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The disruptive nature of the COVID-19 pandemic 
demands the rapid deployment of effective therapeutic 
interventions.

The traditional approach of iterative development, 
experimental testing, clinical validation, and approval of 
new drugs are not feasible. 

A more realistic strategy relies on drug repurposing, 
requiring us to identify clinically approved drugs that 
have a therapeutic effect in COVID-19 patients. 

Network medicine has developed and validated a series 
of computational tools to identify drug repurposing 
opportunities. Here, we deploy these tools to identify 
potential drug repurposing candidates for COVID-19. 



Network Medicine: 
Diseasome 2.0Network Medicine



Disease Module Discovery: Identifying the disease modules of multiple phenotypes, pathway 
analysis, disease gene identification, bioinformatics validation of the modules. 
Key Papers:  Menche, Science (2015). Ghiassian, PLOS Comp. Biology  (2015).

Drug Target Identification and Repurposing: Identify and validate candidates for drug repurposing. 
Key Papers: Guney, Nature Comm. (2016) Chen, Nature Comm. (2018).

Drug Combinations: Identify drug combinations with higher efficacy than single drugs.
Key Paper: Chen et al, Nature Comm. (2019).

Personalized Network Medicine:  Placing individual patient data in the context of the disease module, disease 
heterogeneity, patient classification. 
Key Paper: Menche, Syst. Biol. Appl. (2017)

Controlling Biological Networks:  From subcellular networks to the brain.
Key Papers: Liu, Nature (2011); Lee, Science (2017); Yan, Nature (2017); Towlson, Proc. Roy. Soc. (2018)

Network Medicine



Virus-Host Interactions 
(EBV and HPV)

viral proteinà viral targets à disease gene
By inspecting the network neighborhood of 
the viral targets, we were able to identify the 
molecular processes disrupted by the  virus, 

and the disease symptoms.
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Gulbahce, PLoS Comput Biol. 2012.
Rozenblatt-Rosen, Nature. 2012.



Drug Repurposing: The Proximity Hypothesis

Drugs with targets in the network vicinity of a disease module helps 
are drug repurposing candidates.

Methodology: Guney et al., Nature Comm.(2016).  
Testing using Patient Data: Cheng et al., Nature Comm. (2018)



COVID-19 Disease Module 

Covid-19 Interactome

Covid-19 Disease Module



Gordon et al, 2020

DrugBank
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• 332 human proteins to which 26 SARS-CoV2 
proteins bind.

• 208 viral targets form a large connected 
component (LCC)

• Z-Score= 1.65:  SARS-CoV2 targets 
aggregate in the same network vicinity— 
COVID-19 disease module

• Repurposing candidates must target proteins 
in the network vicinity of the disease module. 

COVID-19 Disease Module 

Lonsdale, Nature Genetics. 2013.
Gordon, BioRxiv. 2020.



• For a disease to be manifest in a tissue, a 
statistically significant disease LCC must be 
expressed.

• With GTEx > 5, only 10,823 (58%) proteins 
in the interactome are expressed in lung.

• The lung specific LCC has a Z-Score= 1.78 
(larger than the Z-Score= 1.65 of the LCC in 
the full-network). 

Tissue Specificity

Kitsak, Nature Sci. Rep. 2016; Lonsdale, Nature Genetics. 2013. Gordon, BioRxiv. 2020.
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multiple reproductive system tissues

Tissue LCC    Z-Score

Immortalized cell line 171   2.114

Vagina 185 2.062

Brain-Frontal Cortex 162 1.923

Pancreas 133   1.908

Heart-Left Ventricle 129 1.897

Brain-Cortex 161 1.889

Brain-Hippocampus 149 1.884

Colon-Sigmoid 179   1.870

Kidney-Cortex 151 1.848

Fibroblasts 183   1.843 

Adrenal Gland 168   1.816

Uterus 184 1.808

Cervix-Endocervix 185 1.801

Bladder 179   1.799

Testis 189 1.794

Lung 182 1.780

Artery 178 1.777

Spleen 173 1.761

Colon 179   1.760

Brain-Hypothalamus 157 1.757

Esophagus-Mucosa 175   1.757

Cervix-Ectocervix 184 1.730

Ovary 182 1.726

Skin 178   1.720

Heart-Atrial Appendage 153 1.716

Prostate 183 1.715

Brain-Spinal cord 169 1.713

Kidney 167   1.704

Brain-Anterior cingulate cortex 152 1.690

All 208   1.658
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COVID-19 modules is expressed in the 
respiratory system

multiple brain regions 
neurological manifestations, like loss of 
smell, taste, headache, dizziness, seizure, 
and skeletal muscular injury

digestive system 
consistent with clinical observations such as diarrhea, 
vomiting and abdominal pain

cardiovascular tissues 
infected patients often present significant 
cardiovascular involvement, and patients with 
underlying cardiovascular diseases show 
increased risk of death. Xu, Lancet resp med, 2020

Eliezer, JAMA, 2020
Song medRxiv, 2020

Mao, JAMA, 2020
Gu, Gastroenterology. 2020
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Menche et al, Science. 2015. 



The SARS-CoV2 disease module does not directly overlap 
with any major disease module.

The diseases closest to the COVID-19 proteins include 
several cardiovascular diseases and cancer, whose 

comorbidity in COVID-19 patients is well documented.

Neurological diseases, in line with the earlier finding that the 
virus could be expressed in brain. 

Comorbidity

Gulbahce, PLoS Comput Biol. 2012.
Menche, Science. 2015. 
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A COVID-19 treatment can not be derived from the arsenal of 
therapies approved for specific diseases

Repurposing strategies focus on drugs previously approved for 
other pathogens, or on drugs that target the human proteins to 
which viral proteins bind.

Most approved drugs do not target directly disease proteins but 
bind to proteins in their network vicinity  
[Yildirim, Nature Biotech. 2007]

Identify drug candidates that have the potential to perturb the 
network vicinity of the COVID-19 disease module. 

Implement 3 Network Repurposing Methods.

Guney, Nature Comm, 2016.
Lin, IEEE inf. in trans. info. the. 1991

Zitnik, Bioinformatics. 2018
Zitnik, Info. Fision. 2019



Disease Gene

Drug Target

Shortest path to the closest disease gene

s1

s3

T1 T2

Proximity-Based Ranking
Drugs with targets close to disease genes in PPI tend to be efficacious
Rank drugs by relative proximity z-score

Guney, Nature Comm. 2016

Virus

Target (T) Disease Genes (S)
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Three Proximity Pipelines

Pipeline P1: 
For 6,116 drugs, use all targets to 
compute proximity z-score.

Pipeline P2:
Disregard targets that are enzymes, 
carriers or transporters, less related to 
pharmacological effects (5,550 drugs).

Pipeline P3:
For 793 drugs, compute z-score 
based on proximity to differentially 
expressed genes

Chloroquine targets

Etanercept targets

Shared targets

Background genes

COVID-19 binding targets
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Diffusion Models: Node Representation
Calculate the expected number of times He(A, B) that a random 
walk starting at node A visits node B.

Represent each node by the vector:

Quantify similarity between a pair of nodes using

a) Manhattan distance: 
𝐷𝑆𝐷 𝐻𝑒#, 𝐻$ = |𝐻𝑒# 	− 𝐻𝑒$|

b) Relative entropy (KL divergence):

𝐾𝐿 𝐻𝑒! , 𝐻" =	(
#∈%

𝐻𝑒!(𝑥)𝑙𝑜𝑔
𝐻𝑒"(𝑥)
𝐻𝑒!(𝑥)

c) Symmetrized KL (JS divergence):

𝐽𝑆 𝐻𝑒#, 𝐻$ = %
&
𝐾𝐿 𝐻𝑒#, 𝑀	 +	%

&
𝐾𝐿 𝐻𝑒$, 𝑀	 , M = %

&
(𝐻𝑒# + 𝐻𝑒$)
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Diffusion Models: Ranking Drugs
Five new metrics to calculate the impact of drug targets t on COVID19 targets:

𝐼!"!#$% =
1
𝑉%
&∈(

min
)∈*
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𝐽𝑆(𝑡, 𝑣) DSD, KL and JS are used to quantify
how likely target may impact COVID19 proteins

Lin, IEEE inf in trans. info. the. 1991

Disease Gene

Drug Target

Shortest path to the closest disease gene
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VirusPipeline D1:

Pipeline D2:

Pipeline D3:

Pipeline D4:

Pipeline D5:
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AI-Based Repurposing

We construct a knowledge graph of biomedical interactions, including drug-target, 
protein-protein, drug-disease, and disease-protein associations

?
Task
Predict what diseases a 
new molecule might 
treat

Drugs

Virus Proteins

Human Proteins

Marinka Zitnik



AI-Net: Graph Neural Network  

1. Graph Convolutions: Take a 
knowledge graph and learn an 
embedding for every node in the 
graph

2. Link Prediction: Take the learned 
embeddings and predict what 
diseases a given drug might treat

ri

Embedding

Embedding

Embedding
?

z

Asthma

Alzheimer’s

Heart
disease

Brain
disease

Asthma

Alzheimer’s

Heart
disease

Brain
disease

Zitnik, Bioinformatics. 2018
Zitnik, Info. Fision. 2019
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AI-Net: Four Prediction Pipelines
We use four decoders to predict disease treatments, i.e., to decode drug-
disease links, based on the learned embedding space

Pipeline A1
Search for drugs in the vicinity of COVID-19 by calculating the cosine 
distance between COVID-19 and all drugs in the decoded embedding space

Pipeline A2
Prevent nodes in the embedding space from packing together too closely, at 
the loss of the more detailed structure.

Pipeline A3
Force the decoding to concentrate on the very local structure (to the 
detriment of the overall goal of the exercise).

Pipeline A4
Force the decoding to preserve the broad structure of the embedding space.

Marinka Zitnik
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Thee predictive methodologies, offering twelve predictive rankings.

The rankings are not expected to be independent: Start from the 
same drug and drug-target list and operate on the same 
interactome.

Kendall τ rank correlation of the rankings provided by each 
pipeline. 

Proximity-based pipelines, P1 and P2, show high correlation 
between each other, as do the AI-Net pipelines (A1-A4), and the 
diffusion-based pipelines (D1-D5). 

Correlations across the three methods are lower, and P3, relying 
on gene expression, is also uncorrelated with other pipelines.

Different methods offer complementary ranking information 

Deisy Morselli Gysi



We test each pipeline’s ability to recover drugs currently in clinical 
trials for COVID-19 (67 drugs from ClinicalTrials.gov).

The best individual ROC curves are obtained by the AI-based 
methods. 

The second-best performance is provided by the proximity P3. 
Close behind is P1 with AUC = 0.68

Eliminating some drug targets decreases the AUC to 0.58 (P2)

Diffusion methods offer ROC between 0.55-0.56.
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Rank Aggregation Algorithm: Maximize the number of 
pairwise agreements between the final ranking and each 
input ranking. 

The combined performance of the AI methods is 0.87, the 
same as A3. 

Improvement for proximity pipelines: 0.70 à 0.72. 

Combined diffusion pipelines have lower performance 
(0.54 vs 0.56, for D1, D2, and D4). 

Combining all 12 pipelines, we obtain AU=0.89, the 
highest of any individual or combination-based pipelines, 

Individual pipelines offer complementary information 
harnessed by the combined ranking. 

Zitnik, Nat Comm. 2018
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86 drugs selected from the top 10% of the rank list.

Respiratory drugs (e.g., theophylline, montelukast).

Cardiovascular systems (e.g., verapamil, atorvastatin).

Antibiotics used to treat viral (e.g., ribavirin, lopinavir), parasitic 
(e.g., hydroxychloroquine, ivermectin, praziquantel), bacterial 
(e.g., rifaximin, sulfanilamide), mycotic (e.g., fluconazole), and 
mycobacterial (e.g., isoniazid) infections.

Immunomodulating/anti-inflammatory drugs (e.g., interferon-β, 
auranofin, montelukast, colchicine)

Anti-proteasomal drugs (e.g., bortezomib, carfilzomib)

Less obvious choices: aminoglutethimide, melatonin, 
levothyroxine, calcitriol, selegiline, deferoxamine, 
mitoxantrone, metformin, nintedanib, cinacalcet, and 
sildenafil.

1

Drug    C-rank Drug    C-rank Drug    C-rank

Ritonavir
Isoniazid
Troleandomycin
Cilostazol
Chloroquine
Rifabutin
Flutamide
Dexamethasone
Rifaximin
Azelastine
Folic Acid
Rabeprazole
Methotrexate
Digoxin
Theophylline
Fluconazole
Aminoglutethimide
Hydroxychloroquine
Methimazole
Ribavirin
Omeprazole
Bortezomib
Leflunomide
Dimethylfumarate
Colchicine
Quercetin
Mebendazole

Mesalazine
Pentamidine
Verapamil
Melatonin
Griseofulvin
Auranofin
Atovaquone
Montelukast
Romidepsin
Cobicistat
Lopinavir
Pomalidomide
Sulfinpyrazone
Levamisole
Calcitriol
Interferon-β-1a
Praziquantel
Ascorbic acid
Fluvastatin
Interferon-β-1b
Selegiline
Deferoxamine

57
63
67

69
92
98
109
112
118
124
131
138
141
146
155
157
161
164
173
176
195
199
203
206
227

Ivermectin
Atorvastatin
Mitoxantrone
Glyburide
Thalidomide

Sulfanilamide
Hydralazine
Gemfibrozil
Ruxolitinib
Propranolol
Carbamazepine
Doxorubicin
Levothyroxine
Dactinomycin
Tenofivir
Tadalafil
Doxazosin
Rosiglitazone
Aminolevulinic acid
Nitroglycerin
Metformin
Nintedanib
Allopurinol
Ponatinib
Sildenafil

235
243
250
259
262

265
269
281
284
297
301
309
329
335
338
339
367
397
398
418
457
466
471
491
493

Dapagliflozin
Nitroprusside
Cinacalcet
Mexiletine
Sitagliptin
Carfilzomib
Azithromycin

504
515
553
559
706
765
786

# of Clinical trials from ClinicalTrials.gov
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2
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3
4
5
6
7
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9
10
16
27
32
33
34
41
42
44
47
49
50
53
54
55
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Validation Case Studies: Connectivity Map 

Measured the overlap between perturbed genes and COVID-19 
targets for 59 of the 81 repurposing candidates in the Connectivity 
Map.

Mitoxantrone (antineoplastic): 75 (22%) of the COVID-19 targets have a 
significant overlap with the 2,440 genes perturbed by the drug in the 
lung (see Figure). 

Statistically significant overlap for 43 drugs (random: 13 ± 7): 
repurposing candidates effectively perturb the COVID-19 module.

Highest number of perturbed COVID-19 targets: carfilzomib (162), 
flutamide (162), and bortezomib (162). 

For lung the drugs with the highest overlap with COVID-19 targets are 
mitoxantrone and ponatinib. 

Subramanian, Cell. 2017.
Lamb, Science. 2006. 
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Validation: Suppressing COVID-19 Expression 

Counteract the gene expression perturbations caused by the 
virus: Down-regulate genes up-regulated by the virus or vice 
versa?

120 differentially expressed genes (DEGs) in the SARS-CoV2 
infected of the A549 cell line.

Bortezomib treatment of the cell line YAPC (20 μM) counteracts 
the effects of the SARS- CoV2 infection for 65 genes (see 
Figure, Spearman correlation ρ = −0.58). 

22 drugs in the Connectivity Map have ρ < 0, indicating that 
they counteract the effects of the infection (random selections) 

Subramanian, Cell. 2017.
Lamb, Science. 2006. 
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Discussion
We ranked existing drugs based on their expected efficacy for 
COVID-19 patients. This does not mean that drugs that did not make 
our final list could not have efficacy, or that they must be excluded 
from further consideration. 

As the input data improves, so will our ranking, and we may develop 
a case for other drugs, currently not listed:

• New virus-host binding interactions (experimental, or AI 
predicted)

• Microarray data of COVID-19 patients
• New drugs added to DrugBank
• Improved drug target identification

The proposed methodology is general, allowing us to profile the 
potential efficacy of any drug or a family of drugs, whether they are 
included in our current reference list. 



20 clinical trials



76 clinical trials



17 clinical trials



0 clinical trials



The predictive pipelines select drugs that are positioned to perturb 
effectively the COVID-19 disease module. 

The perturbations may block the virus’ ability to invade the host cells 
or limit the molecular level disruption caused by the infection. 
Others, however, may aggravate the symptoms and the seriousness 
of the phenotype. 

Molecular experiments can help test the efficacy of the drugs for 
COVID-19 infected cell lines. 

As these drugs have known side effects and toxicities, it may be 
possible to move some directly into clinical trials, cognizant of the 
possibility that these approved drugs may exert unique toxicities in 
the setting of this novel infection, an outcome that can only be 
identified in clinical trial. 

Discussion



Waiting for the drugs to arrive, to be screened at the National 
Emerging Infectious Diseases Laboratories @ Boston University

Working to understand why the pipelines predict what they do – 
what does the AI see compared to proximity-based methods? 
Where does the predictive power come from?

Planning to integrate new data, as it becomes available, and run 
robustness checks.

Feel free to contact us, if you want to follow up on any of our 
predictions, and you need further data or details.

Manuscript available at: https://arxiv.org/abs/2004.07229

What is Next?



@KroganLab

Jan Baumbach, TU Munich.

Feixiong Cheng, Cleveland Clinic

Madhavi Ganapathiraju, U. Pitt.

Other Ongoing Efforts

https://hagrid.dbmi.pitt.edu/corona/

https://hagrid.dbmi.pitt.edu/corona/
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