Modeling Polypharmacy with Graph Convolutional Networks

Marinka Zitnik, Monica Agrawal, and Jure Leskovec

Stanford University

Why polypharmacy?

Many patients take multiple drugs to treat complex or co-existing diseases:

- 25% of people ages 65-69 take more than 5 drugs
- 46% of people ages 70-79 take more than 5 drugs
- Many patients take more than 20 drugs to treat heart disease, depression, insomnia, etc.

Unwanted Side Effects

Prescribed drugs

Drug side effect

Unwanted Side Effects

- Side effects due to drug-drug interactions
- Extremely difficult to identify:
 - Impossible to test all combinations of drugs
 - Side effects not observed in controlled trials
- 15% of the U.S. population affected
- Annual costs exceed \$177 billion

Existing Research

- Experimental screening of drug combs:
 - Expensive, combinatorial explosion
- Computational methods:
 - Supervised methods: Predict probability of a drug-drug interaction [Chen et al., 2016; Shi et al., 2017]
 - Similarity-based methods: Similar drugs have similar interactions [Gottlieb et al., 2012; Ferdousi et al., 2017; Zhang et al., 2017]

These methods do not predict side effects of drug combinations

This Work

How likely with a pair of drugs c, d lead to side effect r?

Our study: Model and predict side effects of drug pairs

Challenges

- Large number of types of side effects:
 - Each occurs in a small subset of patients
 - Side effects are interdependent
- No information about drug pairs that are not yet used in patients
- Molecular, drug, and patient data:
 - Heterogeneous and multi-relational

Our Approach

In silico screening of drug combinations

- Use molecular, drug, and patient data
- Task: Given a drug pair c,d, predict side effects of that drug pair

Problem Formulation: Graphs

- r₁ Gastrointestinal bleed side effect
- r₃ Nausea side effect
- Drug-protein interaction

- r₂ Bradycardia side effect
- r₄ Mumps side effect
 Stanford University Marinka Zitnik (http://stanford.edu/

Protein-protein interaction

Problem Formulation: Predict

Goal: Given a partially observed graph, predict labeled edges between drug nodes

Graph Neural Network

Why Is It Hard?

- Modern deep learning toolbox is designed for grids or simple sequences
 - Images have 2D grid structure
 - Can define convolutions (CNN)

Why Is It Hard?

- Modern deep learning toolbox is designed for grids or simple sequences
 - Sequences have linear 1D structure
 - Can define sliding window, RNNs, word2vec, etc.

Why Is It Hard?

- But networks are far more complex!
 - Arbitrary size and complex topological structure (i.e., no spatial locality like grids)

Goal: Generalize convolutions beyond simple lattices

Networks

Images

- No fixed node ordering or reference point
- Often dynamic and have multimodal features

Decagon: Graph Neural Net

1. Encoder: Take the graph and learn an *embedding* for every node

2. Decoder: Use the learned embeddings to predict side effects

Embedding Nodes

How to learn f?

Intuition: Map nodes to d-dimensional embeddings such that similar nodes in the graph are embedded close together

Encoder: Principle

Key idea: Generate node embeddings based on local network neighborhoods

Each edge type is modeled separately

Determine a node's computation graph

Learn how to transform and propagate information across the graph

tanford University - Marinka Zitnik (http://stanford.edu/~marinka)

Encoder: Embeddings

Encoder: Embeddings

A batch of computation graphs
Stanford University - Marinka Zitnik (http://stanford.edu/~marinka)

Decoder: Link Prediction

Graph Neural Network

Deep Learning for Network Biology

snap.stanford.edu/deepnetbio-ismb

Tutorial at ISMB 2018:

- From basics to state-of-the-art in graph neural nets
- Deep learning code bases:
 - End-to-end examples in Tensorflow/PyTorch
 - Popular code bases for graph neural nets
 - Easy to adapt and extend for your application
- Network analytics tools and biological network data

Data: Molecular, Drug & Patient

 Protein-protein interactions: Physical interactions in humans [720 k edges]

Drug-target relationships [19 k edges]

 Side effects of drug pairs: National adverse event reporting system
 [4.6 M edges]

Additional side information

Final graph has 966 different edge types

Experimental Setup

Construct a heterogeneous graph of all the data

Side-effect centric evaluation:

- Train: Fit a model on known side effects of drug pairs
- Test: Given a query drug pair, predict all types of side effects

Results: Side Effect Prediction

36% average in AP@50 improvement over baselines

De novo Predictions

Rank	Drug c	Drug d	Side effect r
1	Pyrimethamine	Aliskiren	Sarcoma
2	Tigecycline	Bimatoprost	Autonomic neuropathy
3	Omeprazole	Dacarbazine	Telangiectases
4	Tolcapone	Pyrimethamine	Breast disorder
5	Minoxidil	Paricalcitol	Cluster headache
6	Omeprazole	Amoxicillin	Renal tubular acidosis
7	Anagrelide	Azelaic acid	Cerebral thrombosis
8	Atorvastatin	Amlodipine	Muscle inflammation
9	Aliskiren	Tioconazole	Breast inflammation
10	Estradiol	Nadolol	Endometriosis

De novo Predictions

Rank	Drug c	Drug d	Side effect r	Evidence found
1	Pyrimethamine	Aliskiren	Sarcoma	Stage <i>et al.</i> 2015
2	Tigecycline	Bimatoprost	Autonomi C.	
3	Omeprazole	Dacarbazine	Telangiect	
4	Tolcapone	Pyrimethamine	Breast dis	Bicker <i>et al</i> . 2017
5	Minoxidil	Paricalcitol	Cluster headache	
6	Omeprazole	Amoxicillin	Renal tubular acidosis	Russo <i>et al</i> . 2016
7	Anagrelide	Azelaic acid	Cerebral thrombosis	
8	Atorvastatin	Amlodipine	Muscle inflammation	Banakh et al. 2017
9	Aliskiren	Tioconazole	Breast inflammation	Parving et al. 2012
10	Estradiol	Nadolol	Endometriosis	
	D			

Case Report

Severe Rhabdomyolysis due to Presumed Drug Interactions between Atorvastatin with Amlodipine and Ticagrelor

Stanford University - Marinka Zitnik (http://stanford.edu/~marinka)

Conclusions

Decagon predicts side effects of any drug pair:

- The first method to do that
- Even for drug combinations not yet used in patients

Project website with data & code: snap.stanford.edu/decagon

Deep learning for network biology: snap.stanford.edu/deepnetbio-ismb