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Why polypharmacy?

Many patients take multiple drugs to

treat complex or co-existing diseases:

= 25% of people ages 65-69 take more than 5 drugs
= 46% of people ages 70-79 take more than 5 drugs

= Many patients take more than 20 drugs to treat heart
disease, depression, insomnia, €etc.

[Charlesworth et al., 2015]



Unwanted Side Effects
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Unwanted Side Effects

Side effects due to drug-drug interactions
Extremely difficult to identify:

= Impossible to test all combinations of drugs

= Side effects not observed in controlled trials

15% of the U.S. population affected
Annual costs exceed $177 billion
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EXIsting Research

= Experimental screening of drug combs:
= Expensive, combinatorial explosion

= Computational methods:

= Supervised methods: Predict probability of
a drug-drug interaction icneneta., 2016; shietai, 2017

= Similarity-based methods: Similar drugs

have similar interactions [Gottiieb et al., 2012;
Ferdousi et al., 2017; Zhang et al., 2017]

These methods do not predict side
effects of drug combinations
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This Work

How likely with a
pair of drugs ¢, d
lead to side effect r?

Our study: Model and predict
side effects of drug pairs




Challenges

= [Large number of types of side effects:
= Each occurs in a small subset of patients
= Side effects are interdependent

= No information about drug pairs that
are not yet used in patients

= Molecular, drug, and patient data:
» Heterogeneous and multi-relational




Our Approach

In silico screening of drug combinations

= Use molecular, drug, and patient data

= Task: Given a drug pair ¢, d, predict
side effects of that drug pair
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Problem Formulation: Graphs

Drug pair c, d leads
to side effect 15

ry Gastrointestinal bleed side effect I3 Nausea side effect 4&—@ Drug-protein interaction
' Bradycardia side effect 4 Mumps side effect ©—O@ Protein-protein interaction
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Problem Formulation:; Predict

Goal: Given a partially observed graph,
predict labeled edges between drug nodes

Query: Given a drug pair ¢, d, how likely does an
edge (¢, 1y, d) exist?

Simvastatin

Co-prescribed drugs ¢ and

r
° d lead to side effect r,

Ciprofloxacin

Mupirocin

Doxycycline
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Graph Neural Network

Graph Regularization, Graph

convolutions e.g., dropout convolutions
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Activation
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Output: Drug pair c, d
leads to side effect r,

Input
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Why Is It Hard?

» Modern deep learning toolbox is
designed for grids or simple seqguences
= |mages have 2D grid structure
- dfi convolutions (CNN)
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Why Is It Hard?

= Modern deep learning toolbox is
designed for grids or simple sequences
= Sequences have linear 1D structure

= Can define sliding window, RNNs, word2vec,
etc.
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Why Is It Hard?

But networks are far more complex!

= Arbitrary size and complex topological
structure (i.e., no spatial locality like grids)

Goal: Generalize convolutions

beyond simple lattices

Networks Images
= No fixed node ordering or reference point

= Often dynamic and have multimodal features



Decagon: Graph Neural Net

Embedding

1. Encoder: Take the graph and
]
learn an embedding for every A -

node © = mmEEm

2. Decoder: Use the learned pummm
embeddings to predict side ) 1,2

effects EEREN
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Embedding Nodes
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Heterogeneous é—dimensional node
graph embeddings N

How to learn ?

Intuition: Map nodes to d-dimensional embeddings
such that similar nodes in the graph are embedded

close together
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Encoder: Principle

Key idea: Generate node embeddings based on local
network neighlborhoods

Each edge type is modeled separately

Edge type 73 E
E

A% */}<
N L

Determine a node’s Learn how to transform and
computation graph propagate information across the graph
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Encoder: Embeddings

One-layer computation graph
for drug
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r1 Gastrointestinal bleed effect

ro Bradycardia effect
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Drug target relation
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Encoder: Embeddings
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Decoder: Link Prediction

Predictions

Query p(A, r1,A)

o drug pair .
‘:?f%gg, p(A, rZJA)
=2 p(‘, r35A)
’/;;/ p(A! r4’A)

e

P(A, 1., A)

p — probability
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Graph Neural Network

Graph Regularization, Graph

convolutions e.g., dropout convolutions
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Output: Drug pair c, d
leads to side effect r,

Input
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Deep Learning for
Network Biology

snhap.stanford.edu/deepnetbio-ismb

Tutorial at ISMB 2018:

= From basics to state-of-the-art in graph neural nets

= Deep learning code bases:

= End-to-end examples in Tensorflow/PyTorch
= Popular code bases for graph neural nets

= Easy to adapt and extend for your application
= Network analytics tools and biological network data

Stanford University - Marinka Zitnik
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Data: Molecular, Drug & Patient

= Protein-protein interactions: Physical
interactions in humans |/20 k edges|

» Drug-target relationships [19 k edges] L6—O

» Side effects of drug pairs: National

adverse event reporting system r
[4.6 M edges] :

= Additional side information

Final graph has 966 different edge types
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Experimental Setup

Construct a heterogeneous

P
Ciprofloxacin

Side-effect centric evaluation:

= Train: Fit a model on known
side effects of drug pairs

= Test: Given a query drug
pair, predict all types of side Doxycycline  Mupirocin
effects Drug pair ¢, d leads

to side effect r;,
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Results: Side Effect Prediction
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B Decagon RESCAL tensor factorization
DEDICOM tensor factorization Node2vec + Logistic regression

36% average in AP@50 improvement over baselines
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De novo Predictions

Rank | Drugc Drug d Side effect r
1 Pyrimethamine Aliskiren Sarcoma
2 | Tigecycline Bimatoprost ~ Autonomic neuropathy
3 Omeprazole Dacarbazine  Telangiectases
4 | Tolcapone Pyrimethamine Breast disorder
5 Minoxidil Paricalcitol Cluster headache
6 | Omeprazole = Amoxicillin  Renal tubular acidosis
7 | Anagrelide Azelaic acid  Cerebral thrombosis
8 | Atorvastatin ~ Amlodipine = Muscle inflammation
9 | Aliskiren Tioconazole  Breast inflammation
10 | Estradiol Nadolol Endometriosis
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De novo Predictions

Rank| Drugc Drug d Side effect r Evidence found
Pyrimethamine Aliskiren Sarcoma @ Stage et al. 2015
Tigecycline ~ Bimatoprost  Autonomi {ga. "

Omeprazole Dacarbazine  Telangiec
Tolcapone Pyrimethamine Breast di
5 Minoxidil Paricalcitol Cluster headache

W o

Bicker et al. 2017

6 Omeprazole Amoxicillin  Renal tubular acidosis Russo er al. 2016

7 | Anagrelide Azelaic acid  Cerebral thrombosis
8

Atorvastatin Amlodipine Muscle inflammation Banakh ef al. 201

]

9 | Aliskiren Tioconazole  Breast inflammation  Parving ef al. 2012
10 | Estradiol Nadolol Endometriosis
Case Report

Severe Rhabdomyolysis due to Presumed Drug Interactions
between Atorvastatin with Amlodipine and Ticagrelor
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Conclusions

Decagon predicts side effects of any drug pair:
= The first method to do that

= Even for drug combinations not yet used in
patients

Project website with data & code:
snap.stanford.edu/decagon

Deep learning for network biology:
snap.stanford.edu/deepnetbio-ismb

rinka Zitnik (http://stanford.edu/~marinka)



