart. (Right) Spatial
analysis of functional enrichment was used to identify and color network regions enriched for similar Gene

Ontology bioprocess terms.

SCIENCE sclencemag.org

diseases. Here, we describe construction and
analysis of a comprehensive genetic interac-
tion network for a eukaryotic cell,

RATIONALE: Genome sequencing projects are
providing an unprecedented view of genetic
variation. However, our ability to interpret ge-
netic information to predict inherited pheno-
types remains limited, in large part due to uw
extensive bufferi nomes, making m

individual eukaryotic genes dispensable mr
life. To explore the extent to which genetic in-
teractions reveal cellular function and contrib-
ute to complex phenotypes, and to discover the
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general principles of genetic networks, we used
automated yeast genetics to construct a global
genetic interaction networl

RESULTS: We tested most of the ~6000 genes
in the yeast Saccharomyees arevisia for all possible
pairwise genetic interactions, identifying nearly
1 million interactions, negative
and ~350,000 positive interactions, spanning
9% of all yeast genes. Es-
ent vere network
hubs, displaying five times
as many interactions as
nonessential genes. The set
of genetic interactions or
the genetic interaction pro-
fle for a gene provides a quantitative mea-
sure of function, and a global network based
on genetic interaction profile similarity re-
vealed a hierarchy of modules reflecting the
functional architecture of a cell. Negative in-
teractions connected functionally related genes,
‘mapped core bioprocesses, and identified pleio-
tropic genes, whereas positive interactions often
mapped general regulatory connections asso-
ciated with defects in cell cycle progression or
cellular proteostasis. Importantly, the global
network illustrates how coherent sets of nega-
tive or positive genetic interactions connect
in complex and pathways to map a func-
tional wiring diagram of the cell

Read the full article

CONCLUSION: A global genetic interaction
network highlights the functional organization

of a cell and provides a resource for predicting
gene and pathway function. This network em-
phasizes the prevalence of genetic interactions
and their potential to compound phenotypes
associated with single mutations. Negative ge-
netic interactions tend to connect functionally
related genes and thus may be
predicted using alternative func-
tional information. Although less
functionally m(urm.l ive, positive
interactions may provide insights
into general ‘mechanisms of ge-
netic suppression or resiliency.
We anticipate that the ordered
topology of the global genetic net-
work, in which genetic interac-
tions connect coherently within
and between protein complexes
and pathways, may be exploited
10 decipher genotype-to-phenotype
relationships. =
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INTRODUCTION: Genetic interactions occur
when mutations in two or more genes com-
bine to generate an unexpected phenotype. An
extreme negative or synthetic lethal genetic
interaction occurs when two mutations, neither
lethal individually, combine to cause cell death.
Conversely, positive genetic interactions occur
when two mutations produce a phenotype that
less severe than expected. Genetic interactions
identify functional relationships between genes
and can be harnessed for biological discovery
and therapeutic target identification. They may
also explain a considerable component of the
undiscovered genetics associated with human
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diseases. Here, we describe construction and
analysis of a comprehensive genetic interac-
tion network for a eukaryotic cell

RATIONALE: Genome sequencing projects are
providing an unprecedented view of genetic
tion. However, our ability to interpret ge-
netic information to predict inherited pheno-
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individual eukaryotic genes dispensable for
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general principles of genetic networks, we used
automated yeast genetics to construct a global
genetic interaction network.

RESULTS: We tested most of the ~6000 genes
in the yeast Saccharomyees cenevisiae for all possible
pairwise genetic interactions, identifying nearly
550,000 negative
and ~350,000 positive interactions, spanning

~90% of all yeast genes. Es-
sential genes were network
hubs, displaying five times
as many interactions as
nonessential genes. The set
of genetic interactions or
the genetic interaction pro-
file for a gene provides a quantitative mea-
sure of function, and a global network based
on genetic interaction profile similarity re-
vealed a hierarchy of modules reflecting the

teractions connected functionally related genes,
mapped core bioprocesses, and identified pleio-
5, whereas positive interactions often
mapped general regulato so-
ciated with defects in cell cycle progression or
cellular proteostasis. Importantly, the global
network illustrates how coherent sets of nega-
tive or positive genetic interactions connect
protein complex and pathways to map a func-
tional wiring diagram of the cell.
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CONCLUSION: A global genetic inter:
network highlights the functional organization
of a cell and provides a resource for predicting
gene and pathway function. This network em-
phasizes the prevalence of genetic interactions
and their potential to compound phenotypes
associated with single mutations. Negative ge-
netic interactions tend to connect functionally
related genes and thus may be
predicted using alternative func-
tional information. Although less
functionally informative, positive
interactions may provide insights
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mutane fitness phenotypes (Figure
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analysis of the majority of all possible
veast gene pairs (~18 million) enabled the construction of
the first comprehensive GI network for any organism, a
global network consisting of nearly one million Gls
(~550.000 ngative and ~350.000 positive) (6%,

A global genetic profile similarity network
defines a functional map of a yeast cell

The set of negative and positive GIs for a given gene,
called a GI profile, provides a quantitative phenotypic
mawure that is indicative of gene function. Genes
belonging to similar biological processes tend to share

numerous Gls in common, and genes encoding proteins
that function together in the same pathway or protein
complex often display highly similar GI profiles. A com-
prehensive nerwork of
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General overlap between global genetic and
physical interaction networks

enetic accessibility of the budding yeast enables
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protein-protein interactions (PPls) [10,11,12,13"
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conneetions, not only is the global GI network much
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Promote your research among
general audience and media
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Effective figures
IMmprove your papers

Maximize impact, boost

citation count, stand out
among your peers




Today’s Lecture

1) Why figures matter /
2) Figures in science %\:.

3) How to design effective figures

4) Tools, tips, and guidelines



Two lypes of Papers with
Different Visual Structure

1) Core CS conference papers:
KDD, NeurlPS, ICML, ICLR, AAAI, etc.

2) Interdisciplinary journal papers:
Nature, Science, PNAS, etc.

Marinka Zitnik -- Stanford / Harvard -- https://cs.stanford.edu/~marinka



Core CS Conference Papers

The focus Is on the
development of new methods
and their evaluation anc
comparison on benchmark
datasets
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Core CS Conference Papers:
Visual Structure

= Figure 1: Key methodological contribution
= Focus on most important information

= Impress your audience!
= |s your method/system the fastest, the largest, the most accurate”?
= What is the hard problem that your method solves?
= \What makes your method different from related work"?

= Figure 2-3: Overview and algorithmic details
= |nputs + Data transformation + Outputs

= Show details about data transformations:
= Graph convolutions, neural architectures, etc.

= Figure 4+: Results

11/6/19 Marinka Zitnik -- Stanford / Harvard -- https://cs.stanford.edu/~marinka 12



Core CS Conference Papers:
Visual Structure

Hard: non-standard
design, custom drawings

Figure 2-3

Figure 4+

Easy: standard design,
visualization libraries like
~ Matplotlib and Seaborn



Examples:

Core CS Conference
Papers




Abstract

Supervised learning on molecules has incredi-
ble potential to be useful in chemistry, drug dis-
covery, and materials science. Luckily, sev-
eral promising and closely related neural network
models invariant to molecular symmetries have
already been described in the literature. These
models learn a message passing algorithm and
aggregation procedure to compute a function of
their entire input graph. At this point, the next
step is to find a particularly effective variant of
this general approach and apply it to chemical
prediction benchmarks until we either solve them
or reach the limits of the approach. In this pa-
per, we reformulate existing models into a sin-
gle common framework we call Message Pass-
ing Neural Networks (MPNNs) and explore ad-
ditional novel variations within this framework.
Using MPNNs we demonstrate state of the art re-
sults on an important molecular property predic-
tion benchmark; these results are strong enough
that we believe future work should focus on
datasets with larger molecules or more accurate
ground truth labels.

Figure 1. A Message Pasm
propertles of an orga

Impress your

audience! &

\/

DFT Targets
~ 103 seconds [£,w0, .-

Message Passing Neural Net

//"\ ,/H
\\ //

~ 1072 seconds

Network predicts quantum
modeling a computationally

Focus on key information: “Our
method is so fast! Our paper
should be published at ICML!”

Gilmer et al., Neural Message Passing for Quantum Chemistry, ICML, 2017.
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Abstract

Large cascades can develop in online social networks as peo-
ple share information with one another. Though simple re-
share cascades have been studied extensively, the full range
of cascading behaviors on social media is much more di-
verse. Here we study how diffusion protocols, or the social ex-
changes that enable information transmission, affect cascade
growth, analogous to the way communication protocols de-
fine how information is transmitted from one point to another.
Studying 98 of the largest information cascades on Facebook,
we find a wide range of diffusion protocols — from cascading
reshares of images, which use a simple protocol of tapping a
single button for propagation, to the ALS Ice Bucket Chal-
lenge, whose diffusion protocol involved individuals creating
and posting a video, and then nominating specific others to
do the same. We find recurring classes of diffusion protocols,
and identify two key counterbalancing factors in the con-
struction of these protocols, with implications for a cascade’s
growth: the effort required to participate in the cascade, and
the social cost of staying on the sidelines. Protocols requiring
greater individual effort slow down a cascade’s propagation,
while those imposing a greater social cost of not participating
increase the cascade’s adoption likelihood. The predictability
of transmission also varies with protocol. But regardless of
mechanism, the cascades in our analysis all have a similar re-
production number (/1.8), meaning that lower rates of expo-
sure can be offset with higher per-exposure rates of adoption.
Last, we show how a cascade’s structure can not only differ-
entiate these protocols, but also be modeled through branch-
ing processes. Together, these findings provide a framework
for understanding how a wide variety of information cascades
can achieve substantial adoption across a network.

Impress your
audience! @

Figure 1: Thg” \q tree of a cascade with a volunteer

“Cascades can be so large! Despite that,
we know how to study them! Our paper

should be published at ICWSM!”

Cheng et al., Do Diffusion Protocols Govern Cascade Growth?, ICWSM, 2018.
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ABSTRACT

Cascades of information-sharing are a primary mechanism by which
content reaches its audience on social media, and an active line of
research has studied how such cascades, which form as content is
reshared from person to person, develop and subside. In this paper,
we perform a large-scale analysis of cascades on Facebook over
significantly longer time scales, and find that a more complex pic-
ture emerges, in which many large cascades recur, exhibiting mul-
tiple bursts of popularity with periods of quiescence in between.
We characterize recurrence by measuring the time elapsed between
bursts, their overlap and proximity in the social network, and the
diversity in the demographics of individuals participating in each
peak. We discover that content virality, as revealed by its initial
popularity, is a main driver of recurrence, with the availability of
multiple copies of that content helping to spark new bursts. Still,
beyond a certain popularity of content, the rate of recurrence drops
as cascades start exhausting the population of interested individu-
als. We reproduce these observed patterns in a simple model of
content recurrence simulated on a real social network. Using only
characteristics of a cascade’s initial burst, we demonstrate strong

performanceinpredictine whether it will recurin the future
Keywords:)] Focus on most important  |tion

diffusion: nl information: Figure 1 answers
uestion asked by the title

Impress your
audience! @

\/

0K - Image Meme
How to be skinny
7.5K - 1. Notice that your body is covered

in skin
2. Say “Wow I'm skinny”

Congratulations you are now skinny
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|
Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Figure 1: An example of a image meme that has recurred, or resur-
faced in popularity multiple times, sometimes as a continuation of
the same copy, and sometimes as a new copy of the same meme (ex-
ample copies are shown as thumbnails). This recurrence appears as
multiple peaks in the plot of reshares as a function of time.

“Cascades can be so complex! Despite
that, we know how to study them! Our

paper should be published at WWW!”

Cheng et al., Do Cascades Recur?, WWW, 2016.
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Abstract

Fairness in machine learning has predominantly
been studied in static classification settings with-
out concern for how decisions change the under-
lying population over time. Conventional wisdom
suggests that fairness criteria promote the long-
term well-being of those groups they aim to pro-
tect. We study how static fairness criteria interact
with temporal indicators of well-being, such as
long-term improvement, stagnation, and decline
in a variable of interest. We demonstrate that even
in a one-step feedback model, common fairness
criteria in general do not promote improvement
over time, and may in fact cause harm in cases
where an unconstrained objective would not. We
completely characterize the delayed impact of
three standard criteria, contrasting the regimes in
which these exhibit qualitatively different behav-
1or. In addition, we find that a natural form of
measurement error broadens the regime in which
fairness criteria perform favorably. Our results
highlight the importance of measurement and tem-
poral modeling in the evaluation of fairness cri-
teria, suggesting a range of new challenges and
trade-offs.

Impress your
audience! &
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Figure 1. The above figure shows the outcome curve. The horizontal axis represents the selection rate for the population; the vertical axis
represents the mean change in score. (a) depicts the full spectrum of outcome regimes, and colors indicate regions of active harm, relative
harm, and no harm. In (b): a group that has much potential for gain, in (c): a group that has no potential for gain.

N\

Focus on key information: Delayed impact of
FML is not well-understood. Here we show a
complete characterization of delayed impact.

Liu et al., Delayed Impact of Fair Machine Learning?, ICML, 2018. (Best paper award)
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ABSTRACT

Deep learning models for graphs have achieved strong performance
for the task of node classification. Despite their proliferation, cur-
rently there is no study of their robustness to adversarial attacks.
Yet, in domains where they are likely to be used, e.g. the web, adver-
saries are common. Can deep learning models for graphs be easily
fooled? In this work, we introduce the first study of adversarial
attacks on attributed graphs, specifically focusing on models ex-
ploiting ideas of graph convolutions. In addition to attacks at test
time, we tackle the more challenging class of poisoning/causative
attacks, which focus on the training phase of a machine learn-
ing model. We generate adversarial perturbations targeting the
node’s features and the graph structure, thus, taking the dependen-
cies between instances in account. Moreover, we ensure that the
perturbations remain unnoticeable by preserving important data
characteristics. To cope with the underlying discrete domain we
propose an efficient algorithm NETTACK exploiting incremental
computations. Our experimental study shows that accuracy of node
classification significantly drops even when performing only few
perturbations. Even more, our attacks are transferable: the lea
attacks generalize to other state-of-the-art node classification
els and unsupervised approaches, and likewise are successful
when only limited knowledge about the graph is given.

Impress your
audience! &
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Figure 1: Small perturbations of the graph structure and
node features lead to misclassification of the target.

Focus on key information: Yes, graph-based
models for deep learning can be easily fooled.
Here we show how devastating attacks can be.

Zugner et al., Adversarial Attacks on Neural Networks for Graph Data, KDD, 2018. (Best

paper award)
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Interdisciplinary Journal

he

Papers

focus Is on new scientific
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ts and demonstrating the

importance of those insights to

advance science
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Interdisciplinary Journal
Papers: Visual Structure

Figure 1: Dataset, approach and key result
= Impress your audience!

Figure 2: Key result, detailed and unpackead
Figure 3: Orthogonal evidence supporting results
Figure 4: Orthogonal evidence supporting results

Supplementary Figures: Methodological
contributions, algorithms, robustness analyses

Marinka Zitnik -- Stanford / Harvard -- https://cs.stanford.edu/~marinka



Interdisciplinary Journal
Papers: Visual Structure

Very hard: non-standard
design, custom drawing

Flgure 3 .................................

Figure 4

Hard: non-standard design,
mixture of custom drawings and
standard visualization libraries
rd.edu/~marinka 22



Examples:

Interdisciplinary Journal
Papers




RESEARCH ARTICLE

BIG DATA

Quantitative analysis of

p Opulation-scale family tre Figures provide a visual
with millions of relatives L= ™20t

Joanna Kaplanis,"** Assaf Gordon,"** Tal Shor,”* Omer Weissbrod,’
Mary Wahl,»*>'® Michael Gershovits,” Barak Markus,”> Mona Sheikh,>
Melissa Gymrek, “*7%? Gaurav Bhatia,’®"" Daniel G. MacArthur, "?'°
Alkes L. Price,"”""'? Yaniv Erlichl’z’s’ls’m‘]’

Family trees have vast applications in fields as diverse as genetics, anthropology, and
economics. However, the collection of extended family trees is tedious and usually relies on
resources with limited geographical scope and complex data usage restrictions. We
collected 86 million profiles from publicly available online data shared by genealogy
enthusiasts. After extensive cleaning and validation, we obtained population-scale family
trees, including a single pedigree of 13 million individuals. We leveraged the data to
partition the genetic architecture of human longevity and to provide insights into the
geographical dispersion of families. We also report a simple digital procedure to overlay
other data sets with our resource.

Kaplanis et al., Quantitative analysis of population-scale family trees with millions of
relatives, Science, 2018.
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Fig. 1. Overview of the collected data.
(A) The basic algorithmic steps to

Local form valid pedigree structures from the

merging input data available via the Geni APL.
Gray, profiles; red, marriages. See fig. S2

— - y. p g g

for a comprehensive overview. The last
step shows an example of a real pedigree
from the website with ~6000 individuals
spanning about seven generations.

(B) Size distribution of the largest 1000
family trees after data cleaning, sorted
by size.
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Fig. 2. Analysis and validation of demographic data. (A) Distribution of the life-span distributions versus Geni (black) and HMD (red). See also
of life expectancy per year. Colors correspond to the frequency of profiles  fig. S5A. (D) Geographic distribution of the annotated place-of-birth

of individuals who died at a certain age for each year. Asterisks indicate information. Every pixel corresponds to a profile in the data set.

deaths at military age in the Civil War and First and Second World (E) Validation of geographical assignment by historical trends. Top:

Wars. (B) Expected life span in Geni (black) and the Oeppen and Cumulative distribution of profiles since 1500 for each city on a logarithmic
Vaupel study [red (27)] as a function of year of death. (C) Comparison scale as a function of time. Bottom: Year of first settlement in the city.
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Fig. 3. The genetic architecture of longevity. (A) Regression (red) of
child longevity on its mid-parent longevity (defined as difference between
age of death and expected life span). Black squares, average longevity
of children binned by the mid-parent value; gray bars, estimated 95%
confidence interval (Cl). (B) Estimated narrow-sense heritability (red)
with 95% confidence intervals (black bars) obtained by the mid-parent
design stratified by the average decade of birth of the parents.

IBD

(C) Correlation of a trait as a function of IBD under strict additive

(h?, orange), squared (Vaa, purple), and cubic (Vaaa, green) epistasis
architectures after dormancy adjustments. (D) Average longevity
correlation as a function of IBD (black circles) grouped in 5% increments
(gray: 95% Cl) after adjusting for dominancy. A dashed line denotes

the extrapolation of the models toward monozygotic twins from the Danish
Twin Registry (red circle).
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COMPUTER SCIENCE

Human-level performance in 3D
multiplayer games with population-
based reinforcement learning

Max Jaderberg*t, Wojciech M. Czarnecki”*{, Iain Dunningt, Luke Marris, Guy Lever,
Antonio Garcia Castaiieda, Charles Beattie, Neil C. Rabinowitz, Ari S. Morcos,
Avraham Ruderman, Nicolas Sonnerat, Tim Green, Louise Deason, Joel Z. Leibo,
David Silver, Demis Hassabis, Koray Kavukcuoglu, Thore Graepel

Reinforcement learning (RL) has shown great success in increasingly complex single-agent
environments and two-player turn-based games. However, the real world contains multiple
agents, each learning and acting independently to cooperate and compete with other
agents. We used a tournament-style evaluation to demonstrate that an agent can achieve
human-level performance in a three-dimensional multiplayer first-person video game,
Quake lll Arena in Capture the Flag mode, using only pixels and game points scored as
input. We used a two-tier optimization process in which a population of independent RL
agents are trained concurrently from thousands of parallel matches on randomly
generated environments. Each agent learns its own internal reward signal and rich
representation of the world. These results indicate the great potential of multiagent
reinforcement learning for artificial intelligence research.

Jaderberg et al., Human-level performance in 3D multiplayer games with population-
based reinforcement learning, Science, 2019.
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Fig. 1. CTF task and computational training framework. (A and B) Two
example maps that have been sampled from the distribution of (A)
outdoor maps and (B) indoor maps. Each agent in the game sees only its
own first-person pixel view of the environment. (C) Training data are
generated by playing thousands of CTF games in parallel on a diverse
distribution of procedurally generated maps and (D) used to train

the agents that played in each game with RL. (E) We trained a
population of 30 different agents together, which provided a diverse

set of teammates and opponents to play with and was also used to
evolve the internal rewards and hyperparameters of agents and
learning process. Each circle represents an agent in the population,
with the size of the inner circle representing strength. Agents undergo
computational evolution (represented as splitting) with descendents
inheriting and mutating hyperparameters (represented as color).
Gameplay footage and further exposition of the environment variability
can be found in movie S1.

Jaderberg et al., Human-level performance in 3D multiplayer games with population-
based reinforcement learning, Science, 2019.
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Fig. 2. Agent architecture and benchmarking. (A) How the agent network architectures are described in fig. S11. (B) (Top) The Elo skill
processes a temporal sequence of observations x; from the environment. ratings of the FTW agent population throughout training (blue) together
The model operates at two different time scales, faster at the bottom with those of the best baseline agents by using hand-tuned reward
and slower by a factor of t at the top. A stochastic vector-valued shaping (RS) (red) and game-winning reward signal only (black),
latent variable is sampled at the fast time scale from distribution Q; on the ~ compared with human and random agent reference points (violet, shaded
basis of observations x;. The action distribution =n; is sampled conditional region shows strength between 10th and 90th percentile). The FTW agent
on the latent variable at each time step t. The latent variable is regularized  achieves a skill level considerably beyond strong human subjects,
by the slow moving prior Py, which helps capture long-range temporal whereas the baseline agent’s skill plateaus below and does not learn
correlations and promotes memory. The network parameters are anything without reward shaping [evaluation procedure is provided in
updated by using RL according to the agent’'s own internal reward signal (28)]. (Bottom) The evolution of three hyperparameters of the FTW
r¢, which is obtained from a learned transformation w of game points agent population: learning rate, Kullback-Leibler divergence (KL)
pt. W is optimized for winning probability through PBT, another level of weighting, and internal time scale 1, plotted as mean and standard
training performed at yet a slower time scale than that of RL. Detailed deviation across the population.

Jaderberg et al., Human-level performance in 3D multiplayer games with population-
based reinforcement learning, Science, 2019.
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Fig. 3. Knowledge repre:

Note how observations x; are
visualized, i.e., maps of base camps

arranged in a similarity-preserving topological embedding and colored
according to activation (fig. S5). (D) Distributions of situation conditional
activations (each conditional distribution is colored gray and green) for
particular single neurons that are distinctly selective for these CTF

situations and show the predictive accuracy of this neu
true return of the agent's internal reward si

prediction, its value function (orange denot
denotes low value). (G) Regions where the a;
representation diverges (red), the agent’s si
KL between the agent’s slow- and fast-ti

Note the use of
(28). (H) The four-step temporal sequence m atC h ed CO | 0 rS
“opponent base camping.” (I) Three autom

behaviors of agents and corresponding regions in the t-SNE embedding.
(Right) Average occurrence per game of each behavior for the FTW
agent, the FTW agent without temporal hierarchy (TH), self-play with
reward shaping agent, and human subjects (fig. S9).

Jaderberg et al., Human-level performance in 3D multiplayer games with population-
based reinforcement learning, Science, 2019.
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Fig. 4. Progression of agent during training. Shown is the development
of knowledge representation and behaviors of the FTW agent over the
training period of 450,000 games, segmented into three phases (movie
S2). "Knowledge” indicates the percentage of game knowledge that is
linearly decodable from the agent’s representation, measured by average
scaled AUCROC across 200 features of game state. Some knowledge is
compressed to single-neuron responses (Fig. 3A), whose emergence in
training is shown at the top. “Relative internal reward magnitude”
indicates the relative magnitude of the agent’s internal reward weights

of 3 of the 13 events corresponding to game points p. Early in training, the
agent puts large reward weight on picking up the opponent's flag,
whereas later, this weight is reduced, and reward for tagging an opponent
and penalty when opponents capture a flag are increased by a factor of
two. “Behavior probability” indicates the frequencies of occurrence for 3 of

Top Memory Read Locations

Teammate Following
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the 32 automatically discovered behavior clusters through training.
Opponent base camping (red) is discovered early on, whereas teammate
following (blue) becomes very prominent midway through training
before mostly disappearing. The “home base defense” behavior (green)
resurges in occurrence toward the end of training, which is in line with the
agent’s increased internal penalty for more opponent flag captures.
“Memory usage" comprises heat maps of visitation frequencies

for (left) locations in a particular map and (right) locations of the agent
at which the top-10 most frequently read memories were written to
memory, normalized by random reads from memory, indicating

which locations the agent learned to recall. Recalled locations change
considerably throughout training, eventually showing the agent

recalling the entrances to both bases, presumably in order to perform
more efficient navigation in unseen maps (fig. S7).

Jaderberg et al., Human-level performance in 3D multiplayer games with population-
based reinforcement learning, Science, 2019.
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Evolution of resilience in protein interactomes across
the tree of life

Marinka Zitnik?, Rok Sosi¢?, Marcus W. Feldman®', and Jure Leskovec®“’

aDepartment of Computer Science, Stanford University, Stanford, CA 94305; PDepartment of Biology, Stanford University, Stanford, CA 94305; and ‘Chan
Zuckerberg Biohub, San Francisco, CA 94158

Contributed by Marcus W. Feldman, December 18, 2018 (sent for review October 19, 2018; reviewed by Edoardo Airoldi and Aviv Bergman)

Phenotype robustness to environmental fluctuations is a common
biological phenomenon. Although most phenotypes involve mul-
tiple proteins that interact with each other, the basic principles of
how such interactome networks respond to environmental unpre-
dictability and change during evolution are largely unknown.
Here we study interactomes of 1,840 species across the tree of
life involving a total of 8,762,166 protein-protein interactions.
Our study focuses on the resilience of interactomes to network
failures and finds that interactomes become more resilient during
evolution, meaning that interactomes become more robust to net-
work failures over time. In bacteria, we find that a more resilient
interactome is in turn associated with the greater ability of the
organism to survive in a more complex, variable, and competi-
tive environment. We find that at the protein family level proteins
exhibit a coordinated rewiring of interactions over time and that
a resilient interactome arises through gradual change of the net-
work topology. Our findings have implications for understanding
molecular network structure in the context of both evolution and
environment.

Zitnik et al., Evolution of resilience in protein interactomes across the tree of life,
PNAS, 2019.
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Today’s Lecture

1) Why figures matter

2) Figures in science /

3) How to design effective figtées

4) Tools, tips, and guidelines



Principle #1: Design figures for the
audience (not for you)

Before your design figures think about:

1) Make-up of the audience:
= Will a figure appear in a specialized journal”?
= |s afigure aimed at a broad readership?

2) Background knowledge of the audience:
= Audience may not know what you know

= Figures should provide all the information necessary
for the audience to fully comprehend them

3) Disciplinary conventions:
=  Graphical conventions and norms exist in each field
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Principle #2: Design a clear visual

struct

m\2

Ure with pleasant symmetries

Rolandi et al., A brief guide to designing effective figures for the scientific paper. Advanced Materials 23.38 (2011)
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Principle #3: Use visual contrast,

but keep figures simple

ORIENTATION

WEIGHT POSITION
HEEEBN
O EEEBN
HEHEBN
H _HBE

]

Rolandi et al., A brief guide to designing effective figures for the scientific paper. Advanced Materials 23.38 (2011)



Principle #4: Use readable
and legible typography

Adequate readability due to high value contrast

text text

Inadequate readability due to low value contrast

Inadequate readability due to patterned background

Hd 1

Rolandi et al., A brief guide to designing effective figures for the scientific paper. Advanced Materials 23.38 (2011)
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Principle #5: Be consistent, align
panels and use sufficient padding

Lack of alignment




The Good, Bad, and Ugly

Good Bad Ugly
Hello Hello ngfa
World World
Good Bad Ugly
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Good Ugly
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e: Jean Fan, Harvard
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Today’s Lecture

1) Why figures matter /

2) Figures in science /

3) How to design effective figuRfs

4) Tools, tips, and guidelines t@l



Key Rules to ALWAYS Follow

1) Save raw data and results to a tsv/csv/binary file:
= Your figures will need multiple rounds of editing

2) Read in the data and design figures

Important: Save figures as PDF or other vector format:

= You might need to use multiple tools to draw a figure

= Example:
1. First, use seaborn to draw a clustermap
2. Then, export clustermap as PDF
3. Finally, use Adobe lllustrator to annotate the clustermap
= Example:
1. First, use D3.js to layout a network
2. Then, export the network as PDF
3. Finally, use Adobe lllustrator to show node features and node labels
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Why shouldn’t you use raster
formats (e.q., JPG, GIF, PNG, TIF)?

Raster images:

= Use a fixed number of colored pixels and can’t be
dramatically resized (pixilation, distortion issues)

= \When saved, they cannot be reopened and edited!

Vector images (e.g., PDF, EPS, Al, SVG):

|

= Remain editable! . \

= You can open them in lllustrator and edit text or anAy‘
other element within the graphic

= (Can be converted to a raster image but not vice-versa
= plt.savefig(‘myfig.pdf’)

Only use raster format for web, Github repo, etc.
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Tools, Software &

Frameworks




Tools, Software, and Frameworks

= Adobe lllustrator D
= Adobe Creative Cloud

= [aleXiT -
= chachatelier.fr/latexit

= Matplotlib -
= matplotlib.org

= Seaborn
= seaborn.pydata.org

= Bokeh
= bokeh.pydata.org -

= D3.js

= d3js.org o
= (GeoPandas

= geopandas.org o

11/6/19

Google Charts

= developers.google.com/chart
Circos

= Circos.ca

gnuplut

= gnuplot.info

TikZ

= texample.net/tikz

Plotly

= plot.ly/python

Mmissingno

= github.com/ResidentMario/missingno
billboard.js

= naver.github.io/billboard.js
Squaire.js

= wsj.github.io/squaire
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Adobe lllustrator and Alternatives

® O ® @ software at Stanford: Product X +

<« C (0 © NotSecure | web.stanford, jits/cgi-bin/services/software/p.. @ % ® Q & 0 @ P | @ :

STANFOR D | SOFTWARE AT STANFORD

UNIVERSITY

= Where to get on campus: Product Details

RESOURCES Computing an

n FO r d e part me n‘tal p urc h ase Adobe Creative Cloud (was Creative Suite)

by Adobe Systems
Software Licensing Adobe Creative Suite is now Creative Cloud - Stanford has an Enterprise Term License Agreement (a
Web Store subscription program) with Adobe. Available in the Stanford Licensing Webstore.

'
| | U se fo r F ree u St nfo rd | b r ry & , gf;aﬂ:ﬂzn (Purchasing This product contains: Adobe Acrobat DC Pro (1-Year license), Contribute, and more [see below]
a | a ice
n

» Stanford Bookstore

munication » Soft ford » Product Details

Essential Stanford Software Where to get on campus:

. '
R e S I d e r ]'t | al ‘ | I | S't e r S ’ é‘::;{j:;giz‘fe‘;"“a‘ For Departmental Purchase: ITS - Software Licensing [Provider's web site]
» Shered Computing Use for Free: Library & Residential Clusters [Provider's web site]
Environment

Details

Manufacturer: Adobe Systems

Runs on: Windows, Web-Based, Macintosh

This product contains: Adobe Acrobat DC Pro (1-Year license), Contribute, Dreamweaver, Fireworks,
C (0 @ Not§ Flash Professional, lllustrator, InDesign, Photoshop, Premiere Pro

® O ® @ stanford Univers

Search for Another Product

Type the name of the product you're looking for — or its brand/manufacturer/maker.

* Free alternatives:
= |nkscape, https://inkscape.org

= Classroom DesKIOpS == Macu: r
Single-boot macOS computers are located in the Wallenberg PWR classrooms, Hume 108 & 201, and SAPP 115.

'
| | . = Flex Class Desktops — macOS | Windows « Laptops — macOS - Instructor Stations ' - macOS | Windows
. . . The Flex Class, a dedicated instructional space, is located in Lathrop 180 and 190. The space contains high-end, dual-
) boot machines with the standard Windows cluster image and a specialized macOS image. It also contains a set of
macOS laptops for student use.

= Multimedia Stations -- macOS
Multimedia Stations are Ioca(ed in the Lathrop Leaming Hub, Lathrop Create Space, Lathrop 180 c\assrocm Old Union

. L] 2nd floor, Branch Libraries: Art, Manzanita: Kimball, Roble: Media Space, Stern: Burbank. Computer: hlgh -end iMacs
- y . - . With a 5K display and nusiry standard production and editing tools. including Adobe CC (Greaive Gloud) and Final Cut

= Language Lab - macOS | Windows  Instructor Stations* — macOS | Windows

The Language Lab is located in Lathrop 199. It has the same software as the cluster image, but with interface

Note about Adobe Software: customizations to serve the needs of language learners.
Adobe Creative Suite, including Photoshop, lllustrator, & InDesign, is no longer supported on the cluster image due to licensing restrictions. " f;‘;g‘;‘s":f‘r"-;ﬁ'g“;sa;ogac?nie checked out from the Lathrop Tech Desk
You can find a full suite of Adobe Creative Cloud apps on our Multimedia Stations. i
We also have Adobe alternatives on all of our computers, including GIMP for Photoshop, Inkscape for lllustrator and Scribus for InDesign. Note about Adobe Software:
. . . Adobe Creative Suite, including Photoshop, liustrator, & InDesign, is o longer supported on the cluster image due tolcensing restictions
Locations with Adobe Creative Cloud: You can find a fullsute of Adobe Creative Cloud apps on our Mulfimedia Stations.

We also have Adobe altematives on all of our computers, including GIMP for Photoshop, Inkscape for llustrator and Scribus for InDesign.

Locations with Adobe Creative Cloud:

Lathrop Learning Hub

= Lathrop Create Space

Lathrop 180 classroom
= Old Union 2nd floor

= Branch Libraries: Art

- Manzanlta Klmba"‘ fential clusters available to local residents only
= Roble: Media Space” 7 speitc setings vy by satonton

= Stern: Burbank

= Lathrop Learning Hub
Lathrop Create Space
Lathrop 180 classroom
Old Union 2nd floor
Branch Libraries: Art
Manzanita: Kimball
Roble: Media Space”
Stern: Burbank™
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How to get from a JS vis
to an effective figure”

Three steps:

1) Use a JS library from two slide ago and generate a
visualization

2) Generate a PDF file from HTML.:

= stackoverflow.com/questions/18191893/generate-pdf-
from-html-in-div-using-javascript

3) Open the PDF in lllustrator and make further edits:
= Change colors
= Add labels and annotations
= Add new visual elements, e.g., insets, logos
= Combine with other graphics to get a multi-panel figure
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Tools for Network & Relational Data

= Gephi, gephi.org

= Graphviz, graphviz.org

= NetworkX, networkx.qgithub.io
= JSNetworkX, jsnetworkx.org
= igraph, igraph.org/python

= sigma.js, sigmajs.org

= Cytoscape, cytoscape.org

= Hive plots, hiveplot.com
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Martin Krzywinski
BC Cancer Research Center
http://mkweb.bcgsc.callinnet

ve Plots

Hospitality received by political staff of
10 Downing Street & Cabinet Office

May 2010 - June 2013

- graph represents 523 gifts of hospitality (of 861 for the period)
- hosts that made 6+ registered gifts of hospitality are listed

- nodes are ranked on axes by political party then activity

- it shows advisers’ appointing ministers as registered

Chris Saunders, former Economic Adviser to DPM
Richard Reeves, former Policy Dir. to DPM
James McGrory, Press Adviser to DPM
Jonny Oates, Chief of Staff to DPM
Olly Grender, Dir. of Communications to DPM
Lena Pietsch, former Dir. of Comms. to DPM

Sean Kemp, Special Adviser to DMP

Special
Advisers

Ministers

Nick Clegg

by Robin Edwards, 2013
@geotheory | geotheory.co.uk
source: www.gov.uk (http://bit.ly/1aSX36M)

Nodes are mapped to and positioned on radially distributed
linear axes — this mapping is based on network structural
properties. Edges are drawn as curved links.




How to draw networks with
features, labels, weights, directions?

Four steps:

1) Use NetworkX to create a network with metadata:

= nx.set node attributes(G, {O: {'attr1': 20, 'attr2': 'nothing'}, 1:
{'attr2': 31})

= nx.set edge attributes(G, attrs = {(0, 1): {'attr1': 20, 'attr2":
'nothing'}, (1, 2): {'attr2": 3}})

2) Write the network in Gephi’'s GEXF format:

= nx.write gexf(G, "net.gexf")

3) Use Gephi to layout, color, visualize, annotate the net:

= Can select and then edit any subgraph based on any
combination of metadata

4) Export the network as a PDF figure from Gephi
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How to select a network layout?

Goal: No hairballs in your papers!

= Rule of thumb: Can visualize networks with <1,000 nodes
= Unless networks have special structure or have custom network layouts

Gephi Cytoscape

| ---Choose a layout B AppEgRTcols el
Bundle Edges >
v —'——Choose a layout Clear All Edge Bends
( Circular Layout Node Layout Tools
. Contraction ;
Dual Circle Layout SEiTE
Expansion Apply Preferred Layout F5
Force Atlas 7
) gl g
- ot e e
° Circular Layout
Stacked Node Layout
e
| -—-Choose a layout Attribute Circle Layout >
- Degree Sorted Circle Layout
Prefuse Force Directed Layot
o ® { Noverlap Prefuse Force Directed OpenCL Layout
OpenOrd Group Attributes Layout »

Radial Axis Layout
Random Layout
Rotate

Yifan Hu Compound Spring Embedder (CoSE)

Yifan Hu Proportional

Edge-weighted Force directed (BioLayout)
Edge-weighted Spring Embedded Layout

Inverted Self-Organizing Map Layout

Hairballs can be pretty, but are
they useful? What we need is
insight. Not a picture!
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Colors
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Color Advice

Adobe color, https://color.adobe.com

Color Wheel ~ Extract from an Image

Apply Color Harmony
Rule

© Analogous

O Monochromatic

O T 4 Color rules

O Complementary

O Compound

O shades

O custom

Color Mode #FF3B0D EEE1O0C #FF0059 #EB0CC7 #D10DFF

RGB 4 ElT 0 o EEE 0 2 [ [ SR B O 209
[ O . 59 [ . 21 D 0 () . 2 ) 13

SHEENNNTTT ) s OEEEENNNTT ) [ O S -] EETT O] ] v IR0 255
B o0 EET O o EEE ) 0 EE o EE @
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Color Advice: Brewer Palettes

Brewer palettes: Color combinations selected for their

special properties for use in data visualization
Color Brewer, http://colorbrewer2.org

3 types of palettes:

e 28 o 0La
© sequential dive;'g g () qualitative -
. . Pick a color scheme: | |
qualitative — colors do not 7
have a perceived order Hi ﬁ H i i E ﬁ i N
- THTHT
sequential — colors have a i i oEn
perceived order and ST P Y e e
perceived difference between | o H 2
successive colors is uniform i
http://mkweb.bcgsc.ca/brewer
leerglﬂg - tWO baCk'tO' QUALITATIVE COL:R Bzmﬁrzrmsnesmmauc
. setl ues spectral
back sequential palettes Seeeecee “coeeee Ssoccoee
. 000 ee00 o0 e
starting from a common color [« " esese SPecceee
d.ark.z... [ 1) e 02000 p.lyqo o0

Color palettes for color blindness, http://mkweb.bcgsc.ca/colorblind
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Where to Get Ideas for

Effective Figures?




Where to get ideas for figures?

1) Papers published in last issues of Nature, Science,
PNAS, Nature Methods, Nature Biotech, etc.

= No need to read the papers, just look at figures!
2) Martin Krzywinski, mkweb.bcgsc.ca
= |nventor of several popular visualization tools
= Designed many Nature, Science, etc. covers
3) www.d3-graph-gallery.com
= Gallery with hundreds of chart, graphs, geo, part-of-whole
= Reproducible & editable source codel!
4) developers.google.com/chart/interactive/docs/qgallery
= Qver 30 chart types, including many non-standard ones
= [utorials and source code for every chart type!
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here to get id

Evolution

o

Line plot

Area

Stacked area

0Ky

www.d3-graph-gallery.com

Many non-standard, but highly

eas for figures?

effective chart types. Source code!

Streamq

Distribution

Map th

—

\ @ ==

{‘ o A |||||II||. S a—

¥z v AN AN
7Y et
- Violin Density Histogram Boxplot Ridgeline
< W %
Choropleth Hexbin map Cartog Correlation
] ] o0 o .
oo ® L 111} ] { JXJ '.
ees EEEENE °o 000 ..
30300 EEEEE T I
PO ° P -0
c00ce
al | |
N Scatter Heatmap Correlogram Bubble Connected scatter Density 2d
ng
Chord diagram Network Sankey Arc diat
General knowledge
E
i t < Barplot Spider / Radar Wordcloud Parallel Lollipop Circular Barplot
L] -
C Part of a whole
Basics Custom Interactivity Shape ht .
=l ¢ 0@
Treemap Doughnut Pie chart Dendrogram Circular packing
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Where to get ideas for figures?

https://developers.google.com/chart with source code!

Chart Types Red Sox Attendance —

Chart Gallery Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov

Annotation Charts

Area Charts

Bar Charts

Bubble Charts
Calendar Charts
Candlestick Charts
Column Charts

m M4 42w

Combo Charts
Diff Charts
Donut Charts
Gantt Charts
Gauge Charts
GeoCharts

mwm-AH4H=H4HZ2n

Histograms
Intervals

Line Charts
Maps

Org Charts

Pie Charts
Sankey Diagrams
Scatter Charts
Stepped Area Charts
Table Charts
Timelines

Tree Map Charts
Trendlines
Waterfall Charts
Word Trees

Miscellaneous Examples
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Where to get ideas for figures?

https://developers.google.com/chart with source code!

Chart Types
Chart Gallery
Annotation Charts
Area Charts

Bar Charts

Bubble Charts
Calendar Charts
Candlestick Charts
Column Charts
Combo Charts
Diff Charts

Donut Charts
Gantt Charts
Gauge Charts
GeoCharts
Histograms
Intervals

Line Charts

Maps

Org Charts

Pie Charts

Sankey Diagrams
Scatter Charts
Stepped Area Charts
Table Charts
Timelines

Tree Map Charts
Trendlines
Waterfall Charts
Word Trees

Miscellaneous Examples

m M4 42w

O m4=4=20nm

Red Sox Attendance

27000

Jan Feb Mar Apr May Jun Jul Aug Sep Oct
Region GeoCharts

%

11/6/19

200 - 700

H The regions style fills entire regions (typically countries) with colors corresponding to the values that you assign.
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Where to get ideas for figures?

https://developers.google.com/chart with source code!

Chart Types
Chart Gallery

Jan Feb Mar Apr May Jun Jul Aug Oct Nov

Annotation Charts s
Area Charts M

T
Bar Charts W Region GeoChart

eglion GeolLhnarts

Bubble Charts T 9
Calendar Charts g The regions style fills entire regions (typically countries) with colors corresponding to the values that you assign.

Candlestick Charts
Column Charts
Combo Charts
Diff Charts
Donut Charts
Gantt Charts
Gauge Charts
GeoCharts
Histograms
Intervals

Line Charts
Maps

Org Charts

Pie Charts
Sankey Diagrams
Scatter Charts
Stepped Area Charts
Table Charts
Timelines

Tree Map Charts
Trendlines
Waterfall Charts
Word Trees

Miscellaneous Examples

Red Sox Attendance 27000

I Brazil
I Mexico

Canada

IUSA

Angola I

Morocco
Portugal

I Spain Senegal I

France
South Africa

Erlnd Mali

China

Japan

India J

% j_Q‘
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Where to get ideas for figures?

https://developers.google.com/chart with source code!

Chart Types
Chart Gallery
Annotation Charts
Area Charts

Bar Charts

Bubble Charts
Calendar Charts
Candlestick Charts
Column Charts
Combo Charts
Diff Charts

Donut Charts
Gantt Charts
Gauge Charts
GeoCharts
Histograms
Intervals

Line Charts

Maps

Org Charts

Pie Charts
Sankey Diagrams
Scatter Charts
Stepped Area Charts
Table Charts
Timelines

Tree Map Charts
Trendlines
Waterfall Charts
Word Trees

Miscellaneous Examples

Red Sox Attendance

Oct Nov Dec

The regions style fills entire regions (typically countries) with colors corresponding to the values that you assign.

Jan Feb Mar Apr May Jun Jul
S
M
T
VTV Region GeoCharts
B
S
2000
Angola I
dogs
Ve better than -< hamsters
I Brazil / § klttens
awesome
people too
- family
IMexic ‘\ ] evil
weird

Canaq

IUSA

11/6/19

cats

~ kibble

- eat < mice

\
\
\

meowing
in the cradle lyrics
- for adoption

\

% 3“
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Where to get ideas for figures?

https://developers.google.com/chart with source code!

Chart Types

Chart Gallery
Annotation Charts
Area Charts

Bar Charts

Bubble Charts
Calendar Charts
Candlestick Charts
Column Charts

Red Sox Attendance

Jan Feb

= »

w MM+ s+

Mar Apr Jun Jul Oct

May

Aug Sep

Region GeoCharts

The regions style fills entire regions (typically countries) with colors corresponding to the values that you assign.

Combo Charts
Diff Charts

20l L .
AngolaI é‘s‘" N “~

Donut Charts
Gantt Charts
Gauge Charts
GeoCharts
Histograms I e
Intervals

Line Charts
Maps

Org Charts

Pie Charts
Sankey Diagrams

I Mexict

Scatter Charts
Stepped Area Charts
Table Charts
Timelines

Tree Map Charts

Canaq

Trendlines
Waterfall Charts

IUSA

Word Trees

Miscellaneous Examples

are

cats

dogs

better than < hamsters :

kittens

awesome
— people too
- family

- evil

weird

Kibble
/

President

Vice President

Secretary of State

George Washington John Adams Thomas Jefferson
John Adams Thomas Jefferson Aaron Burr George Clinton
l Thomas Jefferson Timothy Pickering James Madison

1790 1800 1810
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Guidelines #1

1) Tufte’s design rules:
= sealthreinhold.com/school/tuftes-rules

= Data-to-ink-ratio: Maximize data-ink and erase as
much non-data-ink as possible (avoid chart junk)

Final

2) Artis science is art, mkweb.bcgsc.ca :
o version

First r_’
version -1




Guidelines #2

3) Google’s principles for designing charts:

» material.io/design/communication/data-visualization.htm!

= Principles: Be honest, Lend a helping hand, Delight users, Give
clarity of focus, Embrace scale, Provide structure

4) I\/Ianuel L|ma DeS|gn Lead @ Google:

S AW . e Filter by:
== = - vﬁ,” ﬂ el
> N Art (74)
- Biology (60)
. . . . ==

E

ﬁ Computer Systems (39)
— f‘ g Food Webs (16)
Internet (35)
Knowledge Networks (141)

~ |t d -— AT Multi-Domain Representation (70)
Music (47)
www.visualcomplexity.com otners (77)

7 Pattern Recognition (53)

P~y o R Yana”
ﬂ v Political Networks (34)
— i
% -

o Semantic Networks (44)
/ . .‘_. Social Networks (135)
‘ R . Transportation Networks (70)
= \\ . . World Wide Web (55)
Q ° > .

See All (1000)
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Today’s Lecture

1) Why figures matter

2) Figures in science

3) How to design effective figuRfs

GRS KN

4) Tools, tips, and guidelines



Three Takeaway Messages

1) Figures are often the first part of research papers
examined by editors and your peers

2) Well-designed figures convey facts, ideas, and
relationships far more clearly/concisely than text

3) Focus on effectively conveying complex
information rather than on attention-getting
decoration
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