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The disruptive nature of the COVID-19 pandemic

demands the rapid deployment of effective therapeutic
interventions

The traditional approach of iterative development,
experimental testing, clinical validation, and approval of
new drugs are not feasible.

A more realistic strategy relies on drug repurposing,
requiring us to identify clinically approved drugs that
have a ther. tic effect in COVID-1 tients.

Network medicine has developed and validated a series
of computational tools to identify drug repurposing
opportunities. Here, we deploy these tools to identify
potential drug repurposing candidates for COVID-19.
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Network Medicine

:# Disease Module Discovery: |dentifying the disease modules of multiple phenotypes, pathway
analysis, disease gene identification, bioinformatics validation of the modules.

Key Papers: Menche, Science (2015). Ghiassian, PLOS Comp. Biology (2015).

ﬁ Drug Target Identification and Repurposing: Identify and validate candidates for drug repurposing.
Key Papers: Guney, Nature Comm. (2016) Chen, Nature Comm. (2018).

Drug Combinations: Identify drug combinations with higher efficacy than single drugs.
Key Paper: Chen et al, Nature Comm. (2019).

Personalized Network Medicine: Placing individual patient data in the context of the disease module, disease
heterogeneity, patient classification.

Key Paper: Menche, Syst. Biol. Appl. (2017)

Controlling Biological Networks: From subcellular networks to the brain.
Key Papers: Liu, Nature (2011); Lee, Science (2017); Yan, Nature (2017); Towlson, Proc. Roy. Soc. (2018)



EBV
Proteing

Host
Proteins

ERBB2

Virus-Host Interactions
(EBV and HPV)

viral protein—-> viral targets - disease gene

By inspecting the network neighborhood of

the viral targets, we were able to identify the

molecular processes disrupted by the virus,
and the disease symptoms.

Gulbahce, PLoS Comput Biol. 2012.
Rozenblatt-Rosen, Nature. 2012.



Drug Repurposing: The Proximity Hypothesis
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@ Disease Gene
Drug Target
— Shortest path to the closest disease gene

Drugs with targets in the network vicinity of a disease module helps
are drug repurposing candidates.

Methodology: Guney et al., Nature Comm.(2016).
Testing using Patient Data: Cheng et al., Nature Comm. (2018)



COVID-19 Disease Module

Viral-Human Human-Human Drug-Human
Protein-Protein Interaction Protein-Protein Interaction Protein-Protein Interaction
Viral Interactome Human Interactome

Covid-19 Interactome

o

Covid-19 Disease Module Drug Disease Module



Input Data

Human Interactome
N = 18,508 proteins
L = 332,749 PPIs

SARS-COV2 targets
320 human proteins
Gordon et al, 2020

Drug Targets
7,591drugs
4,187 drug targets

DrugBank

Outline

Methods

® d; Network Proximity
Y 3 pipelines

Network Diffusion
5 pipelines
Al Prioritization
4 pipelines
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COVID-19 Disease Module

Expressed in lung
Not expressed in lung

Lonsdale, Nature Genetics. 2013.
Gordon, BioRxiv. 2020.
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332 human proteins to which 26 SARS-CoV?2
proteins bind.

208 viral targets form a large connected
component (LCQC)

Z-Score= 1.65: SARS-CoV2 targets
aggregate in the same network vicinity —
COVID-19 disease module

Repurposing candidates must target proteins
in the network vicinity of the disease module.



Tissue Specificity

Expressed in lung
Not expressed in lung

Kitsak, Nature Sci.

Lung Interactome
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Deisy Morselli Gysi
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» For a disease to be manifest in a tissue, a
statistically significant disease LCC must be

expressed.

« With GTEx > 5, only 10,823 (58%) proteins
in the interactome are expressed in lung.

* The lung specific LCC has a Z-Score= 1.78

(larger than the Z-Score= 1.65 of the LCC in
the full-network).

Rep. 2016; Lonsdale, Nature Genetics. 2013. Gordon, BioRxiv. 2020.



30 tissues express the COVID-19 LCC

Tissue LCC Z-Score Lun g

Lung 182 1.780 @ﬁ\ COVID-19 modules is expressed in the

Brain-Hippocampus 149 1.884 .

Brain-Frontal Cortex 162 1.023 respiratory system

Brain-Cortex 161 1.889

Brain-Hypothalamus 157  1.757 . i . .

Brain-Spinal cord 169 1.713 @ neurological manifestations, like loss of Deisy Morselli Gysi
Brain-Anterior cingulate cortex 152 1.690 smell, taste, headache, dizziness, seizure,

Adrenal Gland 168 1.816 and skeletal muscular injury

Prostate 183 1.715

Cervix-Endocervix 185 1.801

Ovary 182 1.726 WF

Testis 189 1.794

Uterus 184 1.808

Cervix-Ectocervix 184 1.730

Vagina 185 2.062

Colon-Sigmoid 179 1.870 . .

Colon 179  1.760 dlggstlve gystgm . .

Bladder 179 1799 @ conglgtent with cllnloal obsgrvatlons such as diarrhea,

R — 175 1757 vomiting and abdominal pain

Pancreas 133  1.908

Arery 178 1.7t cardiovascular tissues

Heart-Atrial Appendage 198 1.716 @ infected patients often present significant

Heart-Left Ventricle 129 1.897 . . . ,

mmortalized cel line 171 2114 cardiovascular involvement, and patients with

Spleen 173 1.761 underlying cardiovascular diseases show

Fibroblasts 183 1.843 increased risk of death. Xu, Lancet resp med, 2020
Skin 178 1.720 Eliezer, JAMA, 2020
Kidney-Cortex 151 1.848 Song medeiV’ 2020
Kidney 167 1.704 Mao, JAMA, 2020
Al 208 1.658

Gu, Gastroenterology. 2020
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Comorbidity

o}
Endses O || Number of
Lt o (|| Disease Genes
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oo . ltalo Do Valle
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o/ e ® e [ J . .
c 2 Ve The SARS-CoV2 disease module does not directly overlap
Endocrine system diseases . . .
i i \ N\ 8 with any major disease module.
Herododegenartive diseases o o . %;
Congenital abnormalities . . ° %})
Neoplasms by histologic site S 2 . . .
el o 5 The diseases closest to the COVID-19 proteins include
Neurodegenerative diseases 00 01 02 03 04 05 several cardiovascular diseases and cancer, whose
Sentneniows e dscoses v comorbidity in COVID-19 patients is well documented.
Musculoskeletal diseases
Skin and connective tissue PY ® -
Neurologic manisfestations o s
S
Y

Neurological diseases, in line with the earlier finding that the
virus could be expressed in brain.

Gulbahce, PLoS Comput Biol. 2012.
Menche, Science. 2015.



A COVID-19 treatment can not be derived from the arsenal of
therapies approved for specific diseases

Repurposing strategies focus on drugs previously approved for
other pathogens, or on drugs that target the human proteins to
which viral proteins bind.

Most approved drugs do not target directly disease proteins but
bind to proteins in their network vicinity
[Yildirim, Nature Biotech. 2007]

|dentify drug candidates that have the potential to perturb the
network vicinity of the COVID-19 disease module.

Implement 3 Network Repurposing Methods.

Methods

) <5, Network Proximity
® 3 pipelines

Network Diffusion
5 pipelines

Al Prioritization
4 pipelines

Guney, Nature Comm, 2016.

Lin, IEEE inf. in trans. info. the. 1991
Zitnik, Bioinformatics. 2018

Zitnik, Info. Fision. 2019



Proximity-Based Ranking

Drugs with targets close to disease genes in PPl tend to be efficacious
Rank drugs by relative proximity z-score Xiao Gan

Target (T) Disease Genes (S)

- Virus
‘5 = 2+3 _ O

S AT

Reference d
distribution
Disease Gene

A Drug Target

— Shortest path to the closest disease gene

Guney, Nature Comm. 2016 Random gene sets with same degrees



Three Proximity Pipelines

Pipeline P1:
For 6,116 drugs, use all targets to
compute proximity z-score.

Pipeline P2:
Disregard targets that are enzymes,
carriers or transporters, less related to

pharmacological effects (5,550 drugs).

Pipeline P3:

For 793 drugs, compute z-score
based on proximity to differentially
expressed genes
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(") Background genes

Xiao Gan

Chloroquine targets
Etanercept targets

Shared targets

COVID-19 binding targets

Etanercept



Diffusion Models: Node Representation

Calculate the expected number of times He(A, B) that a random
walk starting at node A visits node B.

Represent each node by the vector:
He(V;) = [He(Vi, V1), He(Vi, Va), He(Vi, V3), ..., He(V;, Vo))

Quantify similarity between a pair of nodes using

a) Manhattan distance:
DSD(He?,HB) = |He? — He?®|

b) Relative entropy (KL divergence):
KL(He4 HB) = 2 He(x)log

XEV

He®B(x)
He4(x)

c) Symmetrized KL (JS divergence):

JS (He4, HE) = %KL(HeA,M)+%KL(HeB,M) M = %(He



Diffusion Models: Ranking Drugs

Five new metrics to calculate the impact of drug targets t on COVID19 targets:

Asher Ameli
Pipeline D1: I = Zmiy DSD(t, v) Virus %
teT \
J 1 i ! / T?
Pipeline D2: I = - ) minKL(t,v) O\\ A
teT 4< )i
1 O/
: . . med _ _
Pipeline D3: I VtZ med KL(t,v)
€
Disease Gene
Pipeline Da: [ = Y minJS(t.v) A Drug Tage
terT —— Shortest path to the closest disease gene
Pipeline D5: [ed = Z med JS(t, v) DSD, KL and JS are used to quantify
4 el how likely target may impact COVID19 proteins

Lin, IEEE inf in trans. info. the. 1991



Al-Based Repurposing

Drugs Marinka Zitnik

Task

Predict what diseases a
new molecule might
treat

Virus Proteins

Human Proteins

We construct a knowledge graph of biomedical interactions, including drug-target,
protein-protein, drug-disease, and disease-protein associations



Marinka Zitnik

1. Graph Convolutions: Take a Q ‘ Embedding
knowledge graph and learn an
embedding for every node in the ‘
o O

2. Link Prediction: Take the learned Embedding Q
embeddings and predict what ‘ -
diseases a given drug might treat Embedding .

Zitnik, Bioinformatics. 2018
Zitnik, Info. Fision. 2019



Al-Net: Four Prediction Pipelines

We use four decoders to predict disease treatments, i.e., to decode drug-
disease links, based on the learned embedding space

.',~I§
] Drug . dﬁ.'_\ 2. " ;
Pipeline A1 W rbease = ol ¥ %
Search for drugs in the vicinity of COVID-19 by calculating the cosine - 3-
distance between COVID-19 and all drugs in the decoded embedding space " . 9. :4%;} I i
I Y SEA R < METRYT v
Pipeline A2 o e 12N e ?
Prevent nodes in the embedding space from packing together too closely, at - J_‘;,
the loss of the more detailed structure. . A st "
. -‘E : ik . Closest drugs in the
» el . e AL embedding space
Pipeline A3 R, T ae A, Aovaguone Terunomide
. “-’l:.’-"f' .'-.,}a‘-"'.--?"" s of Rifapentine Ixekizumab
Force the decoding to concentrate on the very local structure (to the gl S VR R Chioroquine  Praziquantel
. . * MENEE ALY L Mifepristone Ritonavir
detriment of the overall goal of the exercise). ~ Rﬁ{{. Lindane Troleandomycin
- » Secukinumab  Budesonide
Elbasvi L f
! Cobal:s:al Fﬁ:?rzr:oft?sone
o ' el Idelalisib Crizotinib
¢ * o A Daec?atsalsvir Elvizt:gr:'avlr
Pipeline A4 EMB 1

Force the decoding to preserve the broad structure of the embedding space.



D1

D2

D3 D4 D5

P1

P2

P3

Al

A2 A3 A4

-0.1

Deisy Morselli Gysi

Thee predictive methodologies, offering twelve predictive rankings.

The rankings are not expected to be independent: Start from the
same drug and drug-target list and operate on the same
interactome.

Kendall T rank correlation of the rankings provided by each
pipeline.

Proximity-based pipelines, P1 and P2, show high correlation
between each other, as do the Al-Net pipelines (A1-A4), and the
diffusion-based pipelines (D1-D5).

Correlations across the three methods are lower, and P3, relying
on gene expression, is also uncorrelated with other pipelines.

Different methods offer complementary ranking information



Individual ROC
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Onur Varol

We test each pipeline’s ability to recover drugs currently in clinical
trials for COVID-19 (67 drugs from ClinicalTrials.gov).

The best individual ROC curves are obtained by the Al-based
methods.

The second-best performance is provided by the proximity P3.
Close behind is P1 with AUC = 0.68

Eliminating some drug targets decreases the AUC to 0.58 (P2)

Diffusion methods offer ROC between 0.55-0.56.



Rank Aggregation Algorithm: Maximize the number of
pairwise agreements between the final ranking and each
input ranking.

The combined performance of the Al methods is 0.87, the
same as AS.

Improvement for proximity pipelines: 0.70 = 0.72.

Combined diffusion pipelines have lower performance
(0.54 vs 0.56, for D1, D2, and D4).

Combining all 12 pipelines, we obtain AU=0.89, the
highest of any individual or combination-based pipelines,

Individual pipelines offer complementary information
harnessed by the combined ranking.

Zitnik, Nat Comm. 2018

Marinka Zitnik
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False positive rate



86 drugs selected from the top 10% of the rank list.
Respiratory drugs (e.g., theophylline, montelukast).
Cardiovascular systems (e.g., verapamil, atorvastatin).

Antibiotics used to treat viral (e.g., ribavirin, lopinavir), parasitic
(e.g., hydroxychloroquine, ivermectin, praziquantel), bacterial

(e.g., rifaximin, sulfanilamide), mycotic (e.g., fluconazole), and
mycobacterial (e.g., isoniazid) infections.

Immunomodulating/anti-inflammatory drugs (e.g., interferon-f3,
auranofin, montelukast, colchicine)

Anti-proteasomal drugs (e.g., bortezomib, carfilzomib)

Less obvious choices: aminoglutethimide, melatonin,
levothyroxine, calcitriol, selegiline, deferoxamine,
mitoxantrone, metformin, nintedanib, cinacalcet, and
sildenafil.

O # of Clinical trials from ClinicalTrials.gov

Joseph Loscalzo

Drug C-rank Drug C-rank Drug

. Ritonavir 1 Mesalazine 69 Sulfanilamide
Isoniazid 2 Pentamidine 92 Hydralazine
Troleandomycin 3 Verapamil 98 Gemfibrozil
Cilostazol 4 Melatonin 109 (@) Ruxolitinib
Chloroquine 5 Griseofulvin 112 Propranolol
Rifabutin 6 Auranofin 118 Carbamazepine
Flutamide 7 (1) Atovaquone 124 Doxorubicin

(2) Dexamethasone 8 Montelukast 131 Levothyroxine
Rifaximin 9 Romidepsin 138 Dactinomycin
Azelastine 10 (1) Cobicistat 141 Tenofivir
Folic Acid 16 (7) Lopinavir 146 Tadalafil
Rabeprazole 27 Pomalidomide 155 Doxazosin
Methotrexate 32 Sulfinpyrazone 157 Rosiglitazone
Digoxin 33 @ Levamisole 161 Aminolevulinic acid
Theophylline 34 Calcitriol 164 Nitroglycerin
Fluconazole 41 @ Interferon-B-1a 173 Metformin
Aminoglutethimide 42 Praziquantel 176 @ Nintedanib

@ Hydroxychloroquine 44 (1) Ascorbic acid 195 Allopurinol
Methimazole 47 Fluvastatin 199 Ponatinib

(1) Ribavirin 49 (@) nterferon-g-1b 203 | (1) Sildenafil

@ Omeprazole 50 Selegiline 206 Dapagliflozin
Bortezomib 53 @ Deferoxamine 227 Nitroprusside
Leflunomide 54 Ivermectin 235 Cinacalcet
Dimethylfumarate 55 @ Atorvastatin 243 Mexiletine

@ Colchicine 57 Mitoxantrone 250 Sitagliptin
Quercetin 63 Glyburide 259 Carfilzomib
Mebendazole 67 (2) Thalidomide 262 (@) Azithromycin

281
284

297
301
309
329
335
338
339
367
397
398
418
457
466
471
491
493
504
515
553
559
706

765
786



Validation Case Studies: Connectivity Map Q

(=N °
G
italo Do Valle
-5.66 -3 0 3 5.66
Measured the overlap between perturbed genes and COVID-19 Z-score Gene expression perturoation.
targets for 59 of the 81 repurposing candidates in the Connectivity CENPF
Map BAG5
ERP44

= ERO1B
Mitoxantrone (antineoplastic): 75 (22%) of the COVID-19 targets have a . Uegr2 L.
significant overlap with the 2,440 genes perturbed by the drug in the NUP62
lung (see Figure). N NP4

RAB14 i GHIT™M
- . o THTPA NINL  EXOSC5
Statistically significant overlap for 43 drugs (random: 13 + 7): o RINPRIKAROR e O [ e o
. f . ARF6 PRKAR2B TLEA LARP1 COL6A1
repurposing candidates effectively perturb the COVID-19 module. P S WS 089
PRKACA
Highest number of perturbed COVID-19 targets: carfilzomib (162), PR
flutamide (162), and bortezomib (162). - wda .
For lung the drugs with the highest overlap with COVID-19 targets are NN e FRLi2
mitoxantrone and ponatinib.
. O e RETREG3
. MRPS: TMEM97
Subramanian, Cell. 2017. ’ =

Lamb, Science. 2006.



Validation: Suppressing COVID-19 Expression

italo Do Valle
Counteract the gene expression perturbations caused by the
virus: Down-regulate genes up-regulated by the virus or vice . o -
versa? v e . o vyes
4 = ® no
120 differentially expressed genes (DEGs) in the SARS-CoV2 s " .

infected of the A549 cell line.

Bortezomib treatment of the cell line YAPC (20 uM) counteracts
the effects of the SARS- CoV2 infection for 65 genes (see
Figure, Spearman correlation p = —0.58).

log2 (fold-change) infection A549

22 drugs in the Connectivity Map have p < O, indicating that
they counteract the effects of the infection (random selections)

Perturbation Z-score Bortezomib YAPC 20um

Subramanian, Cell. 2017.
Lamb, Science. 2006.



Discussion

We ranked existing drugs based on their expected efficacy for
COVID-19 patients. This does not mean that drugs that did not make
our final list could not have efficacy, or that they must be excluded
from further consideration.

As the input data improves, so will our ranking, and we may develop
a case for other drugs, currently not listed:

New virus-host binding interactions (experimental, or Al
predicted)

Microarray data of COVID-19 patients
New drugs added to DrugBank
Improved drug target identification

The proposed methodology is general, allowing us to profile the
potential efficacy of any drug or a family of drugs, whether they are
included in our current reference list.
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Chloroguine
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Lopinavir
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Discussion

The predictive pipelines select drugs that are positioned to perturb
effectively the COVID-19 disease module.

The perturbations may block the virus’ ability to invade the host cells
or limit the molecular level disruption caused by the infection.
Others, however, may aggravate the symptoms and the seriousness
of the phenotype.

Molecular experiments can help test the efficacy of the drugs for
COVID-19 infected cell lines.

As these drugs have known side effects and toxicities, it may be
possible to move some directly into clinical trials, cognizant of the
possibility that these approved drugs may exert unique toxicities in
the setting of this novel infection, an outcome that can only be
identified in clinical trial.




What is Next?

Waiting for the drugs to arrive, to be screened at the National
Emerging Infectious Diseases Laboratories @ Boston University

Working to understand why the pipelines predict what they do -
what does the Al see compared to proximity-based methods?

Where does the predictive power come from?

Planning to integrate new data, as it becomes available, and run
robustness checks.

Feel free to contact us, if you want to follow up on any of our
predictions, and you need further data or details.

Manuscript available at: https://arxiv.org/abs/2004.07229




Other Ongoing Efforts

@KroganlLab N KROGAN
\LAB

Jan Baumbach, TU Munich. Cvexnm (

[ g | ini
Feixiong Cheng, Cleveland Clinic bd Cleveland Clinic

Lerner Research Institute

Wiki-CORONA

MadhaV| Ganapathlraju’ U Pltt Search for PPIs related to Coronavirus Infection:
https://hagrid.dbmi.pitt.edu/corona/
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