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Motivation for Graph Unlearning

e Graph unlearning involves deleting graph elements such as nodes, node labels, and
relationships from trained graph neural network (GNN) models
e Retraining models from scratch is not feasible. Needed are efficient methods for
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Why is Graph Unlearning Challenging?

1. Graph elements exert strong influence on other elements with dependencies between
nodes connected by edges
Challenge: Existing machine unlearning methods are unsuitable for data with
underlying geometric and relational structure

2. Graph models make predictions by propagating messages across local neighborhoods
Challenge: Adversarial agents can infer the presence of graph elements from
their local neighbors. Merely removing data from the graph is not sufficient

3. GNNs share model weights across many (often all) nodes or edges in the graph
Challenge: Naively perturbing model weights deteriorates model performance.
Methods developed for other modalities are not suitable for graphs




Requirements for Successful Graph Deletion

Shown is a motivating example of deleting a single edge €4

After deletion, GNNDelete treats After deletion, GNNDelete keeps node
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Layer-wise Deletion Operator in GNNDelete

Overview of GNNDELETE
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Graph Neural Network Model Unlearning

Loec = L{[hy; hyllews € Ea}, {[hy; hyllu, v €r V)

Deleted edges Similar to Unconnected node pairs
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Embeddings after deletion Similar to Embeddings before deletion
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£ WD DELI L Qﬁ ifw € S’fm
Only train deletion operators. ~ |1 otherwise
Other parameters are frozen.




Results 1: Excellent Performance on Edge Deletion Benchmarks

GNNDelete outperforms all baselines by 30.7 ( £,) and 25.1 (£4) on average,
other graph unlearning methods by 24.1% ( £;) and 28.5 (£,) on average

Predict test edges accurately Distinguish between deleted and non-deleted edges
GCN GAT R-GCN R-GAT
Reference Model

& Ed £ & | & £ & Ed
0.964 +0.003 0.506 +0.013 0.956 £0.002 0.525 +0.012 | 0.800 0.005 0.580 £0.006 0.891 +0.005 0.783 40.009
GRADASCENT 0555 +0.066 0.594 +0.063 0.501 +0.020 0.592 +0.017 | 0.490 +0.001 0.502 +0.002 0.490 40.001 0.492 +0.003
D2D 0.500 40.000 0.500 £0.000 0.500 +0.000 0.500 £0.000 | 0.500 +0.000 0.500 0.000 0.500 40.000 0.500 +0.000
GRAPHERASER] 0.527 40.002 0.500 +£0.000 0.538 +0.013 0.500 £0.000 | 0.512 +0.003 0.500 +0.000 0.545 +0.015 0.500 +0.000

Other graph GRAPHEDITOR | 0.776 4+0.025 0.432 +0.009 . ) N/A N/A N/A N/A

| . CERTUNLEARNJ] 0.718 ;0.032 0.475 ;0.011 - - N/A N/A N/A N/A
un etahméng GNNDELETE  0.934 +0.002 0.748 £0.006 0.914 +0.007 0.774 +0.015 | 0.751 -0.006 0.845 +0.007 0.893 0.002 0.786 +0.004
methods \—

GNNDelete achieves the highest AUROC on both settings using different architectures




Results 2: Ablation Study

On the interplay of Deleted Edge Consistency (DEC) and Neighborhood Influence (NI)

W, = argmin £! = argmin ALChg + (1 —
Wi wh
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Considering performance on both £; and £, .
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Deleted Edge Consistency
and Neighborhood Influence

are both necessary for \I 04 | 0.950 +0.005
0.5

successful unlearning on
graphs 0.8 | 0.893 +0.003

A | AUROConé&; AUROConé&; |Avg. AUROC (Gap)
0.0 0.964 +0.003 0.492 +0.012 0.728 (0.473)
0.2 0.961 +0.003 0.593 +o.011 0.777 (0.368)
0.691 +0.010 0.821 (0.259)
: 0.934 £0.002 0.748 +0.006 0.841 (0.185) |
0.6 0.927 +0.001 0.739 +0.006 0.834 (0.188)
0.759 +0.008 0.823 (0.134)
1.0 0.858 +0.004 0.757 +0.004 0.808 (0.101)




Results 3: GNNDelete is Computationally Efficient

GNNDelete demonstrates efficiency in terms of both its training time and the number
of trainable parameters it requires

Training time # Trainable parameters

I e teas| e Model | OGB-Collab  OGB-BioKG

. ' RETRAIN 5,216 12,009,792
» GRADASCENT 5,216 12,009,792
2 ? D2D 5,216 12,009,792
o GRAPHERASER 52,160 120,097,920

o GRAPHEDITOR 5,216 7 N/A B

" O »® CERTUNLEARN 5,216 N/A

= T GNNDELETE 5,120 5,120

raph size le6

Compared to GraphEraser: GNNDelete saves ~9x training time and ~10x & ~23000x space.



GNNDelete is a General Strategy for Graph Unlearning!

e GNNDelete is a novel deletion operator that is flexible and easy-to-use and can be
used with any graph neural network (GNN) model

e \We formulate two key requirements that graph unlearning methods must satisfy,
Deleted Edge Consistency and Neighborhood Influence through which we can
unlearn graph elements and retain strong predictive performance

e GNNDelete achieves state-of-the-art performance across a wide range of deletion
tasks including edge deletion, node deletion, and node feature unlearning

openreview.net/pdf?id=X9yCkmT5Qrl

0 github.com/mims-harvard/GNNDelete




