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Protein interaction network:
Backbone of activity in a cell
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N networks evolve?
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But we do not know how networks change with evolution!

= Whether or not natural selection shapes the evolution of protein-protein
interaction networks remains unclear [Nature’15, ‘16, '17]

= Whether network rewiring is a consequence of sequence divergence or a
driver of evolution remains an open question [Science’17]
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Joday’s lalk

1) How protein-protein interaction
networks change with evolution?

2) How network changes affect phenotypes
and species’ survival in natural habitats”

Network
structure

Environment Evolution




[Prooeedlngs of the National Academy of Sciences (PNAS)’ 19]

Why Is modeling network
evolution hard?

Massive time span and rare data samples
= Species separated by millions of years of evolution

Messy, incomplete network data

= [ack of high-coverage protein interaction data, e.g.,

— humans: 20 thousand genes > need to test ~200 million protein
pairs for interaction

— <30% of human protein pairs tested in last 20 years [Rolland et al.,
Cell’14]

Many possible confounders

=  Genome size, number of protein-coding genes, etc.
= Network size, degree distributions, presence of hub nodes, etc.
= |nvestigative biases towards model organisms
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Our Approach

1. Build a dataset by integrating evolutionary,
interactome, and ecological data

2. Use dataset to study evolution of interactomes:

= How protein-protein interaction networks change with
evolution”?

= How changes in these networks affect phenotypes and
species’ survival in natural environments”?
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Key Element: Evolutionary Dataset

Objective: Capture all documented protein-protein

Interactions across all species
A M-

We build a unigue dataset:

1,840 networks: 1,539 bacteria, 111 archaea, 190 eukarya
1,450,633 nodes: Species’ proteins

8,762,166 edges: Physical protein-protein interactions (PPIs)

= Protein interactome: Species represented by their PPl networks
Tree of life: Evolutionary history of species
= Ecology: Complexity of habitats in which species live

>300X larger dataset than previous studies
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Tree of Networks

Interactome of an
eukaryotic species

Interactome of a
bacterial species
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Species are located in the leaves of the
tree. Each species is represented by its
protein interactome
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Modeling Tasks

= Data: Tree of networks

* Two main tasks:
1) Characterize resilience of interactomes to network failures
2) ldentify network and evolutionary mechanisms of resilience

Why resilience?

= Resilience to network failures is critical:

= Breakdown of proteins affects the exchange of biological
information in the cell [Huttlin et al., Nature’17]

= Failures lead to cell death and disease [Chen et al., Nat.
Genet.’ 18]
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ow to characterize resilience to
network failures?

Define interactome resilience measure:
= |nformation-theoretic formulation
= Shannon diversity theory [Sheldon’69]

Resilience measure has three key elements:

1. Simulate network failure at a particular rate
@ 2. Measure how fragmented the interactome becomes
3. Repeat 1-2 across all possible failure rates
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Simulate fai
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fragmentatior

ure and measure
of the Interactome

Upon network failure, interactome fragments into
Isolated components. Entropy of component sizes!

Interactome

Simulate network failure by
randomly removing a fraction of
proteins (nodes) in the interactome
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Isolated components (C))

C;/N is fraction of all nodes N
in isolated component C;
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Fragmentation: Example
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Resilience: Fragmentation

INntegrated across all possible failure
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Completely
fragmented
interactome
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Resilience of interactomes
for all species in the
dataset
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Evolution leads to resilience
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Protein interactomes become
more resilient with evolution

More genetic change a
species has undergone, more

resilient is its interactome

Protein interactomes become
more resilient to network
failures over time
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FINndings are not due to data biases

= (Consistent results across taxonomic groups
= Robust to network data quality and network size
= (Consistent findings across biological assays

* Findings are not due to confounding:
= Genomic attributes, e.g., genome size, protein-coding genes

= Network properties, e.g., hub nodes, broad-tailed degree
distributions, number of interactions in each species

» Bias toward much-studied proteins and model species

Key findings will still hold when more protein

Interaction data become available
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Resilience i1s beneficial
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Fraction of regulatory genes
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Resilience i1s beneficial
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Resilience arises through gradual

change of network topology
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Network Mechanism of Resllience

Rewiring of protein-protein interactions in
local protein neighborhoods
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Key New Insights

Resilient interactome: Proteins able to interact in
the face of network failures:
= Failures/changes are neutral in the current environment
= Neutral changes do not remain neutral indefinitely
= Crucial for survival in a changed environment

Resilient interactome IS a reservoir

that drives future evolution

Implications for ecology, network biology, design of
robust systems
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