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Many components, parts that need to work
together for the airplane to function properly
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Advancements in engineering have tremendously
improved airplanes since the 191" century
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Protein interaction network:
Backbone of activity in a cell

Physical interactions between
an airplane’s parts
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How do prote

N networks evolve?

Carvunis & Ideker, Cell’14
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Wiring of a cell

But we do not know how networks change with evolution!

= Whether or not natural selection shapes the evolution of protein-protein
interaction networks remains unclear [Nature’15, ‘16, '17]

= Whether network rewiring is a consequence of sequence divergence or a
driver of evolution remains an open question [Science’17]
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loday’s lalk

1) How protein-protein interaction
networks change with evolution”

2) How network changes affect
ohenotypes and organism’s abllity to
survive in natural habitats’’ [

structure

Environments
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Why Is modeling network
evolution hard?

Massive time span and rare data samples
= Species separated by millions of years of evolution

Messy, incomplete network data

= [ack of high-coverage protein interaction data, e.g.,

— humans: 20 thousand genes > need to test ~200 million protein
pairs for interaction

— <30% of human protein pairs tested in last 20 years [Rolland et al.,
Cell’14]

Many possible confounders

=  Genome size, number of protein-coding genes, etc.
= Network size, degree distributions, presence of hub nodes, etc.
= |nvestigative biases towards model organisms
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Our Approach

1. Build a dataset by integrating and combining data:
= Species-specific protein-interaction networks
* Phylogenetic species information
= Ecological data on natural habitats in which species live

2. Use dataset to study evolution of protein networks:
= How protein interaction networks change with evolution?
= How network changes affect species’ survival?
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Key Element: Evolutionary Dataset

Objective: Capture all documented protein-protein

Interactions across all species
A M-

We build a unigue dataset:

1,840 networks: 1,539 bacteria, 111 archaea, 190 eukarya
1,450,633 nodes: Species’ proteins

8,762,166 edges: Physical protein-protein interactions (PPIs)

= Protein interactome: Species represented by their PPl networks
Tree of life: Evolutionary history of species
= Ecology: Complexity of habitats in which species live

>300X larger dataset than previous studies
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Tree of Networks

Interactome of an
eukaryotic species

Interactome of a
bacterial species
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Species are located in the leaves of the
tree. Each species is represented by its
protein interactome
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Modeling Task

Data:
Tree of networks

Task: How interactomes respond to protein network
fallures affect and how that response changes over time:

= Protein network failures can occur through:
= Removal of a protein (e.g., nonsense mutation)
= Disruption of a PPI (e.g., environmental factors, such as availability of
resources)
= Resilience to network failures is critical:

=  Breakdown of proteins affects the exchange of biological information
in the cell [Huttlin et al., Nature’17]

= Failures can fragment the interactome and lead to cell death and
disease [Chen et al., Nat. Genet.’ 18]
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ow to characterize resilience to
network failures?

Define interactome resilience measure:
= |nformation-theoretic formulation
= Shannon diversity theory [Sheldon’69]

Resilience measure has three key elements:

1. Simulate network failure at a particular rate
@ 2. Measure how fragmented the interactome becomes
3. Repeat 1-2 across all possible failure rates
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Simulate a fal

ure and measure

fragmentation of the interactome

Upon network failure, interactome fragments into
Isolated components. Entropy of component sizes!

Interactome

Simulate network failure by
randomly removing a fraction of
proteins (nodes) in the interactome

® Removed node Isolated component -

Removed PPI
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Fragmentation: Example
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Resllience

across all possible fal

interactome
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Resilience of interactomes
for all species in the dataset |
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Evolution leads to resilience
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Protein interactomes become
more resilient with evolution

More genetic change a
species has undergone, more

resilient is its interactome

Protein interactomes become
more resilient to network
failures over time
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s this finding due to data biases?

Causal model: Alternative hypotheses for the relationship
between evolution and resilience

e

Evolution (nucleotide substitutions
per DNA site)

- Publication count

- Genome size (Mb)

- Distinct protein-coding genes

- Interactome size (#nodes)

- Interactome size (#edges)

- Interactome diameter

- Interactome density

- Average number of interacting partners

- Maximum number of interacting partners

Random effects
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Interactomes become more

resilient with evolution

Interactome resilience

Alternative: (Non)-biological
factors have a strong affect on
interactomes and better explain
resilience than evolution
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FINndings are not due to data biases

Findings are:
= (Consistent across taxonomic groups
= Robust to network data quality and network size
= (Consistent across different types of assays

Findings are not due to confounding:
= (Genome, e.g., genome size, protein-coding genes

= Networks, e.g., hub nodes, broad-tailed degree
distributions, number of interactions in each species

= |nvestigative bias, e.g., much-studied proteins and species

Results indicate key findings will still hold when more
protein interaction data become available
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Resilience i1s beneficial
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Organisms with more resilient interactomes can survive

iINn more complex, diverse, and competitive habitats

E.g., Terrestrial habitat Oxygen  Highly resilient interactome
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Fraction of regulatory genes
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Resilience i1s beneficial
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Organisms with more resilient interactomes survive in

more complex, diverse, and competitive habitats
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How does resilience arise through
changes in network topology?

Goal: [dentify mechanisms that
explain how local network changes
lead to increased interactome
resiliency
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A species evolves Into
two new species...

Organism 2

Organism 1

Speciation
event
Ancestral
species
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How does resilience arise through
changes in network topology?
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How does resilience arise through
changes N netvvork topo\ogy’?

How do Interactomes of gt
the new species rewire
over time”?
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Isolated network
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Resilience arises through gradual
change of network topo
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Mechanism of Resilience

Rewiring of protein-protein interactions in
local protein neighborhoods
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Emergence of square network
motifs: Proteins with similar
interfaces share many neighbors,
but do not interact with each other
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Key New Insights

Resilient interactome: Proteins able to interact in
the face of network failures:
= Failures/changes are neutral in the current environment
= Neutral changes do not remain neutral indefinitely
= Crucial for survival in a changed environment

Resilient interactome IS a reservoir

that drives future evolution

Implications for ecology, network biology, design of
robust systems
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