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SUMMARY

In high-throughput functional genomic screens, each gene product is commonly assumed to exhibit a singu-
lar biological function within a defined protein complex or pathway. In practice, a single gene perturbation
may induce multiple cascading functional outcomes, a genetic principle known as pleiotropy. Here, we model
pleiotropy in fitness screen collections by representing each gene perturbation as the sum of multiple pertur-
bations of biological functions, each harboring independent fitness effects inferred empirically from the data.
Our approach (Webster) recovered pleiotropic functions for DNA damage proteins from genotoxic fithess
screens, untangled distinct signaling pathways upstream of shared effector proteins from cancer cell fithess
screens, and predicted the stoichiometry of an unknown protein complex subunit from fitness data alone.
Modeling compound sensitivity profiles in terms of genetic functions recovered compound mechanisms of
action. Our approach establishes a sparse approximation mechanism for unraveling complex genetic archi-

tectures underlying high-dimensional gene perturbation readouts.

INTRODUCTION

Genome-scale genomic and proteomic profiling has dramati-
cally increased the scale of biological data acquisition. These
technological advances have created a concomitant need for
robust pattern recognition approaches that distill biological in-
sights from the information and structure of large datasets. In
particular, CRISPR-Cas9 technology has made gene perturba-
tion a routine practice, and genome-scale screens can be readily
performed across diverse cell contexts to measure physiological
outcomes such as cell fitness. After collecting such datasets, a
key challenge is to infer the genetic architecture underlying the
observed fitness effects, such that individual genes become
mapped to putative biological functions essential in specific
cell contexts for cell fitness.

A foundational aspect of genetic architecture is pleiotropy,
which states that gene products can participate in multiple inde-
pendent biological functions. Pleiotropy helps explain how bio-
logical complexity arises from a finite collection of genetic ele-
ments (Wagner and Zhang, 2011). Pleiotropy has been
observed across model organisms and at many scales of biolog-
ical organization (Kinsler et al., 2020; Tyler et al., 2016; Wang
etal., 2010), including in genetic variants that cause multiple hu-

man diseases (Gratten and Visscher, 2016; Solovieff et al., 2013;
Watanabe et al., 2019).

Although pleiotropy is pervasive, our ability to account for plei-
otropy within collections of cell fitness screens is limited.
Because each gene perturbation is measured across many cell
contexts with varied rate-limiting functional requirements (Hen-
kel et al., 2019), to capture pleiotropy, one must first describe
a set of biological functions that vary independently across cell
contexts and then define a one-to-many mapping of genes to
these functions. Both of these steps are challenging to perform
in high-dimensional data, and the lack of a unified conceptual
framework results in different calculations of pleiotropy that
cannot be directly compared (Costanzo et al., 2016; Dudley
et al., 2005; Koch et al., 2017). More commonly, analyses side-
step pleiotropy by assuming a one-to-one mapping of genes to
functions via gene clustering. A principled account of pleiotropy
could reveal the cascading effects of gene perturbation through
distinct aspects of cell fitness, thereby charting the flow of bio-
logical information between cellular functions that is currently
absent from most functional genomics analyses (Fraser and
Marcotte, 2004).

Here, we propose a framework that exploits pleiotropy to
structure latent representations of biological function learned
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Figure 1. Pleiotropy underlying the fitness effects of gene perturbation can be approximated using dictionary learning

(A) Fitness screen collections measure changes in cell growth rate following gene perturbation across diverse cell contexts. Webster applies graph-regularized
dictionary learning to these data to discover latent variables corresponding to biological functions. Webster returns (1) a dictionary matrix containing the fitness
effect of perturbing each inferred biological function and (2) sparse gene-to-function loadings. Using this information, each measured gene effect can be
approximated as a sparse linear combination of these latent functional effects, scaled by the appropriate loadings. Given the number of latent functions (k) and a
sparsity parameter (t), Webster minimizes the total approximation error while preserving the local structure of genes and cell contexts in its reduced-dimensional
representations (see also Figure S1A).

(legend continued on next page)
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from fitness data. Our approach (Webster) takes a large gene
perturbation matrix as input and infers a set of biological func-
tions, which we refer to as a dictionary, such that each gene
perturbation can be approximated as a combination of a small
number of these dictionary elements. Regularizing the dictionary
using the gene co-fithess graph results in individual dictionary el-
ements mapping to interpretable biological modules. By
applying Webster to CRISPR-Cas9 fitness screen collections
performed in human cells under a variety of conditions, we
explored the layers of functional impact resulting from single
gene perturbation; jointly embedded gene and functional depen-
dencies to chart fitness landscapes; prioritized genes and con-
texts for exploration of a learned function; and projected new
perturbations into the learned reference space.

RESULTS

Theoretical overview of learning gene function
representations with Webster

We define a biological function as a molecular process arising
from interacting gene products (Keeling et al., 2019). We assume
that physiological properties of a cell, such as its fitness, are
controlled by a core set of functions, and that these functions
can be distinguished by their independently varying activity levels
across diverse cell contexts. Gene perturbations induce changes
in one or more of these functions, thereby altering cell fitness.

Given a set of gene perturbation measurements, we wish to
infer a dictionary of latent variable elements, such that the effects
of each gene perturbation can be approximated as a mixture of
dictionary elements. Furthermore, dictionary elements should
correspond to interpretable biological functions learned empiri-
cally from the data with no outside knowledge. To perform this
inference, we employed dictionary learning via Webster (Fig-
ure 1). Webster receives as input an n x m matrix of fitness
effects, where n is the number of cell contexts, and m is the num-
ber of genes. Each fitness effect captures the change in cell
number upon gene perturbation.

Webster models the fitness effect matrix in terms of k latent
biological functions learned from the data, with k < m and n.
The output of Webster is two low-rank matrices: (1) an n X k dic-
tionary matrix capturing the fitness effect of losing one of k in-
ferred functions across n cell contexts and (2) a k X m loadings
matrix encoding the sparse approximation of each of m gene ef-
fects in terms of t dictionary elements, with t << k. This “sparse
dictionary learning” approach (Rubinstein et al., 2010) has con-
nections to sparse matrix factorization and dimensionality

¢ CellP’ress

reduction (Cleary et al., 2017; Kim and Park, 2007; Stein-O’Brien
et al., 2018).

In practice, Webster encompasses three steps: (1) prepro-
cessing raw fitness data, (2) dictionary initialization with k-me-
doids, and (3) graph-regularized dictionary learning. Preprocess-
ing removes low-variance gene effects and corrects batch
effects between cell contexts prior to dictionary learning. Then,
k-medoids defines an initial k X n dictionary that clusters the
data. From this starting point, dictionary learning is performed
using an objective function balancing (1) approximation error,
(2) smoothness over a nearest-neighbor graph of genes, and
(8) smoothness over a nearest-neighbor graph of cell contexts.
This is performed via dual-graph-regularized k-SVD (Yankelev-
sky and Elad, 2016, 2020), which optimizes k overlapping sub-
spaces of genes and takes the first eigenvector of the subspace
as its representative dictionary element. Each gene effect is then
linearly approximated using t dictionary elements via orthogonal
matching pursuit (Pati et al., 1993), thereby capturing statistically
independent components of variance. Further details are
captured in STAR Methods under “Method details.”

A generative model of fitness data
As a primer, we established a simple generative model for fitness
data and illustrate the use of Webster on generated data. We
suppose two independent biological functions with measurable
fitness effects upon loss across cell contexts (Figure 1B). We
also suppose two classes of genes regulating either Function 1
or 2 and a third class of pleiotropic genes that weakly regulate
both functions. We represented these gene-to-function relation-
ships with loadings, which are high for genes that strongly acti-
vate a function or zero when the gene is unrelated (Figure 1C).
To synthesize fitness effects of individual gene perturbation,
we scaled the fitness effect of each function by the respective
loading of that gene and added measurement noise (Figure 1D).
The resulting synthetic fithess data consisted of noisy gene
perturbation effects across cell contexts, with fitness effects of
both functions now latent in the structure of the data (Figure 1E).
Using this data as the sole input, we parameterized Webster to
infer two dictionary elements and approximate each gene pertur-
bation as a mixture of both elements. The dictionary elements
properly recovered the fitness effects of both functions across
cell contexts. Furthermore, each gene effect was properly loaded
onto the correct dictionary element (Figure 1F). In particular, pleio-
tropic genes were successfully decomposed as equal mixtures of
both dictionary elements (Figure 1G). In comparison, clustering
genes into functional groups failed to capture these pleiotropic

(B) A generative example. Fitness effects corresponding to two distinct biological functions are generated over 25 cell contexts, shown in a heatmap, with a
negative score indicating a slowed growth rate.

(C) Top: diagram of gene-to-function relationships. Gene C influences both functions, representing pleiotropy. Bottom: A gene’s contribution to each function is
captured in a loading score, shown in a heatmap.

(D) To simulate the fitness effect of knocking out each gene, we scaled the appropriate functional effects with the loading scores defined in C, adding random
noise to represent measurement error.

(E) This results in a synthetic screening dataset of 100 gene perturbations across 25 cell contexts, with the original biological functions implicit in the structure of
the data. This matrix is the sole input to Webster.

(F) From this dataset, Webster was parameterized to infer two functional effects and model each gene effect as a mixture of both functional effects. Webster
recovered a dictionary matrix that matched the ground truth defined in (B), and a gene-to-function loadings matrix that matched the ground truth defined in (C).
(G) Webster reconstructed each noisy gene effect measurement as a sparse linear combination of learned functional effects, thereby accommodating pleiotropy.
For example, Webster accurately modeled knockout of Gene C as a near-equal mixture of knocking out Function 1 and Function 2 while isolating measurement
noise in the model residuals.
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Figure 2. Pleiotropy underlies the DNA damage response to genotoxins in a human cell line

(A) The immortalized human cell line RPE1-hTERT harboring a genome-scale CRISPR-Cas9 knockout library was subjected to 31 genotoxic stressors at a
sublethal dose, resulting in a genotoxic fitness screen collection (Olivieri et al., 2020). From this data matrix, Webster was parameterized to infer 10 biological
functions and approximate each gene effect as a sparse mixture of two functional effects.

(B) Top: the original fitness data, preprocessed to a set of 304 high-variance fitness gene effects from 31 treatment conditions, shown as a hierarchically clustered
heatmap. Bottom: Webster’s approximation of the data, with each gene effect approximated as a sparse mixture of two inferred functions. The order of genes and
treatments is preserved between panels.

(legend continued on next page)
4 Cell Systems 13, 1-18, April 20, 2022



https://doi.org/10.1016/j.cels.2021.12.005

Please cite this article in press as: Pan et al., Sparse dictionary learning recovers pleiotropy from human cell fithess screens, Cell Systems (2021),

Cell Systems

relationships (Figure S1B), while standard latent variable models
failed to resolve interpretable components (Figure S1C).

Learning representations of DNA damage functions
from genotoxic fitness screens

Next, we applied Webster to published CRISPR-Cas9 fitness
screens in a human cell line exposed to a diverse set of geno-
toxic stressors (Figure 2A) (Olivieri et al., 2020). Preprocessing
the 31 genome-scale screens yielded 304 high-variance fitness
genes (Figure S2A). After a hyperparameter sweep (Figure S2B),
Webster successfully reconstructed the original gene perturba-
tion data using an inferred dictionary composed of 10 elements,
using two dictionary elements to represent each gene perturba-
tion (Figure 2B; Table S1).

We matched each dictionary element to a biological function
by annotating its most sensitive genotoxic stressors and its
top-loaded genes, using literature resources that were hidden
during model training. For example, DNA adducts are harmful
to cell growth unless excised by nucleotide excision repair
(NER). Using only numerical fitness data as input, Webster’s first
dictionary element captured the negative fitness effects of DNA
adduct-inducing agents (UV light, illudin S, and BPDE) (Fig-
ure 2C). The top four genes loaded on this dictionary element
were classical NER pathway members (ERCC8, GTF2HS5,
UVSSA, and ERCC5), and the fifth (STK79) was a recently
discovered pathway member (Boeing et al., 2016; Olivieri
et al., 2020). Indeed, the strength of a gene’s loading on this
element was a sensitive and specific predictor of NER pathway
membership (Figure S2C, AUROC = 0.9). In the absence of prior
knowledge, Webster inferred the existence of NER by discov-
ering a fitness effect specific to DNA adduct-inducing agents,
storing that effect as an element in the dictionary, and using it
to model gene effects of NER pathway members.

We identified other dictionary elements that captured the ef-
fects of biological pathways, such as the sensitivity of cells to
DNA-alkylating agents upon loss of Fanconi anemia/interstrand
crosslink repair; topoisomerase | poisons upon loss of homolo-
gous recombination; topoisomerase |l poisons upon loss of
end joining; and polymerase alpha inhibitors upon loss of fork
quality control (Figure 2C). Classical pathway members were
specifically loaded onto the appropriate dictionary elements
(Figure 2D). In contrast, commonly used latent variable models
failed to separate these independent pathways into individual
components (Figure S2C).
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Webster’s dictionary also captured the effects of specific
stressors that defined unique fitness outcomes in the data (Fig-
ure 2C). One dictionary element captured ATRi resistance, and
top-loaded genes on this element overlapped with hits from pre-
vious ATRi resistance screens (Hustedt et al., 2019). Another
element captured neddylation resistance, whose top-loaded
gene (BEND3) was recently verified in an orthogonal study
(Barghout et al., 2021). The top-loaded gene upon the PhenDC3
sensitivity element was SLC18B1, reflecting control of poly-
amine production by metastable RNA G-quadruplexes (Lightfoot
et al., 2018). Finally, two dictionary elements captured the high
intrinsic fitness effect of essential genes (Hart et al., 2015) and
proliferation suppressor genes (Colic et al., 2019), which are
technical factors commonly identified in screens of this design.
From the fitness data alone, Webster learned a set of maximally
informative dictionary elements capturing the functional effects
of losing biological pathways that respond genotoxic stress.

Pleiotropy underlies the DNA damage response

We next examined how learned mixtures of functional effects
approximated pleiotropic gene effects. The H2AFX histone pro-
tein is phosphorylated in response to DNA double-stranded
breaks. Webster approximated the effect of perturbing H2AFX
as a mixture of two functional effects scaled by their loadings
(Pearson correlation [cor] = 0.76, Figure 2E):

H2AFX = 1.4 x Homologous Recombination +
0.8 x End Joining

Each loading quantifies the influence a gene exerts on a bio-
logical function and is expressed in units of standard deviation
(SD) in the original fitness data. As such, homologous recombi-
nation contributes 1.4 SD to the H2AFX gene effect, and end
joining contributes 0.8 SD. Because each gene is reconstructed
from normalized, orthogonal dictionary elements, loadings are
proportionally representative; that is, two-third of the H2AFX
fitness effect is explained by its influence on homologous recom-
bination and one-third by its influence on end joining.

MCPH1 is an obligate H2AFX interactor at double-stranded
break sites. Webster approximated the effect of depleting
MCPH1 using identical functional effects and similar loadings
(Figure 2F). Homologous recombination and end joining both
repair double-stranded breaks but are preferentially activated un-
der different conditions (Figures 2E and 2F). By constraining
Webster to approximate a large number of gene perturbations

(C) The dictionary matrix. Each column of the dictionary captures the inferred fitness effect of depleting an biological function learned from the data.

(D) The loadings matrix. Top: Sparse gene-to-function loadings for the 304 fitness genes. Each gene (column) has two nonzero loadings, encoding the model’s
sparse representation of its gene effect. Bottom: Literature curated gene annotations, defined by Olivieri et al. (2020). Gene order is preserved between panels.
TSG, tumor suppressor gene.

(E) Gene effect decomposition. Webster decomposes H2AFX knockout as a mixture of two functional effects related to DNA double-stranded breaks. The first
function, homologous recombination, has a fitness effect induced by olaparib and camptothecin, etc. The second, end joining, has a fitness effect induced by
doxorubicin and etoposide, etc. Webster faithfully modeled the H2AFX gene effect as the sum of these two functional effects, scaled by their respective loadings
(Pearson = 0.76).

(F) Top: relationships learned from fitness data for H2AFX and MCPH1, an obligate H2AFX interactor. Each arrow corresponds to an inferred gene-to-function
loading. Bottom: lllustration of H2AFX/MCPH?1’s shared roles as DNA double-stranded break sensors upstream of homologous recombination and end joining.
(G) Additional gene loadings. Left: The top 15 genes ranked by their loadings on homologous recombination alongside literature annotations, as previously
described in D. Right: Joint UMAP embedding of gene and functional effects, with genes colored by loading scores. Gene effect data from Olivieri et al. (2020).
Functional effects inferred with Webster (this study) (see also Figure S2D).

(H) Same as (G), but for end joining gene loadings. In the UMAP, H2AFX and MCPH1 are embedded between homologous recombination and end joining. Gene
effect data from Olivieri et al. (2020). Functional effects inferred with Webster (this study).

(I) A network of DNA damage functions, with the number of pleiotropic genes connecting functions represented by line thickness.
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Figure 3. Pleiotropy underlies the fitness effect of gene knockout across human cancer cell lines

(A) The Cancer Dependency Map (DepMap) fitness screen collection. Individual human cancer cell lines were screened for genetic dependencies for cell growth
by comparing cell counts before and after infection with a genome-scale CRISPR-Cas9 gene knockout library.

(B) The DepMap data were preprocessed to a set of 2,921 high-variance fitness genes screened across 675 cell lines. From this data alone, Webster learned a
dictionary matrix of 220 fitness effects reflecting inferred biological functions and approximated each gene effect in terms of four functional effects.

(C) Webster approximated the fitness effect of SHOC2 knockout as a mixture of four functional effects (activated KRAS, activated NRAS, EGFR signaling, and
FGFR signaling), each of which were strongest in cell lines harboring corresponding genomic alterations (KRAS mutation, NRAS mutation, activated EGFR, and

(legend continued on next page)
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with a small number of dictionary elements, it parsimoniously
modeled perturbations of double-stranded break sensors as mix-
tures of the underlying double-stranded break repair pathways.
To globally visualize these relationships, we used Uniform
Manifold Approximation and Projection (UMAP) to plot genes
and functions according to the similarity in fitness effects across
cell contexts (Table S2). In general, genes are co-segregated by
function on the map (Figures 2G and 2H), with pleiotropic genes
such as H2AFX and MCPH1 occupying regions between func-
tions. As another example, RAD51B was approximated as

RAD51B = 2.1 x Homologous Recombination +
0.84 x Fanconi Anemia

in the original data and embedded between both functions by
UMAP, reflecting its role as a homologous recombination gene
and risk allele for Fanconi anemia (Ameziane et al., 2015)
(Figure S2D).

The pleiotropy of human DNA damage genes mirrors observa-
tions in Drosophila, in which “even the best understood DNA
repair pathways have unforeseen levels of complexities” (Sekel-
sky et al., 1998). We account for this complexity by modeling
gene effects as combinations of functional fitness effects, thereby
charting the flow of information between pathways activated by
distinct genotoxic stressors (Figure 2I). Because our model is
linear, these archetypes form the basis for an interpretable latent
space of DNA damage functions, in which linear algebra opera-
tions reflect the underlying structure of pleiotropic gene relation-
ships. For instance, H2AFX — End Joining + Fanconi Anemia =
RAD51B in our model (Pearson cor = 0.69, Figure S2E). This is
analogous to linear semantics underlying word embeddings in
which king — man + woman = queen (Mikolov et al., 2013).

Learning representations of biological functions from
cancer cell line fitness screens

Next, we scaled Webster to a ~20 times larger dataset of 675 can-
cer cell line fitness screens, the Cancer Dependency Map (Meyers
et al., 2017) (Figure 3A). We preprocessed the data to include
2,921 gene effects exhibiting high variance across cell lines. After
a hyperparameter sweep (Figures S3A and S3B), we recovered
220 dictionary elements and approximated each gene effect using
up to four dictionary elements (Figure 3B; Table S3).

We further validated that Webster was robust to noise (Fig-
ure S3C), reproducible across random runs over identical
parameters (Figure S3D), and that dictionaries trained on one
cancer fitness dataset could successfully model perturbations
from another dataset performed with a different CRISPR-Cas9
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guide library and cell culture conditions (Behan et al., 2019)
(Figure S3E). Dictionary elements learned at our chosen hyper-
parameters (k = 220, t = 4) were robustly learned across other
hyperparameter settings; in particular, learning dictionaries at
lower values of k resulted in subsets of our 220-element dictio-
nary (Figure S3F; Table S3).

We matched each dictionary element to a biological function
by annotating the strongest loaded genes, supported by
consensus cell line features that explain the fitness effect
captured by the element. Ninety percent of dictionary elements
captured the fitness effect of losing literature-supported func-
tions, whereas the remaining elements captured technical
factors such as common essential effects (Table S3).

Webster modeled gene effects as mixtures of functional ef-
fects learned empirically from the data. For instance, SHOC2 is
part of the oncogenic RAS signaling pathway. Webster approx-
imated the effect of SHOC2 depletion in 675 cell lines in terms of
four functional effects (Pearson cor = 0.85, Figure 3C):

SHOC2 = 0.9 x Activated KRAS +
0.8 x Activated NRAS +
0.2 x EGFR Signaling +
0.2 x FGFR Signaling

Cell lines with the strongest fitness effects per function ex-
hibited matched molecular alterations: KRAS hotspot mutations,
NRAS hotspot mutations, activated EGFR, and high FGF expres-
sion, respectively (Figures 3C and S3G). These genomics features
were unused during model training. By looking globally across
fitness data alone, Webster discovered cell contexts with distinct
activated signaling pathways that influence SHOC2 function.

We charted a landscape of cancer cell fitness by jointly
embedding 2,921 genes and 220 functions according to their
fitness effects using UMAP (Figure 3D; Table S4). For biological
processes such as oxidative phosphorylation, mitotic chromo-
some separation, cytoskeleton, and epigenetic regulation,
Webster resolved distinct protein complexes or functional units
within that process (Figure 3D).

Within cancer signaling, RAF1 is another obligate RAS effector
whose gene effect was a mixture of activated NRAS and acti-
vated KRAS, as reflected by the UMAP embedding (Figure 3E)
and loadings (Figure 3F). GRB2 and PTPN11 are effectors of
growth factor signaling whose gene effects were mixtures of
EGFR signaling and FGFR signaling, as reflected in their embed-
dings (Figure 3E). Other genes such as BRAF, MAPK1, DOCKS5,
and CRKL spanned-related pathways such as BRAF signaling
and focal adhesion, forming an interaction network between
genes and inferred functional effects (Figure 3G).

FGFR expression, respectively). This decomposition reflects the pleiotropic interactions underlying SHOC2’s overall function downstream of these signaling
pathways.

(D) Joint UMAP embedding of fitness effects for genes and functions inferred from DepMap data. Each of the 220 functions (triangles) and 2,921 genes (circles)
are co-embedded in a 2D layout. Selected functions of interest are labeled on the map. Gene effect data from Cancer Dependency Map 19Q4v3 release (https://
doi.org/10.6084/m9.figshare.11384241.v3). Functional effects inferred with Webster (this study).

(E) For each function from (C), genes in the joint embeddings are colored according to their loadings on each function, including an inset focusing in on the
immediate neighborhood of the function of interest. To the right, the top 10 ranked genes are shown with a heatmap of their respective gene loadings. Gene effect
data from Cancer Dependency Map 19Q4v3 release (https://doi.org/10.6084/m9.figshare.11384241.v3). Functional effects inferred with Webster (this study).
(F) Top: relationships learned from fitness data for SHOC2 and RAF1, which also acts downstream of activated RAS proteins. Each arrow corresponds to an
inferred gene-to-function loading. Bottom: lllustration of SHOC2/RAF1’s shared biological role in activated RAS signaling.

(G) A network of SHOC2-related functions. Each node is a function inferred by Webster from fitness data. Pleiotropic genes with loadings on two functions are
plotted as edges in the network, with the number of pleiotropic genes connecting functions represented by the line thickness. The four bolded functions are those
used in the SHOC2 gene effect approximation, while the three additional functions shared at least two pleiotropic genes with one of these four functions.
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Figure 4. Modular pleiotropy within protein complexes resolves C70rf26 as a member of the Integrator complex INTS10-13-14 module

(A) STAGA and ATAC protein complexes share a histone acetyltransferase module. From cancer cell fitness data alone, Webster inferred separate functional
effects of STAGA and ATAC depletion while decomposing the effect of knocking out shared subunits as a mixture of STAGA and ATAC depletion.

(B) The SWI/SNF family protein complexes consist of specialized subunits bound to the common enzymatic subunit SMARCA4. From cancer cell fitness data
alone, Webster inferred separate functional effects of depleting each subcomplex while decomposing the effect of SMARCA4 knockout as affecting all three
subcomplexes.

(C) The Integrator complex is a modular RNA endonuclease complex. From cancer cell fitness data alone, Webster learned three distinct functional effects
involving Integrator complex componentry. Each of the three functions captured the specific effect of knocking out recently discovered structural modules of the

(legend continued on next page)
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Half of the gene effects that were well approximated by
Webster (Pearson cor > 0.4) exhibited evidence of multifunc-
tionality (loadings > 0.25 SD on at least two functions), suggest-
ing that cancer cell fithness obeys more complex genetic
architectures than previously appreciated and places cancer
cells in line with other model organisms where a majority of
genes exhibit pleiotropy (Wang et al., 2010).

Modeling genes as compositions of functions extends
pairwise gene similarity approaches

An important distinction exists between our sparse approxima-
tion models and pairwise guilt-by-association correlations
commonly applied to this type of data (Amici et al., 2021; Bayr-
aktar et al., 2020; Boyle et al., 2018; Kim et al., 2019; Pan
et al., 2018; Wainberg et al., 2021). The measured fitness effect
of SHOC2 correlates strongly with that of RAF1 (Pearson = 0.64)
but weakly with RAS proteins themselves (NRAS, Pearson cor =
0.29, KRAS, cor = 0.26). Despite being highly related genes,
NRAS and KRAS fitness effects are in fact anti-correlated (Pear-
son cor = —0.17) because their activating mutations occur in
mutually exclusive cell lines. This presents a paradox that guilt-
by-association approaches alone fail to solve, instead requiring
supervised learning approaches with cell line mutation data as
input (Kim et al., 2021).

Webster’s approach returned unsupervised representations
of biological functions from fitness data alone, which included
activated NRAS and activated KRAS. Composing these func-
tions together allows the model to represent complementary
paths to SHOC2 dependency. Indeed, the simplified expression

0.9 x Activated KRAS + 0.8 X Activated NRAS
achieves a higher pairwise correlation with SHOC2 fitness ef-
fect than any single gene in the original data (Pearson cor = 0.81).

A second limitation of pairwise similarity metrics is that nega-
tive correlations are typically elided from the data before clus-
tering or visualization. In our model, a negative regulator of a
function can be modeled with a negative loading, indicating its
knockout has the opposite effect from a positive regulator. As
an example, KRAS is inhibited by NF1 and degraded by
LZTR1; both genes have negative loadings on the Activated
KRAS function (—0.5 for NF1 and —0.4 for LZTR1).

Modular pleiotropy underlies the fitness effect of
protein complexes

Pleiotropy has a modular structure, such that groups of collabo-
rating genes share pleiotropic functions (Wagner and Zhang,
2011). A biochemical basis for modular pleiotropy arises when
protein complexes share common subunits yet perform distinct
functions. The enzymatic module consisting of SGF29, KAT2A,
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and TADAS is shared by the STAGA and ATAC complexes (Fig-
ure 4A) (Spedale et al.,, 2012). From the fitness data alone,
Webster learned independent functions for STAGA and ATAC
complexes and parsimoniously represented the effect of per-
turbing shared subunits as
KAT2A = 1 x STAGA complex +
0.2 X ATAC complex + ...

SGF29 = 1.8 x STAGA complex +
0.2 x ATAC complex + ...

TADA3 = 1.3 x STAGA complex +
0.2 x ATAC complex + ...

In contrast, two protein paralogs ADA2A and ADA2B have
similar sequences (45% positive alignment in BLAST) but exclu-
sively bind ATAC and STAGA, respectively. Their effects are
approximated as

ADA2A = 0 x STAGA complex +
0.26 x ATAC complex + ...

ADA2B = 2.2 x STAGA complex +
0 x ATAC complex + ...

The remaining STAGA and ATAC subunits also follow this
pattern (Figure S4A).

SWI/SNF is a family of three chromatin remodeling complex-
es:: ncBAF, cBAF, and pBAF. Each complex shares the enzy-
matic subunit SMARCA4 (Mashtalir et al., 2018) (Figures 4B
and S4B). Webster decomposed the effect of SMARCA4
knockout as follows:

SMARCA4 = 0.9 x ncBAF complex +
0.8 x cBAF complex +
0.4 x pBAF complex ...

ARID1A exclusively binds cBAF, while BRD9 and BRD7 are
paralogous proteins that exclusively bind ncBAF and PBAF,
respectively. Their fitness effects were encoded as follows:

ARID1A = 0 x ncBAF complex +
1.2 X cBAF complex +
0 x pBAF complex ...

BRD9 = 1 x ncBAF complex +
0 X cBAF complex +
0 X pBAF complex ...

BRD7 = 0 x ncBAF complex +
0 X cBAF complex +
0.8 x pBAF complex ...
The ancestral BRD7/9 protein in Drosophila binds both pBAF
and ncBAF (Barish et al., 2020), but gene duplication evolved
two specialized mammalian paralogs that exclusively function

complex. An unknown interactor, C70rf26, was approximated as a mixture of all three Integrator functions, with the strongest loaded function mapping to the

INTS10-13-14 functional module.

(D) Schematic of two C70rf26 gene splice variants curated by the genotype-tissue expression (GTEXx) portal.
(E) Immunoprecipitation (IP) of C7orf26-HA variants from 293T nuclear extracts, immunoblotted for INTS10-13-14 module subunits.
(F) Mass spectrometry of C7orf26-HA and C70rf26-V5 immunoprecipitations from 293T cells shows stoichiometric pull down of INTS10, 13, and 14 with the full-

length C70rf26.

(G) 293T cells with CRISPR-Cas9 perturbation of C70rf26 display loss of INTS10 at the protein level.
(H) IP of endogenous C70rf26 from 293T cells with and without INTS10 knockout.
(I) Model figure—C7orf26 stabilizes INTS10, which assembles together with the INTS13-14 heterodimer to form the INTS10-13-14-C70rf26 module.
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Figure 5. Gene function embeddings reflect pleiotropy between hierarchically compartmentalized functions
(A) Conceptual overview of cellular organization. After learning gene functions with Webster from cancer fitness data alone, experimentally derived subcellular
localization data (Go et al., 2021) were used to annotate Webster’s functions across 20 subcellular locations within a total of 7 cellular compartments.
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in one or the other complex (Michel et al., 2018). Our ability to
infer different functions for paralogs (ADA2A/B and BRD7/9)
based on differing fitness contexts evokes the ‘“semantic
change” of words inferred from differing sentence contexts
over time (Boleda, 2020).

As a final example, Webster recovered two distinct functions
involving the Mediator complex, with head module subunits
mapping to one and Tail/CKM module subunits mapping to the
other, consistent with patterns previously observed in cancer
fitness data (Boyle et al., 2018; Pan et al., 2018) (Figure S3C).

Modular pleiotropy in the Integrator complex
The Integrator protein complex localizes to the nucleus and ex-
hibits RNA endonuclease activity (Baillat and Wagner, 2015)
but is incompletely characterized. From the fitness data alone,
Webster resolved three distinct functions corresponding to
recently discovered biochemical modules (Figures 4C and
S3D). One fitness effect is specific to the backbone and shoulder
modules (Zheng et al., 2020), with the top-loaded genes being
INTS6, INTS12, INTS5, INTS7, and INTS8. Components of the
RNA Pol Il transcriptional pausing machinery were also loaded
onto this function (HEXIM, LEO1, and WDR61), suggesting this
fitness effect is partially explained by the signal-dependent role
of Integrator in transcriptional pause/release (Elrod et al., 2019;
Gardini et al., 2014; Hou et al., 2019; Stadelmayer et al., 2014;
Tatomer et al., 2019). A second function mapped to the recently
characterized interaction between WDR73 and the endonu-
clease module (Tilley et al., 2021). WDR73 was the strongest
loaded gene (1.8), followed by BRAT1 (1.5) and INTS9 (0.7).
Finally, Webster inferred the fitness effect of perturbing the
INTS10-13-14 heterotrimer, a physical and functional module
of the Integrator complex (Barbieri et al., 2018; Mascibroda
et al., 2020; Pfleiderer and Galej, 2021; Sabath et al., 2020).
INTS10, INTS14, and INTS13 were the strongest loadings on
this function (1.1, 0.9, 0.8, respectively), along with a fourth
gene, C70rf26 (1.0).

C70rf26 stabilizes INTS10 as a member of the Integrator
complex INTS10-13-14 module

The conserved C70rf26 protein consists of a single domain of the
unknown function (DUF4507) and has been nominated as a puta-
tive Integrator interactor in proteomic datasets (Baillat et al., 2016;
Boeing et al., 2016; Drew et al., 2020; Malovannaya et al., 2010)
although the nature of its relationship to Integrator is not under-
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stood. Webster modeled the fitness effect of C70rf26 perturbation
as a mixture of all three Integrator functions defined above:

C70rf26 = 1.0 x INTS10-13-14 module +
0.5 x WDR73-Endonuclease module +
0.1 Backbone/Shoulder module

with two-thirds of its overall fitness effect explained by the
INTS10-13-14 module. To investigate this observation further,
we exogenously expressed HA-tagged versions of two
C7orf26 isoforms in human 293T cells (Figure 4D). Using immu-
noprecipitation, we observed a robust interaction between the
full-length C70rf26 protein and INTS10, 13, and 14 (Figures 4E
and S4E). These interactions were not observed for the shorter
C7orf26 isoform (Figure 4E), suggesting the two missing
DUF4507 microdomains (Figure 4D) were necessary for the
interaction. Upscaling our biochemical purifications and subject-
ing eluted material to mass spectrometry, we identified stoichio-
metric amounts of INTS10, 13, and 14 with full-length C70rf26
pull-down (Figure 4F; Table S5). The INTS9-4-11 endonuclease
module subunits were also present but at lower levels, followed
by the remaining Integrator subunits. As before, the shorter iso-
form failed to pull down INTS10, INTS13, or INTS14 (Figure 4F).
To interrogate the biochemical mechanism of C70rf26’s role in
the INTS10-13-14 module, we generated C70rf26 knockout
293T cells and assessed the protein abundance of other Inte-
grator subunits. Compared to control cells, loss of C70rf26 abro-
gated INTS10 protein levels (Figures 4G and S4F) while sparing
other Integrator subunits, including INTS13 and 14 (Figure 4G).
In the reciprocal INTS10 knockout, we observed that C7orf26
protein levels remained constant, but endogenous C7o0rf26
failed to bind INTS13 in the absence of INTS10 (Figure 4H).
These observations indicate C70rf26 nucleates the assembly
of INTS10 with the INTS13-14 heterodimer (Sabath et al.,
2020), resulting in a INTS10-13-14-C70rf26 heterotetrameric
module of the Integrator complex (Figure 4l). This assembly
chain was supported by co-sedimentation patterns of native nu-
clear extracts, in which C70orf26 existed as a monomer at low
molecular weights but co-eluted with INTS10 at higher molecular
weights characteristic of the full complex (Figure S4G). In previ-
ous in vitro purification efforts from insect cells, INTS10 was un-
stable when expressed in isolation (Sabath et al., 2020); adding
C70orf26 to these preparations may stabilize INTS10. Previous
guilt-by-association studies assigned C70rf26 to a large gene
cluster containing the union of all three Integrator modules
(Wainberg et al., 2021), thereby eliding the underlying pleiotropic

(B) Joint embedding of fitness effects for genes and functions inferred from DepMap data, with functions colored by their specificity for one of seven cellular
compartments—mitochondria, endoplasmic reticulum (ER), recycling, membrane, nucleus, cytosol, and miscellaneous. Subcellular location data were not used
during the training of the Webster model. Gene effect data from Cancer Dependency Map 19Q4v3 release (https://doi.org/10.6084/m9.figshare.11384241.v3).
Functional effects inferred with Webster (this study). Subcellular location data from Human Cell Map (Go et al., 2021).

(C) Insets from (B). detailing functions within the ER, recycling and membrane compartments, capturing specific subcellular locations or protein complexes within
these broad compartments. Gene effect data from Cancer Dependency Map 19Q4v3 release (https://doi.org/10.6084/m9.figshare.11384241.v3). Functional
effects inferred with Webster (this study). Subcellular location data from Human Cell Map (Go et al., 2021).

(D) Insets from (C). detailing genes embedded nearby their pleiotropic gene functions. Bolded genes are mentioned in the main text. Gene effect data from Cancer
Dependency Map 19Q4v3 release (https://doi.org/10.6084/m9.figshare.11384241.v3). Functional effects inferred with Webster (this study). Subcellular location
data from Human Cell Map (Go et al., 2021).

(E) Pleiotropic genes bridge biological functions that are physically distinct. Left: Pleiotropic genes for peroxisome biogenesis and cholesterol biosynthesis
functions, which are enriched at the peroxisome and the ER, respectively. Middle: Pleiotropic genes for the Commander/WASH, HOPS/CORVET, and amino acid
activation of mTOR functions, which are enriched at the early endosome, endosomal vesicles, and lysosomes, respectively. Right: Pleiotropic genes for the
SCAR/WAVE (cytosol), integrins, and focal adhesion functions.
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Figure 6. Projecting compound perturbations into a reference space of gene functions

Log2 Dose (uM)

(A) Conceptual overview of reference-query projection for fitness data. If Webster learned true biological functions from gene perturbation data, those functions
should generalize to unseen perturbations measured over the same cell lines, such as compound sensitivity measurements.

(B) Overview of query dataset. Compounds from the Drug Repurposing Hub were screened at a uniform dose (2.5 uM) over a set of barcoded cell lines to generate
compound sensitivity profiles (Corsello et al., 2020). We modeled 191 high-variance compound treatments by approximating each compound sensitivity profile
as a mixture of up to four gene functions learned from CRISPR data using Webster. Compound data were not used during the training of the gene function
dictionary.

(C) Joint UMAP embedding of genes, functions, and compound sensitivity profiles. Compounds embedded near gene functions reflecting their mechanism of
action. Gene effect data from Cancer Dependency Map 19Q4v3 release (https://doi.org/10.6084/m9.figshare.11384241.v3). Functional effects inferred with
Webster (this study). Compound sensitivity data from PRISM Drug Repurposing 19Q4v4 Dataset (https://doi.org/10.6084/m9.figshare.9393293.v4).

(legend continued on next page)
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interactions reflecting its specific stoichiometry within the
complex.

Learned functions reflected a cellular hierarchy

Next, we explored the properties of the latent space defined by
Webster’s functions. Gene products are spatially regulated
within a cellular hierarchy (Figure 3D), but because Webster is
trained on fithess data alone, it has no prior knowledge of this hi-
erarchy (Figure 5A). We leveraged recently published proximity
labeling measurements (Go et al., 2021) represented as proba-
bility distributions for each gene product over 20 subcellular lo-
cations. By multiplying gene location probabilities with our
gene-to-function loadings, we computed scores indicating the
level of physical compartmentalization for each fitness function
(Figure S5A; Table S6).

Grouping the 20 fine-grained locations by physical or func-
tional similarity resulted in seven coarse-grained compartments:
nucleus, endoplasmic reticulum (ER), recycling, cytosol, mito-
chondria, membrane, and miscellaneous (ribosomes and other
large protein complexes) (Figure S5B). Functions enriched for
specific compartments incurred similar fitness effects and
occupied nearby regions of the embedding space (Figures 5B,
S5C, and S5D). Individual functions reflected subcellular loca-
tions such as the ER lumen, the outer nuclear membrane, and
peroxisome within the coarse-grained ER compartment; addi-
tional examples included lysosome and retrograde transport
functions within the recycling compartment and focal adhesions
and cell junction functions within the membrane compartment
(Figure 5C).

Certain gene effects were modeled as mixtures of functions
spanning distinct (but related) subcellular locations. In Webster,
the effect of perturbing the C120rf49 gene was approximated as

C120rf49 = 1.0 x Sterol Biosynthesis +
0.4 x Peroxisome Biogenesis

reflecting its recently characterized role in sterol biosynthesis at
the ER membrane (Aregger et al., 2020; Bayraktar et al., 2020;
Loregger et al., 2020; Xiao et al., 2021), the metabolites for which
are delivered to the ER by peroxisomes (Costello et al., 2017;
Hua et al., 2017). Additional pleiotropic genes spanned these
differentially localized functions (Figure 5E).
As another example, the effect of perturbing VPS39 was
approximated in Webster as
VPS39 = 0.8 x HOPS/CORVET +
0.5 x Amino Acid Activation of mTOR
VPS39 is a HOPS complex member that endosomally recycles
proteins with CORVET. The HOPS complex was recently impli-
cated in mTOR activation via lysosomally recycled amino acids
(Hesketh et al., 2020). The strongest loaded genes on the amino
acid activation of mTOR function are Ragulator, Rag, Folliculin,
and GATOR2 complex members (all localized to the lysosome),
HOPS complex members (localized to endosomes), as well as

¢ CellP’ress
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mTOR itself. Additional pleiotropic genes spanned these differ-
entially localized functions (Figure 5E).

These results echo other biological hierarchies observed in
fitness data from organisms such as yeast (Costanzo et al,
2016; Kramer et al., 2014). Most gene functions were either indi-
rectly or unrelated to cancer biology at large, suggesting that
drivers of cancer pathology exert second-order effects on
normal physiological pathways across cell lines. Finally, these hi-
erarchical relationships are largely absent when mapping the
220 functional effects alone (Figure S5E) because dictionary ele-
ments themselves are decorrelated by design. To facilitate
exploration of the Webster’s analysis of cell fitness data, we pro-
vide an interactive portal for exploring pleiotropic gene relation-
ships (http://depmap.org/webster/).

Projecting compounds into a latent space defined by
gene functions

The PRISM Drug Repurposing dataset contains compound
sensitivity measurements across hundreds of cancer cell lines
(Corsello et al., 2020). These compound sensitivity measure-
ments were unseen during dictionary learning on gene pertur-
bation data (Figure 3B). We assessed whether this dictionary
optimized on gene perturbation data captured patterns present
in compound sensitivity data (Figure 6A). To do this, we iso-
lated ~200 compounds with diverse and well-annotated mech-
anisms of action from the PRISM dataset and modeled each
compound sensitivity profile as a mixture of four elements of
the dictionary trained exclusively on gene perturbation data
(Figure 6B; Table S7). The better the approximations, the
greater the generalizability of our approach, indicating that
Webster’s latent functions captured true biology (as opposed
to dataset-specific effects).

Approximation quality of compound sensitivity using gene
functions varied by compound class (Figure S6A), with clinical
anticancer compounds such as MDM and EGFR inhibitors ex-
hibiting the best approximations, and broadly cytotoxic com-
pounds such as aurora kinase inhibitors exhibiting the least
robust approximations (Figure S6B). Well-approximated profiles
projected onto genetically defined pathways that reflected com-
pound mechanism of action (Figure 6C). As examples, RAF and
MEK inhibitors treatment profiles projected onto the BRAF
signaling function, whose fitness effect is strongest in BRAF
mutant melanomas (Figure S6C). The strongest loaded genes
on this function are BRAF, SOX10, SOX9, MAPK1, and
DUSP4; the strongest loaded compounds included selumetinib
and AZ-628 (Figure 6D). Similarly, bromodomain inhibitors pro-
jected onto the H2A.Z maintenance function, while HMGCR
inhibitors projected onto the mevalonate synthesis function (Fig-
ure 6D). These observations suggested that Webster learned
representations of on-target pathways for certain compound
classes from gene perturbation data alone, in concordance

(D) Focus on three gene functions: BRAF signaling, H2A.Z maintenance, and mevalonate synthesis. Top: The five genes most strongly loaded onto each function
are shown next to a heatmap of their loading scores. Middle: The compounds most strongly loaded onto each gene function are shown next to a heatmap of their
loading scores. Bottom: Insets of the embedding shown in (C) centered on each of the three gene functions.

(E) Query compound projection onto reference gene functions varies by dose. In a secondary screen, various HMGCR inhibitors were screened at an 8-point dose
curve ranging from 10 uM to 8 nM. Compound sensitivity profiles at each dose point were modeled independently in terms of Webster’s gene functions. The
resulting loadings on the mevalonate synthesis function are plotted against the dose (see also Figure S6E).
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with previous results on pairwise gene-drug correlations (Gon-
calves et al., 2020).

Moreover, some profiles were modeled as interpretable mix-
tures of multiple independent biological pathways. For example,
ATK inhibitor sensitivity profiles were modeled as mixtures of
RICTOR/AKT signaling, PIK3CA signaling, and PTEN signaling
functions (Figure S6D). Furthermore, we found that projection
onto on-target pathways was sensitive to compound dose.
From a secondary PRISM dataset in which compound sensitivity
was measured at an eight-point dose curve, we observed selec-
tive dose ranges for specific compounds. Compound doses
within these ranges resulted in sensitivity profiles with strong
loading scores on their on-target functions, while high doses
that caused broad cytotoxicity or low doses with no fitness effect
failed to project at all (Figures 6F and S6E).

DISCUSSION

Wagner and Zhang nominated pleiotropic inference as an
outstanding problem in functional genomics a decade ago
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Figure 7. Adistributional hypothesis of gene
function
Distributional semantics powers modern advances
in machine learning applied to natural language.
These models rely on latent spaces derived from
word co-occurrence statistics. Representing a
word as a vector in this space enables numerical
reasoning about word meanings. In particular,
applying sparse dictionary learning to word vec-
tors recovers interpretable semantics, capturing
polysemy. Similarly, gene effects may be thought
of as vectors as well, defined by essentiality
“seed” measures across cell contexts. Webster discovers
> latent functions that “point” in the direction of
’;"ﬂmng? strongly co-essential fitness genes. Pleiotropic
genes can then be modeled as mixtures of these
latent functions.

“apple”

“orchard”

(Wagner and Zhang, 2011), envisioning
two major challenges: deriving “biologi-
cally nonarbitrary” latent phenotypes
from high-dimensional data and account-
ing for the sparse nature of genotype-
phenotype relationships (Wang et al,
2010). By framing pleiotropy as an
instance of the sparse representation
problem (Elad, 2010) solved by graph-
regularized dictionary learning, we recov-
ered interpretable latent dictionary ele-
ments that sparsely combine to model
gene effects, thereby satisfying the two
challenges outlined above. Webster
meets the analytical challenge posed by
growing CRISPR-Cas9 fithess screens
by enabling unsupervised learning of bio-
logical functions using only numerical
fitness data as input. It is generally appli-
cable to fitness screen collections of
various designs and may be especially
useful in organisms in which fitness screens are experimentally
tractable but gene functions are poorly annotated, such as bac-
teria (Price et al., 2018). Future work could address limitations of
our current method, for instance, by regularizing on hierarchical
graph structures rather than simple neighbor graphs or by
learning the degree of pleiotropy as a per-gene parameter rather
than setting it globally.

We anticipate that the future application of Webster to growing
fitness screen collections, enabled by our open-sourced imple-
mentation (STAR Methods), will resolve context-specific func-
tions that are difficult to perceive when studying individual exper-
imental models. Proteins that exhibit different functions in
specific contexts are often difficult to resolve using single exper-
imental models, and current practice is to reproduce experi-
ments in multiple cell lines or models. This approach is experi-
mentally sound but may obscure essential biochemical
interactions that more accurately inform biological insights.

Furthermore, the dictionary framework created by Webster al-
lows one to infer function by projection. We demonstrated that
analyzing cell fitness data from a large panel of small molecules

Function 1:
Activated KRAS
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with at least one known target allowed us to infer the biological
pathways perturbed by specific molecules and identify com-
pounds with generalized fitness effects. The use of Webster to
analyze biologically active small molecules may provide a
method to rapidly identify the targets of novel small molecules
and accelerate drug discovery.

Representing gene effects as vectors distributed over a space
of latent functions runs counter to traditional symbolic represen-
tations (e.g., gene A performs function B if condition C is satis-
fied) (Fraser and Marcotte, 2004; Norman et al., 2019). However,
in natural language processing, word symbols are represented
as vectors distributed over a space of latent semantics (Mikolov
et al., 2013; Pennington et al., 2014). Dictionary learning applied
to word vectors (word2Vec and GloVe) resolves polysemic
words as sparse linear combinations of latent meanings, such as

“apple” = 0.16 x fruit + 0.22 x mobile phone + ... (Zhang
et al., 2019)

The fact that polysemic words and pleiotropic genes are
modeled by dictionary learning suggests that word co-occurrence
and gene co-fitness share statistical regularities. Perhaps the
distributional hypothesis of semantics (you shall know a word by
the company it keeps) (Boleda, 2020) also applies to gene function
(you shall know a gene by shared causal effects with other genes).
If so, it may be advantageous to transition from genotype-pheno-
type “maps” to “geometries,” where statistically independent
phenotypes form an empirically derived latent space in which
gene effects are vectors (Figure 7) (Fischer et al., 2015).
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, William
Hahn (William_Hahn@dfci.harvard.edu).

Materials availability
Plasmids generated in this study have been deposited to Addgene.

Data and code availability
This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed in the key resources table.
All other data reported in this paper will be shared by the lead contact upon request.

All original code has been deposited and is publicly available as of the date of publication. The main repository contains R code for
reproducing figures and analyses presented in the paper and can be found at https://github.com/joshbiology/gene_fn (Zenodo
archive: https://doi.org/10.5281/zenodo.5773076). We created a Figshare archive that is the starting point for these analyses
(https://doi.org/10.6084/m9.figshare.14960006.v2). We provide a second repository of MATLAB code implementing the factorization
methods that are the basis of Webster, which can be found at https://github.com/joshbiology/graph_dictionary_learning (Zenodo
archive: https://doi.org/10.5281/zenodo.5773078). Finally, we provide a data repository containing Webster’s preprocessed numer-
ical input data and subsequent analysis output, a subset of which form the Supplemental Tables cited throughout this paper (https://
doi.org/10.6084/m9.figshare.14963561.v2).

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

The female-derived 293T cell line was obtained from Thermo Fisher Scientific (R70007, under the product name 293FT) and grown in
DMEM (Thermo Fisher Scientific, 12430054) supplemented with 2 mM glutamine, 50 U/mL penicillin, 50 U/mL of streptomycin
(Gibco), and 10% fetal bovine serum (Sigma).

METHOD DETAILS

Overview of the sparse approximation problem

The field of sparse approximation encompasses a diverse range of applications and implementation strategies. One specific formu-

lation of the sparse approximation problem is centered around the following task (from (Elad, 2010), “Chapter 9.2 The Sparse-Land

Model”, see also (Yankelevsky and Elad, 2016), “I. Introduction” and (Mairal et al., 2014), “Chapter 1.4 Dictionary Learning”):
Suppose a set of m training signals Y = [y4, Y, ..., Y] in R” (indicating that each y; is an n-dimensional vector of real numbered

values). From this set of training signals alone, we seek to approximate them by recovering:

(1) A dictionary matrix D in R"*¥ (indicating that D is a matrix of real numbered values with n rows and k columns)
(2) Sparse representations of each training signal in terms of dictionary elements. These representations form a matrix X =[x, Xo,
..., Xm] with each x; being a t-sparse vector in R¥ (indicating that x; is a k-dimensional vector with all but t entries set to 0).

The approximation of each training signal is y; = D * x;. The term on the left is the measured signal, which is a vector in R”. The term
on the right is a matrix operation resulting in a vector in R”, composed from the weighted sum of t columns of D (each of which are
vectors in R"), with the weights being the t non-zero coefficients held in x;.

We can also express this in matrix form:

Y=D*X

To solve the sparse approximation problem, we find an optimal solution to both D and X that minimizes the approximation error, given
the sparsity constraints imposed by the parameter t, and the number of dictionary elements dictated by k. Formally, the objective is

argryi)pHYfDXHi st |xll, <t Vi

Sparse approximation of pleiotropic gene functions from fitness data
We adapt the framework of sparse approximation to model fitness data. Fitness data consists of measured changes in cell growth
rate upon biological perturbations applied across cell contexts. Here, we focus on gene perturbation, which can be induced in a va-
riety of ways, including with programmable CRISPR-Cas9 nucleases. For additional descriptions of fithess experiments and their de-
signs, see (Rancati et al., 2018) (focused on human cells) and (Costanzo et al., 2019) (focused primarily on yeast).

We are specifically interested in modeling the genetic architecture underlying fitness measurements. In particular, we seek to model plei-
otropy, in which gene products have multiple functions depending on the cell context. Solving pleiotropy within fitness data reduces to (1)
learning a set of fitness effects of perturbed biological functions, and (2) modeling gene effects as a combination of these functional effects.
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There is a clear connection between these two tasks and the basic sparse approximation problem described above, although aug-
mentations are required to encourage latent dictionary elements to model biological functions rather than numerically valid — but bio-
logically meaningless — patterns in the data. To achieve this, we exploit several properties of fithess data. First, genes with correlated
fitness effects tend to have similar biological functions, a concept referred to as co-essentiality (Amici et al., 2021; Bayraktar et al.,
2020; Boyle et al., 2018; Kim et al., 2019; Pan et al., 2018; Wainberg et al., 2021; Wang et al., 2017). Second, similar cell contexts will
share similar rate-limiting functions for cell growth. This concept has been most extensively explored in the cancer field, in which
related cell lines have been shown to harbor similar “selective dependencies” (McDonald et al., 2017; Tsherniak et al., 2017). Con-
straining learned representations to capture coherent gene modules essential in specific cell contexts is consistent with past use of
bi-clustering to model pleiotropy (Dudley et al., 2005; Koch et al., 2017).

In summary, to recover latent representations in our model that capture biological functions, we augmented the basic sparse
approximation objective (error minimization) with two additional objectives: learned representations should preserve the local struc-
ture between gene effects as well as preserve the local structure between cell contexts. To operationalize this, we adopted the frame-
work of dual-graph regularized dictionary learning.

Webster: Dual graph regularized dictionary learning applied to preprocessed fitness data

Our overall approach (Webster) for modeling pleiotropic gene functions in fitness data consists of two steps. First, we preprocess the
fitness data. This is done by centering and scaling individual screens, then centering the fitness effects of each gene perturbation
(‘gene effects’), and finally filtering out low variance gene effects. Batch correction and other quality control steps are applied at
this stage as well, described in detail in later sections. Second, from this matrix of preprocessed gene effects, Webster uses dual
graph regularized dictionary learning (DGRDL) (Yankelevsky and Elad, 2016, 2020) to sparsely approximate the gene effect matrix
in terms of latent biological functions.

Mathematically, this can be described as follows. Let the set of gene effects Y =[y4, ya, ..., Ym] in R” consist of fitness effects upon
individually perturbing m genes across n cell contexts. Pairwise similarities between the m gene effects define a matrix W in R™*",
while the pairwise similarities between the n cell contexts define a matrix V in R”>".

From Y, W and V, we recover a dictionary matrix D in R"¥ and a sparse representation matrix X in R**™ (with each column of X
containing only t non-zero entries). D and X are optimized to satisfy the following objectives:

(1) Minimize the total approximation error || Y - D * X || (indicating the Frobenius norm of the difference between the original gene
effect matrix and the approximated gene effect matrix);

(2) Minimize the sum of squared differences between the columns of X, weighted by the similarities of the corresponding columns
of Y, expressed as (V2)> W;,; * (X[, 1] - X[, j] ), for all i and j between 1 and m;

(3) Minimize the sum of squared differences between the rows of D, weighted by the similarities of the corresponding rows of Y,
expressed as (V2) > V;; * (DIi,1- D[}, ] ), for all i and j between 1 and n.

The intuition behind objective (2) is that the more similar two gene effects are in the original data, the more similar their sparse rep-
resentations should be; i.e. they should be approximated using similar biological functions. The intuition behind objective (3) is that the
more similar two cell contexts are in their growth requirements, the more similar their representations in the dictionary matrix should be,
i.e they should depend on the same functions for growth. Formally, objectives (2) and (3) can be compactly expressed as a quadratic
form of a graph Laplacian derived from the gene effect similarity graph and the cell context similarity graph, respectively.

The final DGRDL objective function is:

; _ 2 T T
min|[Y — DX||7 +aTr(DTLD) + BTr (XLoX")
st |Ixfo<t Vi,

where L in R™>*™ is the Laplacian matrix derived from the cell context similarity graph, L. in R"*" is the Laplacian of the gene effect
similarity graph, and « and g are importance weights for each term in the final objective. In practice, we choose k < m, as we assume
that gene effects can be described by a small set of latent elements. We also tend to choose k < n, resulting in an undercomplete
dictionary basis. Finally, we choose t to be small (t << k) but greater than 1.

This is a high-level summary of DGRDL specifically through the lens of fithess data. For a fuller exploration of DGRDL applied to other data
modalities, as well as theoretical guarantees of DGRDL for signal recovery, see the original papers: (Yankelevsky and Elad, 2016, 2020).

Implementation details

In order to implement DGRDL, we obtained MATLAB code for k-SVD, orthogonal matching pursuit, and DGRDL from the respective
lab websites (https://elad.cs.technion.ac.il/software/ and http://www.cs.technion.ac.il/~ronrubin/software.html), which we detailed
in the documentation for our code repository (https://github.com/joshbiology/graph_dictionary_learning).

Our Webster approach customizes the base DGRDL method in several ways. First, we use nearest-neighbor graphs in our graph
regularization terms, with the goal of preserving local structure present in the data. Empirically, nearest neighbor graphs capture the
overall topological relationships present in gene effect similarity networks (Amiciet al., 2021; Pan et al., 2018), and provide the highest
enrichment for previously annotated gene-gene relationships (Boyle et al., 2018; Kim et al., 2019). As a side note, nearest neighbor
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graphs are also the input to popular manifold learning algorithms t-SNE and UMAP, which tend to capture local structure in biological
data. We use nearest neighbor gene similarity and cell context similarity graphs as the basis for the graph regularization objectives
described above, using cosine similarity and five nearest neighbors for both graphs (unless otherwise specified below).

Our second customization involves the dictionary learning initialization step. As DGRDL is an iterative optimization algorithm, it re-
quires a pre-initialized dictionary in order to perform its first iteration. In the absence of a pre-initialized dictionary, DGRDL chooses k
random elements among the input training signals to serve as the initial dictionary. We found empirically that this random selection
introduced variability in the optimization outcomes. As a result, we pass a pre-initialized dictionary to DGRDL in the form of k repre-
sentative training signals chosen via k-medoids from among the input training signals, using the MATLAB kmedoids function. As k-
medoids is a clustering algorithm, the initial dictionary can be thought of as optimal for clustering the data into kK mutually exclusive
groups. From this starting point, an new dictionary is learned that best approximates all m training signals in terms of t dictionary
elements while preserving local structure of the data. As t >1, this process can be thought of as relaxing the one-hot clustering as-
sumptions present in the initial dictionary. Compared to random initialization, we found that this reduced the root mean squared error
of our factorizations by 9% on the DepMap dataset.

Finally, we multiply the sparse representation matrix X with a scalar correction factor 1/sqrt(n) to convert coefficients into units of
standard deviation from their original unit of Euclidean distance. As these coefficients are analogous to the loading coefficients used
in PCA, we refer to this matrix of coefficients as the loadings matrix in the manuscript.

This concludes the descriptions of the core algorithmic steps performed with Webster in the manuscript. The following sections
describe experimental methods. The “Quantification and statistical analysis” section describes the application of Webster to various
datasets, as well as the annotation and visualization steps performed on the resulting Webster output.

C70rf26 cloning

Two C70rf26 transcript isoforms were used in this study. The full length isoform (C70orf26_v1), corresponds to the Ensembl transcript
ENST00000344417 (Origene, RC219786L4). The second isoform (C70orf26_v2), corresponds to the Ensembl transcript
ENST00000359073 and was acquired through Broad Genetic Perturbation Platform (TRCN0000477172). Both coding sequences
were subcloned from their respective sources into the pDONR221 vector using PCR amplification and Gateway BP cloning, and sub-
sequently shuttled into pLX307 and pLX_HA expression vectors using Gateway LR reactions. The pLX307 expresses the protein un-
der an EF1alpha promoter with a C-terminal V5 tag. The pLX_HA vector, which we created for this study, is a modified version of
pLX307 carrying the HA tag instead of the V5 tag.

C70rf26_V1 sequence (no stop codon)
ATGAGCGACATCCGCCACTCGCTGCTGCGCCGCGATGCGCTGAGCGCCGCCAAGGAGGTGTTGTACCACCTGGACATCTACTT
CAGCAGCCAGCTGCAGAGCGCGCCGCTGCCCATCGTGGACAAGGGCCCCGTGGAGCTGCTGGAGGAGTTCGTGTTCCAGGTG
CCCAAGGAGCGCAGCGCGCAGCCCAAGAGACTGAATTCCCTTCAGGAGCTTCAACTTCTTGAAATCATGTGCAATTATTTCCAGG
AGCAAACCAAGGACTCTGTTCGGCAGATTATTTTTTCATCCCTTTTCAGCCCTCAAGGGAACAAAGCCGATGACAGCCGGATGAG
CTTGTTGGGAAAACTGGTCTCCATGGCGGTGGCTGTGTGTCGAATCCCGGTGTTGGAGTGTGCTGCCTCCTGGCTTCAGCGGAC
GCCCGTGGTTTACTGTGTGAGGTTAGCCAAGGCCCTTGTAGATGACTACTGCTGTTTGGTGCCGGGATCCATTCAGACGCTGAAG
CAGATATTCAGTGCCAGCCCGAGATTCTGCTGCCAGTTCATCACCTCCGTTACCGCGCTCTATGACCTGTCATCAGATGACCTCA
TTCCACCTATGGACTTGCTTGAAATGATTGTCACCTGGATTTTTGAGGACCCAAGGTTGATTCTCATCACTTTTTTAAATACTCCGAT
TGCGGCCAATCTGCCAATAGGATTCTTAGAGCTCACCCCGCTCGTTGGATTGATCCGCTGGTGCGTGAAGGCACCCCTGGCTTAT
AAAAGGAAAAAGAAGCCCCCCTTATCCAATGGCCATGTCAGCAACAAGGTCACAAAGGACCCGGGCGTGGGGATGGACAGAGA
CTCCCACCTCTTGTACTCAAAACTCCACCTCAGCGTCCTGCAAGTGCTCATGACGCTGCAGCTGCACCTGACCGAGAAGAATCTG
TATGGGCGCCTGGGGCTGATCCTCTTCGACCACATGGTCCCGCTGGTAGAGGAGATCAACAGGTTGGCGGATGAACTGAACCCC
CTCAACGCCTCCCAGGAGATTGAGCTCTCGCTGGACCGGCTGGCGCAGGCTCTGCAGGTGGCCATGGCCTCAGGAGCTCTGCT
GTGCACGAGAGATGACCTGAGAACCTTGTGCTCCAGGCTGCCCCATAATAACCTCCTCCAGCTGGTGATCTCGGGTCCCGTGCA
GCAGTCGCCTCACGCCGCGCTCCCCCCGGGGTTCTACCCCCACATCCACACGCCCCCGCTGGGCTACGGGGCTGTCCCGGCC
CACCCCGCCGCCCACCCCGCCCTGCCCACGCACCCCGGCCACACCTTCATCTCCGGCGTGACCTTTCCCTTCAGGC
C7orf26_V2 sequence (no stop codon)
ATGAGCGACATCCGCCACTCGCTGCTGCGCCGCGATGCGCTGAGCGCCGCCAAGGAGGTGTTGTACCACCTGGACATCTACTT
CAGCAGCCAGCTGCAGAGCGCGCCGCTGCCCATCGTGGACAAGGGCCCCGTGGAGCTGCTGGAGGAGTTCGTGTTCCAGGTG
CCCAAGGAGCGCAGCGCGCAGCCCAAGGAGCAAACCAAGGACTCTGTTCGGCAGATTATTTTTTCATCCCTTTTCAGCCCTCAAG
GGAACAAAGCCGATGACAGCCGGATGAGCTTGTTGGGAAAACTGGTCTCCATGGCGGTGGCTGTGTGTCGAATCCCGGTGTTGG
AGTGTGCTGCCTCCTGGCTTCAGCGGACGCCCGTGGTTTACTGTGTGAGGTTAGCCAAGGCCCTTGTAGATGACTACTGCTGTTT
GGTGCCGGGATCCATTCAGACGCTGAAGCAGATATTCAGTGCCAGCCCGAGATTCTGCTGCCAGTTCATCACCTCCGTTACCGC
GCTCTATGACCTGTCATCAGATGACCTCATTCCACCTATGGACTTGCTTGAAATGATTGTCACCTGGATTTTTGAGGACCCAAGCG
TCCTGCAAGTGCTCATGACGCTGCAGCTGCACCTGACCGAGAAGAATCTGTATGGGCGCCTGGGGCTGATCCTCTTCGACCACA
TGGTCCCGCTGGTAGAGGAGATCAACAGGTTGGCGGATGAACTGAACCCCCTCAACGCCTCCCAGGAGATTGAGCTCTCGCTGG
ACCGGCTGGCGCAGGCTCTGCAGGTGGCCATGGCCTCAGGAGCTCTGCTGTGCACGAGAGATGACCTGAGAACCTTGTGCTCC
AGGCTGCCCCATAATAACCTCCTCCAGCTGGTGATCTCGGGTCCCGTGCAGCAGTCGCCTCACGCCGCGCTCCCCCCGGGGTT
CTACCCCCACATCCACACGCCCCCGCTGGGCTACGGGGCTGTCCCGGCCCACCCCGCCGCCCACCCCGCCCTGCCCACGCA
CCCCGGCCACACCTTCATCTCCGGCGTGACCTTTCCCTTCAGGCCCATCCGC
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CRISPR guide cloning

Each guide RNA (gRNA) for CRISPR-Cas9 mediated gene knockout was selected from the Avana CRISPR-Cas9 guide library (San-
son et al., 2018). Guides were ranked by their guide efficacy score inferred by CERES during its processing of Cancer Dependency
Map data (Meyers et al., 2017), available through the Dependency Map Portal (Achilles_guide_efficacy.csv, https://depmap.org/
portal/download/). Oligonucleotides containing the gRNA sequence were cloned via Golden Gate Assembly into the lenti-
CRISPR_v2_Blast plasmid backbone, which is identical to the lentiCRISPR_v2 (https://www.addgene.org/52961/) but with the
puromycin selection cassette swapped out for a blasticidin selection cassette. The gRNA sequences are described in the key re-
sources table.

Lentivirus production and infection

To produce lentivirus, expression vectors (of proteins or guides) were co-transfected with psPAX2 and pMD2.G second generation
virus packaging vectors into 293T cells using Mirus LT-1 Transfection Reagent (Mirus) according to the manufacturer’s recommen-
dations. Cells were spin infected with viral supernatant mixed with final concentration of 4 ug/mL polybrene (Sigma Aldrich) and
centrifuged at 2200 RPM for 1 hour. After 24 hours of viral infection, media was exchanged with fresh media containing either 10
ug / mL of puromycin (for the pLX series of vectors) or 20 ug / mL of blasticidin S HCI (for the pLenti_V2_Blast series of vectors). Se-
lection media was maintained for the duration of use of the infected cells.

Whole cell lysates

For harvesting total protein lysate, cells were washed twice with ice cold PBS buffer and lysed using RIPA buffer (R0278; Sigma-
Aldrich) containing Halt Protease Inhibitor Cocktail (Thermo Fisher) and 1:100 of 1mM Phenylmethylsulfonyl fluoride (PMSF) (Gold-
bio, P-470-25), rotated for 30 minutes in the cold room, spun down at max speed on a tabletop ultracentrifuge for 10 minutes, and
the pellet (containing genomic DNA) removed. The resulting lysate was quantified using BCA Protein Assay Kit (Thermo
Fisher; 23227).

Nuclear lysates

For harvesting nuclear protein lysate, we performed our protocol from (Mashtalir et al., 2018). Cells were washed twice with ice cold
PBS buffer and resuspended in EBO hypotonic buffer (50mM Tris pH 7.5, 0.1% NP-40, 1mM EDTA, 1mM MgCI2) containing 1:100 of
Halt Protease Inhibitor Cocktail and 1:100 of 1mM PMSF. Lysate was spun down at 5,000rpm for 5min at 4C, and the supernatant
containing cytoplasmic extract was discarded. Pelleted nuclei were resuspended in EB300 high salt buffer (50mM Tris pH 7.5,
300mM NaCl, 1% NP-40, 1mM EDTA, 1mM MgCI2) containing 1:100 of Halt Protease Inhibitor Cocktail and 10 uM PMSF. Lysates
were incubated on ice for 10 min with occasional vortexing. Lysate was spun down at 21000 g for 10 min at 4C. The pellet containing
genomic DNA was discarded. Supernatants consisting of nuclear lysate were quantified using BCA.

Immunoprecipitation and mass spectrometry of exogenously expressed protein

293T cells overexpressing either C7orf26_V1 or C70rf26_V2 were prepared using lentivirus and selected using puromycin as
described above. Parental cell lines with no overexpression construct were passaged in parallel for the ‘Mock’ control. For large scale
purifications, 5 plates of confluent 15 cm plates were harvested and subjected to the nuclear lysate protocol described above. The
resulting lysates for each condition were diluted to 1 mg / mL in EB300.

For HA purifications, 5 mL of nuclear lysate from each condition was incubated with 250 uL of Pierce HA Magnetic Beads (Thermo
Fisher, 88836) and rotated overnight at 4C. Afterwards, beads were collected using a magnetic rack and washed 6x with EB300 and
2x with PBS buffer all at 4C. We eluted precipitated protein from the beads using low pH elution in glycine buffer as described (https://
www.abcam.com/protocols/immunoprecipitation-protocol-1#elution). For V5 purifications, the same protocol was performed but
with Anti-V5 Agarose Affinity Gel (Sigma-Aldrich, A7345-1ML). A portion of samples were saved for immunoblot analysis, and the
remainder was to mass spectrometry with the Taplin Mass Spectrometry Facility, the full details of which are previously described
under “Sample Preparation” (Mashtalir et al., 2018). The resulting total peptide counts for each protein were reported.

CRISPR-Cas9 mediated gene knockout of INTS6, INTS10, and C70rf26

Cells harboring knockout of INTS6, INTS10 and C70rf26 were generated using the above lentiviral infection protocol. After one week
of selection under blasticidin, cells were harvested using the whole cell lysate protocol described above. For the INTS10 clonal
knockout lines used for the endogenous immunoprecipitation experiment, cells were plated at single cell dilution and grown for
3 weeks with media changes. Single cell colonies were picked and whole cell lysate protocol was repeated to identify clonal lines
harboring complete INTS10 knockout. Successful clones were subjected to nuclear lysis in preparation for endogenous
immunoprecipitation.

Endogenous protein immunoprecipitation

From quantified nuclear lysates, we diluted all lysates with EB300 buffer to a concentration of 1 mg/mL. We used 100 ug of nuclear
lysate for each immunoprecipitation condition. We added 1.25 pg of antibody to each condition. An antibody raised against C7orf26
(Novus, NBP2-14764) was used, and a mouse IgG antibody (Santa Cruz, No. sc-2025) was used as a negative control. After rotation
overnight at 4C, Protein G Dynabeads (Thermo Fisher, 10004D) were added and rotated for 2 hours. Using a magnetic rack, beads
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were isolated from the lysate, washed 6x in EB300 buffer and 2x in PBS buffer. The resulting immunoprecipitated protein was eluted
from the beads using LDS buffer.

Density sedimentation gradientgradient

Density gradient sedimentation was performed as previously described (Mashtalir et al., 2018). 750 ug of nuclear extract from 293T
cells was overlaid on onto an 11 ml 10-30% glycerol gradient, prepared in a 14 x 89 mm polyallomer centrifuge tube. Tubes were
centrifuged in an SW40 rotor at 4 °C for 16 h at 40,000 r.p.m. 550 ml fractions were collected by hand. Fractions were concentrated
by adding a 1:10 volume/volume ratio of Strataclean beads to the collected fractions, incubated under rotation in the cold room, and
eluted using LDS buffer. A total of 23 fractions were collected. Fractions 1-15, representing the lower molecular weights, were loaded
and used in immunoblot analyses.

Immunoblot analysis

All samples were loaded and run on a pre-poured 4%-12% Bis-Tris gel (Thermo Fisher, NP0323) in MES buffer (Thermo Fisher,
NP0002), and transferred onto nitrocellulose membrane (Thermo Fisher, 1B23001) utilizing iBlot 2 Dry Blotting System (Thermo
Fisher, IB21001). After 1 hr blocking incubation in 5% milk solution and subsequent washes, all immunoblots were incubated with
indicated primary antibodies for overnight at 4C or at room temperature for 3 hours. Blots were then incubated with indicated sec-
ondary antibody for 1 hour at room temperature, and immunoblots were imaged using Odyssey CLx infrared imager (LICOR).

For input samples, 20 ug of protein was loaded. For immunoprecipitated samples, a fractional volume of the total eluate was run for
immunoblotting. For density sedimentation gradient fractions, a fractional volume of the total eluate from Strataclean beads was
loaded for each fraction. For the ladder, 5 uL of Pageruler Plus (Thermo Fisher, 26619) was added. The antibodies used for blotting
are described in the key resources table.

QUANTIFICATION AND STATISTICAL ANALYSIS

Fitness data origins and preprocessing

The genotoxic screening collection was downloaded from the publisher’s website (see their Table S2. CRISPR Screens NormZ re-
sults) (Olivieri et al., 2020). The dataset consisted of 17,382 measured gene effects over 31 fitness screens performed in the presence
of low doses of genotoxins. Each of the 31 screens was already processed through normZ which centers and scales the data (Colic
et al., 2019).

To select high-variance genes, we assumed that a large portion of gene effects in genome-scale screens have no phenotype in any
cell contexts (also known as non-essential genes). Any variance present in these gene effects will be due to experimental noise rather
than biological signal. The distribution of these across-cell-line variances will follow a chi-squared distribution, which converges to a
normal distribution with large n. Biologically driven gene effects will exhibit greater variation across cell lines and will form positive out-
liers in this normal distribution. To detect such outliers, we used a quantile-quantile plot to visualize the observed distribution of gene
effect variances compared to a theoretical normal distribution. We drew a cutoff that separated high variance genes from the remain-
ing (variance > 3), resulting in 304 gene effects over 31 screens that formed the input to graph regularized dictionary learning.

The 19Q4 Broad Cancer Dependency Map screening collection was downloaded from the Cancer Dependency Map FigShare
archive (under the file Achilles_gene_effect.csv, hitps://doi.org/10.6084/m9.figshare.11384241.v3). The raw dataset consisted of
18,333 gene effect measurements over 689 cancer cell lines. We filtered out a group of cell lines that suffered a batch effect due
to PCR contamination. We filtered out a group of X-chromosomal genes whose copy number across cell lines could not be properly
controlled for. We also filtered out two HUGO gene groups, olfactory genes (https://www.genenames.org/data/genegroup/#!/group/
141) and KRTAP genes (https://www.genenames.org/data/genegroup/#!/group/619), whose high sequence similarity resulted in
large-scale off target guide cutting activity as previously described (Boyle et al., 2018). This intermediate dataset consisted of
17,167 gene effect measurements over 675 cell lines.

We applied several correction measures before gene effect selection. The first was a generalized correction for cutting effects spe-
cific to chromosome arms, as reported previously (Amici et al., 2021). We then centered each cell line screen and applied a batch
correction for screen quality. This was done by linearly regressing out the NNMD profile over cell lines from each gene effect profile.
NNMD stands for null-normalized mean difference and was previously described (Dempster et al., 2019). The NNMD score for each
cell line was obtained from the “NNMD” column the sample_info.csv file from Figshare archive (https://doi.org/10.6084/m9.figshare.
11384241.v3). After screen quality correction, we scaled each cell line screen. This dataset was used as input for gene effect selection.

For gene effect selection, we used three criteria:

(1) Variance
(2) Perturbation confidence
(8) Maximum pairwise correlation with other gene effects

The cutoff for variance was chosen using a quantile-quantile plot, as with the genotoxic screening data above. A variance cutoff of 1
was used. The perturbation confidence score was calculated as described previously (http://archive.today/2021.03.22-122633/
https://cancerdatascience.org/blog/posts/gene_confidence_blog/). In brief, an XGBoost model was trained to discriminate between
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known low confidence gene perturbations and high confidence gene perturbations using various features derived from the individual
guide RNA effects. The recommended cutoff of 0.5 was applied. From these gene effects, we kept those that exhibited a maximum
pairwise correlation with other gene effects above a certain threshold, as done in yeast fitness screen analyses (Costanzo et al., 2010,
2016). The threshold we used was 0.275. This resulted in a preprocessed matrix of 2,921 gene effect measurements over 675 cell
lines that formed the input to graph regularized dictionary learning.

Sanger Institute screens processed through the CERES algorithm were downloaded from the Cancer Dependency Map FigShare
archive (under the filename sample_info.csv, https://doi.org/10.6084/m9.figshare.9116732.v2). The raw data consisted of 17,716
gene effect measurements over 318 cell lines. Arm correction, centering, NNMD regression and scaling were applied.

Hyperparameter tuning and model selection

For the genotoxic fitness screens, we empirically chose the primary dictionary learning hyperparameter k (dictionary size) by sweep-
ing between values of 1 and 31 while fixing t = 2. We evaluated each of the model objectives and looked for diminishing returns for the
approximation error and gene Laplacian model objectives (the cell context Laplacian had a linear relationship with k, so it was less
informative for model selection). Diminishing returns were reached at k = 10. For a comparison, we also swept across k while fixing t =
1 (representing hard clustering). We also repeated these experiments without graph regularization (by setting « and § to 0).

For the cancer cell fitness screens, we performed a grid search over k = 25 to 675 in steps of 25, and t = 1:8, resulting in 216 model
instances. From this search, we selected t = 4, as this was the sparsest model parameter whose objectives remained well behaved
for all values of k. Subsequently, we performed a second sweep over k = 25 to 675 in steps of 5, with t fixed at 4, resulting in 131 model
instances. Diminishing returns in the approximation error and gene Laplacian model objectives were observed at k =220, which we chose
forthe final factorization. We confirmed that model objectives for these hyperparameter choices were stable to random seed initialization.

Various other model hyperparameters were set to the default values recommended in the original paper (Yankelevsky and Elad,
2016), and were as follows: « = 0.2; 8 = 0.6; number of iterations = 20. Finally, we set the graph regularization terms according to
the settings explained above: neighbor graph degree = 5; neighbor graph metric/edgeweight = cosine similarity.

Dictionary learning experiments: Robustness, denoising, and transferability
To assess robustness, we performed DGRDL with different random seed initializations, using the same k-medoids initialized dictio-
nary. Element-wide consistency between the resulting dictionaries was assessed using Pearson correlation.

To assess the denoising properties of dictionary learning on fitness data, we created four noisy versions of the cancer cell fitness
screening dataset by adding Gaussian random noise. The Gaussian random noise matrices were created using the R function rnorm
with standard deviations set to a variety of values (SD = 0.25, 0.5, 1, 1.5). We also randomly split the 2,921 gene effects in cancer cells
into 2,191 training genes and 730 test genes.

For each of the five datasets (original data and four noise levels), we trained DGRDL on the training gene effects only (using k = 220,
t = 4) and subsequently modeled the corresponding unseen test genes in terms of dictionary elements (with the same noise level
present in the test and training genes). Each reconstructed test gene was subsequently compared to the corresponding gene effect
in the raw data (which did not have additional synthetic noise added) using Pearson correlation as a metric. We repeated this entire
process five times, and kept the mean Pearson correlation for each test gene at each noise level. For each noise level, the distribution
of these resulting scores were plotted as a distribution.

For the transferability experiments, we used a dictionary trained on data measured by one institute (Broad) to model the corre-
sponding gene effects measured by another institute (Sanger), which used different experimental conditions and CRISR-Cas9 guide
RNA sequences for each gene. We took a dictionary trained on the full Broad 2,191 gene effects over 675 cell lines (k = 220, t = 4) and
subsetted it to the 161 cell lines that were screened by both institutes. For the Broad and Sanger datasets, we modeled the corre-
sponding 2,901 overlapping gene effects across the 161 common cell lines in terms of the same Broad-trained dictionary. The re-
sulting approximations were assessed using Pearson correlation and were plotted as a distribution for each dataset. As a compar-
ison, a dictionary with shuffled cell line annotations was used to model the 2,901 Sanger-measured gene effects.

Neighbor graph embedding to visualize gene function landscapes

For visualizing genotoxic and cancer cell fitness screen collections, we utilized the UMAP approach (Mclnnes et al., 2018) as imple-
mented by the R umap package. In each case, two matrices were concatenated and used as input: the preprocessed gene effects
that served as inputs to Webster, and the dictionary matrix that is outputted by Webster. For the genotoxic screens, the 304 gene
effects and 10 functional effects were plotted using the following UMAP parameters: metric = “pearson”, num_neighbors = 15.
For the cancer cell fitness screens, the 2,921 gene effects and 220 functional effects were plotted using the following UMAP param-
eters: metric = “pearson”, num_neighbors = 10. All other parameters were set to default.

Annotation of learned functions

Dictionary elements learned by Webster from each screen collection were annotated as follows. For each of the ten dictionary ele-
ments learned from genotoxic fitness screens, we considered, in order of priority, (1) strongly loaded genes and (2) which treatments
induced a strong fitness effect. For the first of the five dictionary elements , the strongly loaded genes on each mapped to one of five
classical DNA damage response pathways. These relationships were corroborated by the set of treatments that induce fitness ef-
fects in these genes. For three of the dictionary elements, only a single treatment induced a strong fitness effect on its loaded genes.
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These were representative of the resistance / sensitivity profiles of these specific treatments, which we corroborated by matching its
strongly loaded genes against similar screens from the literature. Finally, two dictionary elements exhibited strong enrichment for
common essential genes and proliferation suppressor genes in their highly loaded genes, annotations for which were taken from
the literature (Colic et al., 2019; Hart et al., 2015).

For each of the 220 dictionary elements learned from the cancer cell fitness screens, we again considered, in order of importance,
(1) strongly loaded genes and (2) top genomic features from models trained to predict the function’s fitness profile over cell lines (see
below). For annotations of the strongly loaded genes, we used a gene annotation web service, gProfiler, that takes a ranked list of
genes as input and outputs a ranked list of enriched genesets (Raudvere et al., 2019). We supplemented these annotations with
corresponding ones from STRING (Szklarczyk et al., 2015). We searched the literature for additional insights and recently publis-
hed corroborating papers when applicable. Finally, we performed biomarker association analysis using cell line features, described
below.

Using a combination of geneset enrichments, specific literature annotations for the top loaded genes and cell line features, we were
able to manually annotate each dictionary element. Of the 220 dictionary elements, 199 elements were mapped to a biological func-
tion using manual curation by the authors. Of these, 195 were annotated according to geneset enrichments among top loaded genes,
and 4 were named based on a clear biomarker. Nineteen of the dictionary elements were highly loaded for essential genes, which
incur fitness effects at the lower detection limit of our assay and group together in our analysis for that reason. These functions
were labeled as “Common Essential (Gene)”, where the Gene was chosen to be the top loaded gene, or “Common Essential
(Chr#)”, when the common essential genes shared synteny on chromosome regions (Amici et al., 2021). Finally, two dictionary ele-
ments could not be mapped to a biological process. On deeper examination, the top loaded genes for both of these functions were
perturbed using Avana CRISPR-Cas9 guides that targeted non-unique genomic sequences, suggesting that these elements repre-
sented technical factors that were separated from the remainder of the data. We labeled these as “[Gene] (unclear)”.

Associating fitness effects with baseline genomic features of cell lines

Baseline genomic features were associated to each function using predictive modeling. Using the function’s inferred fitness effect
across cell lines as the target, we performed random forest regression using the following features from the DepMap 21Q2 release
(https://doi.org/10.6084/m9.figshare.14541774.v2):

RNAseq expression

copy humber

boolean mutation matrices
Methylation

Proteomics

Lineage

metabolomics data

The numerical features were normalized and the categorical features were one-hot encoded and then combined into a feature ma-
trix. These features were then used to predict the target fitness profile using 5-fold cross validation, using Pearson correlation as the
metric for model performance. We selected the top 1000 features in each fold using the f-regression metric to fit the model to the
target. A final model was trained on all the data and the feature importances were extracted from that model to help determine
the likely features that were most important in these predictions. In certain cases, cell lines strongly dependent on a certain function
harbored interpretable predictive features; those are reported in the paper when applicable, and were used to corroborate the func-
tion name chosen as described above.

Plotting pleiotropic networks
For the Cancer Dependency Map dataset, we estimated the fraction of fitness genes that were pleiotropic. For the denominator, we
used the number of genes whose approximation by Webster had a Pearson score of 0.4 or higher compared to its original measured
gene effect (2498 genes). We then reported the fraction of these genes whose loadings onto two or more functions meets or exceeds
0.25 SD (1320 genes).

For network visualizations of pleiotropy, we start with a set of functions. Each pair of functions is connected by an edge if they share
at least one pleiotropic gene (defined by the criteria above) which is loaded onto both functions. The width of this edge is proportional
to the number of pleiotropic genes they share. Networks were visualized using the R graph package.

Protein complex annotations

Curated annotations for modular protein complexes were taken from the literature. Sources were used that identified modules using
either structural or other biochemical means (biochemical purification of intact complexes compared to knockout of key subunits).
The sources were as follows:

® STAGA/ATAC complexes (Spedale et al., 2012)
® SWI/SNF complexes (Mashtalir et al., 2018).
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® Mediator complex (Tsai et al., 2014).
® Integrator complex (Pfleiderer and Galej, 2021; Sabath et al., 2020; Tilley et al., 2021; Zheng et al., 2020)

Subcellular localization analyses

The Human Cell Map project profiled bait-prey interactions in human cells using proximity ligation. We downloaded their subcellular
localization inferences for 4,424 proteins across 20 subcellular locations (Go et al., 2021). Of these proteins, 1,463 had corresponding
gene effects as part of the Webster analysis in cancer cell fitness screen, so their data was filtered to a dense matrix of 1,463 protein
localization profiles, and the Webster loadings matrix was filtered to the same set of 1,463 genes assigned loaded across 220 inferred
biological functions.

To ask whether highly loaded genes in specific functions shared subcellular localization annotations, we took the matrix product,
which resulted in a new matrix of 220 functions scored across 20 localizations. Each of the 220 rows of this matrix is the sum of the
individual protein-level localization distributions weighted by their loading score on that function. This was used for the basis of sub-
cellular localization analysis of our Webster inferred functions.

We noted during clustering of the 20 subcellular localizations (both in the original NMF matrix as well as this new matrix product)
that each could be grouped into one of seven interpretable compartments. These compartment level annotations were used
throughout the paper.

Finally, we report the localization specificity of individual functions. For each of the 220 functions, the entropy of its distribution over
20 localizations was calculated using the R entropy package, and the resulting 220 entropy scores were rescaled such that lowest
entropy distributions were assigned a new “Specificity” score of 1, while the highest entropy distributions were assigned a score of 0.

Compound sensitivity data

PRISM Primary Screen compound sensitivity data was obtained from the Drug Repurposing Hub Figshare archive (primary-screen-
replicate-collapsed-logfold-change.csv, https://doi.org/10.6084/m9.figshare.9393293.v4). The raw data matrix consisted of 5,274
compound sensitivity profiles measured over 578 cell lines using a 2.5 uM dose treatment. To eliminate cell line quality effects,
we subtracted a trimmed mean of each cell line profile from each compound sensitivity profile.

To prepare the data for modeling in terms of Webster’s latent functions, we selected compound classes representing known mech-
anisms of action, for which there were at least 5 compound sensitivity profiles in the primary screen. This matrix contained missing
values, which were imputed using the R package Fastimputation. Finally, we kept those cell lines that were also screened in the
CRISPR-Cas9 fitness dataset.

The final compound sensitivity profiles with known MOA’s consisted of 191 compound sensitivity profiles over 367 cell lines. Each
compound was modeled in terms of the dictionary matrix learned from CRISPR-Cas9 gene perturbation, filtered to the same 367 cell
lines. The modeling was performed with orthogonal matching pursuit with t = 4, such that each compound sensitivity profile was
modeled as a sparse combination of four dictionary elements.

The 191 compound sensitivity profiles were added as data points to the UMAP gene function plot by reconstructing each com-
pound sensitivity profile using full-sized dictionary elements (675 cell lines), and using the R predict function to add the imputed profile
to the previously learned R umap object.

These steps were repeated for the PRISM Secondary Screen compound sensitivity data, in which the same compounds as above
were treated at multiple dose points.

Synthetic data example

The synthetic dictionary in R?°*2 was generated as follows. Selectively essential biological functions exhibit skewed distributions in
their fitness effects across cell contexts. Accordingly, we simulated the fitness effects of two biological functions over 25 cell contexts
by generating two random vectors with skew normal distributions, using the dsn function in R (parameters: xi = 0.1, omega = 0.3,
alpha = 5). Empirically, such fitness effects are rarely perfectly orthogonal, as cancer cell lines can exhibit more than one rate limiting
dependency for growth. Therefore we generated the above vectors to have a slight correlation to one another (cosine similarity = 0.2).

The loadings matrix in RZ*7°° was constructed by concatenating the following repeated columns: [2,0] 40 times, [0,2] 40 times, [1,1]
20 times. This corresponds to 40 genes mapping to Function 1, 40 genes mapping to Function 2, and 20 genes mapping equally
to both.

The synthetic fithness measurements were generated by taking the matrix product of the synthetic dictionary in R?**2 and the load-
ings matrix in R?*7% resulting in a noiseless gene effect matrix in R?*7%, to which normally distributed random noise was added
(generated by the rnorm function in R using 0.3 standard deviation).

From this input, various factorizations were performed. PCA was run with the prcomp function in R and the first two components
were kept. ICA was run using the clusterFastiICARuns function in the MinelCA R package, which is based off the MATLAB icasso
function (http://research.ics.aalto.fi/ica/icasso/), which aggregates repeated runs of FastICA (https://research.ics.aalto.fi/ica/
fastica/) to report more stable components. ICA was set to find two components. K-means was run using the kmeans function in
R, with k = 2. Webster was run with k = 2, t = 2, with neighbor graph degree = 1.
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Additional factorization of genotoxic screening data
For PCA applied to the genotoxic screening dataset, we set the number of components to 8, which was automatically chosen ac-
cording to an “elbow plot” of the eigenvalues corresponding to each component in the model, using the quickelbow function in
the R package bigpca. For ICA, we set the number of components to 13, according to the MSTD score from (Kairov et al., 2017),
which calculates an optimal number of stable ICA components.

To compare the Webster, PCA and ICA factorizations, we computed an individual AUROC for each geneset defined by (Olivieri
et al., 2020) for each inferred component, using the roc_auc function in the R package yardstick. This computes the enrichment spec-
ificity of each geneset across components, according to the rank order of genes by their loading scores on that component.

ADDITIONAL RESOURCES

An interactive portal to explore Webster’s output can be found at https://depmap.org/webster/.
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Figure S1: Methodological details of Webster. Related to Figure 1.

A. Extended version of Figure 1A showing the objective function of graph-regularized
dictionary learning (Yankelevsky and Elad, 2016). Given a raw fitness dataset, Webster
first preprocesses the data by standardizing cell contexts (rows), then centering gene
effects (columns). It then applies a simple selection threshold to automatically choose a
set of high variance gene effects (columns) to compose the input data matrix Y. Webster
factorizes Y into two low-rank matrices, D and X, by (1) minimizing the approximation error
of the low-rank factorization, (2) preserving gene effect (column) similarity from Y across
columns of X, and (3) preserving cell context (row) similarity from Y across rows of D.
Besides the key parameters k and ¢, which controls the rank of the factorization and the
number of non-zero entries per column of X, respectively, additional parameters include:
the neighbor graphs used in the row and column graph-regularization (default: 5 nearest
neighbors, chosen by cosine similarity); and the relative contributions of the graph
regularization terms to the overall objective (default: a = 0.2 and B = 0.6, as explained in
(Yankelevsky and Elad, 2016)).

B. The input genes from Figure 1B are embedded in a 2D layout using UMAP, and the gene-
to-function assignments for k-means and Webster are plotted as colors on each data point.
While k-means and Webster capture the same latent variables from the data, k-means
performs “hard clustering” that assigns pleiotropic genes to either function based on noise,
while Wester performs “soft clustering” that accurately assigns pleiotropic genes to both
functions.

C. Comparison between Webster and other low-rank factorization methods commonly
applied to biological data. Principal Components Analysis (PCA), Independent
Components Analysis (ICA), and k-means were parameterized to recover two latent
variables, using as input the data matrix described in Figure 1E. The recovered latent
variables from each method are plotted in comparison with the ground truth described in
Figure 1B (left) and the dictionary recovered by Webster described in Figure 1F (right).
Both PCA and ICA are sensitive to global variance in the data and therefore capture outlier
cells (those sensitive to both Function 1 and 2) in their first latent variable. k-means
recovers nearly identical latent variables as Webster.
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Figure S2: Assessment of Webster on genotoxic fitness data. Related to

Figure 2.

A. High-variance gene selection. A quantile-quantile plot is shown for the observed fitness
variances for 17,382 gene effect measurements (y-axis), in comparison to a theoretical
normal distribution fitted to the distribution of these variances (x-axis). A threshold is drawn



to distinguish gene effects whose variance exceeds the theoretical normal distribution,
resulting in 304 high-variance fitness genes chosen as input to Webster. In genome-scale
screens, a large number of genes will be non-essential for fithess; such genes will exhibit
fithess effects driven by experimental noise rather than biological signal. We assume that
the variances of non-essential genes are normally distributed, and choose genes whose
variances across treatments are positive outliers in this distribution.

. Webster parameter grid search. Using the same data as input, we applied Webster across
many values of k and t, with and without graph-regularization. Diminishing returns for both
reconstruction error (Frobenius norm) and gene similarity (Gene Laplacian) are reached
with k = 10 for both values of t. We chose t = 2 in order to model pleiotropic effects in the
genotoxic screening data.

. Interpretability of latent factors recovered from Webster, PCA and ICA. Using the literature
annotations from (Olivieri et al., 2020) as ground truth, we calculated the Area Under the
Receiver Operating Characteristic curve (AUROC) for each of ten genesets across each
of the learned factors from all three models. The number of dictionary elements for
Webster were chosen as described above; the number of PCA components was chosen
with a standard elbow blot over PCA eigenvalues; the number ICA components was
chosen according to (Kairov et al.,, 2017). The loadings for each gene over each
component were used as the predictors for the AUROC metric. An AUROC > 0.5 score
indicates that positive loadings were predictive of the geneset, while an AUROC score <
0.5 indicates that negative loadings were predictive of the geneset. A score of 0.5 in
AUROC indicates a performance equivalent to random chance assignment. The imposed
sparsity in Webster's gene loadings leads to interpretable latent variables mapping
strongly to individual genesets.

. Joint UMAP embedding of gene and functional effects as in Figure 2G and 2H, with all
functions labeled. The RAD51B gene effect is embedded between Fanconi Anemia and
Homologous Recombination (bolded).

. Scatterplots comparing the measured fitness effect of RAD51B (x axis, both plots) with
measured H2AFX (y-axis, left) and H2AFX - End Joining + Fanconi Anemia (y-axis, right).
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. Webster parameter grid search. Using the cancer cell fithess data as input, we applied
Webster across many values of k (25 to 600, with step size 25) and t (1 to 10). As t=1:3
performed poorly at large values of k, we chose t = 4 for the factorization.

. Higher-density grid search. With t = 4 fixed, we swept across k (25 to 600, with step size
5) with multiple random initializations with different seeds. Plotted are the marginal
improvements seen in model objectives with each additional step size of k, averaged over
random initializations. Diminishing returns in both objectives are observed around k = 220,
which was chosen for the final factorization.

. Denoising properties of Webster. The starting fitness data was corrupted with different
amounts of random noise. After splitting genes into training and test sets (3:1 split), we
then applied Webster (k=220, t= 4) to learn a dictionary from the noisy training data. From
this dictionary, we performed orthogonal matching pursuit to model the noisy test genes
in terms of dictionary elements. We compared this reconstructed profile against the ground
truth test gene profiles, which were unseen during model training. The Pearson correlation
of the reconstructed test genes versus their ground truths are plotted as a distribution per
noise level. The uppermost distribution (o = 0) corresponds to Webster's performance in
the absence of noise. Dashed red lines mark the mean of each distribution.

. Dictionary learning metrics. Left: Initialized vs. final dictionaries. In our Webster
implementation, we initialize dictionary learning using a dictionary of k initial gene effects
chosen by k-medoids. Each column of the initial dictionary (k-medoids) was correlated to
the corresponding column in the final dictionary after 20 algorithm iterations (k = 220, t =
4). The resulting 220 Pearson correlation values are shown as a histogram. Right: Using
the same k-medoids dictionary as a starting point, dictionary learning was performed using
two different random seed initializations. The Pearson correlations of the corresponding
columns from each dictionary are shown as a histogram.

. Transferability of Webster dictionary elements to unseen data. Parallel genome-scale
screens were performed at Broad and Sanger Institutes for 150+ common cancer cell
lines, using different CRISPR-Cas9 reagents and culturing strategies. We assessed the
transferability of a Webster dictionary trained on Broad data (which used the Avana
CRISPR-Cas9 guide library) to model gene effects captured by the Sanger Institute (which
used the Sanger CRISPR-Cas9 guide library). We learned a Webster dictionary (k=220,
t=4) over the 675 cell lines screened by the Broad. We then subsetted the learned
dictionary to a set of 150+ common cell lines, and used this smaller dictionary to model
gene effects measured by Broad Institute or the Sanger Institute. The Pearson correlation
of the reconstructed genes are plotted as a distribution. As a null comparison, we shuffled
the rows of the dictionary and performed the same modeling using this shuffled dictionary.
Dashed red lines mark the mean of each distribution.

Reproducibility of dictionary elements learned at k=220 over other values of k. Each
column in the heatmap corresponds to one of the 220 dictionary elements reported in the
paper (k=220, t=4). Each row in the heatmap represents a dictionary that was learned at
a smaller value of k, with t fixed (k=25, 30, 35, ..., 215, t = 4). Each cell in the heatmap is
colored according to the maximum cross-correlation between all elements in the lower-k
dictionary (row) and a specific element in the finalized dictionary (column). Columns are



ordered according to the lowest k for which that element “appears” in the smaller dictionary
(defined as Pearson cross-correlation > 0.9).

. Biomarker analysis for SHOC2 functional effects. We performed a random forest
regression on the fitness effect of each of the four underlying functions, using baseline -
omics measurements across cancer cell lines as features (including RNA-seq bulk
transcriptomic data, mutational hotspot data, protein abundance data, etc). The model
performances (Pearson correlation) are shown next to barplots displaying the feature
importances in the final models. Relevant biomarkers for each function are bolded.
(Abbreviations; CN = copy number; MutHot = mutational hotspot; MusMis = missense
mutation; RPPA = Reverse Phase Protein Array; RRBS = Reduced-representation
bisulfite sequencing; ssGSEA = single sample gene set enrichment analysis)
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Figure S4: Modular pleiotropy in protein complexes from cancer fitness data.

Related to Figure 4.

A. Focus on STAGA/ATAC complexes. Subunits unique to STAGA, unique to ATAC or
shared between both were taken from (Spedale et al., 2012). A heatmap is displayed
where each row displays a subunit’s loadings across selected Webster functions learned



m

from fitness data alone. Webster learned fitness effects for both complexes individually,
and represented the fithess effect of shared subunits as a mixture of both (loaded onto
both functions).

Focus on SWI/SNF complexes. Subunit organization was taken from (Mashtalir et al.,
2018). A heatmap is displayed where each row displays a subunit's loadings across
selected Webster functions learned from fitness data alone.Webster learned fithess
effects for ncBAF, cBAF and pBAF complexes individually, and the fitness effect of
SMARCA4 as a mixture of all three.

Focus on the Mediator complex. Subunit organization was taken from (Tsai et al., 2014).
A heatmap is displayed where each row displays a subunit’s loadings across selected
Webster functions learned from fitness data alone. Webster learned a fitness effect for the
Mediator Tail/CKM modules separately from the Mediator Head/Shoulder modules.
Focus on the Integrator complex. Subunit organization was taken from (Pfleiderer and
Galej, 2021; Sabath et al., 2020; Tilley et al., 2021; Zheng et al., 2020). A heatmap is
displayed where each row displays a subunit’s loadings across selected Webster functions
learned from fitness data alone. Webster learned a fitness effect for the INTS10-13-14
module (Pfleiderer and Galej, 2021; Sabath et al., 2020), the WDR73-INTS9 module
(Tilley et al., 2021), and the Backbone/Shoulder modules (Zheng et al., 2020) (designated
above as Remainder). INTS11, the main catalytic subunit of the Integrator complex, is not
loaded onto any of these functions, due to its status as a highly essential gene across all
cancer cell lines.

Biological replicate experiment of the immunoprecipitation shown in Figure 4E.

Biological replicate experiment of the knockout experiment shown in Figure 4G.

Density glycerol gradient ultracentrifugation on 293T nuclear extracts shows size
separation of Integrator complex subunits across different molecular weights. TBP is
shown as a non-Integrator complex control.
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Figure S5: Subcellular localization analysis from cancer fithess data. Related
to Figure 5.

A.

Schematic overview of subcellular localization analysis. A set of 1,463 fitness genes
were also profiled in a recent subcellular localization experiment (Go et al., 2021), which
reports the localization probability of each gene product over 20 inferred subcellular
locations. We performed a matrix multiplication between their localization probabilities
and our fitness-inferred gene-to-function loadings. The resulting matrix of 220 functions x
20 locations represents the overall distribution of localization probabilities over the
learned Webster functions.

A heatmap of the matrix described in A. Both rows (locations) and columns (functions)
are hierarchically clustered. Clustering rows results in seven hierarchically defined cell
compartments: nucleus, mitochondria, endoplasmic reticulum (ER), recycling,
membrane, cytoplasm and miscellaneous. The miscellaneous category is carried over
from (Go et al., 2021). Because proximity labelling proteomics were used to define
subcellular locations in that study, proteins that are part of large complexes were
predominantly co-labeled with other protein complex subunits, thereby decreasing their
ability to infer unique subcellular locations for these proteins.

Facet plot of Figure 5B, in which only functions are plotted as data points in the
embedding. Functions enriched for each of the seven compartments are plotted
separately.

Additional panels for Figure 5C, showing function-level insets for mitochondria, nucleus,
cytoplasm and miscellaneous compartments.

Accompanying figure for Figure 5E. Using only functional fitness effects (dictionary
elements) in the global embedding ablates the compartmental structure observed in
Figure 5B (in which genes and functions are co-embedded). This is because dictionary
elements are relatively de-correlated from one another, a property known as mutual
incoherence. The notable exception is the mitochondrial functions, which remain
clustered in this setting due to the fact that a predominant confounder (media
composition across cell lines) explains a portion of variance present in each of these
dictionary elements (related to findings explored in (Rahman et al., 2021)).
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Figure S6: Compound embedding results. Related to Figure 6.

A.

Compound sensitivity profiles over 360+ cancer cell lines were obtained from the PRISM
Drug Repurposing dataset (Corsello et al., 2020). Each of these profiles was modeled as
a sparse linear combination of four dictionary elements, using a dictionary trained on
gene perturbation data (from Figure 3B). The quality of these approximations was
assessed using a Pearson correlation to the original compound sensitivity profile. For
each compound class, the distribution of Pearson correlations across individual drugs
belonging to that class are shown in a box and whisker plot. Compound classes are
ordered by their mean Pearson correlation.

Each data point in the scatter plot represents one of the compounds from PRISM that
was modeled in terms of gene functions. The X axis charts the median cell fitness of
each compound, and the Y axis charts the Pearson correlation of the approximated
profile to the measured profile.

Same as Figure S3E, but for the BRAF Signaling function.

A heatmap of compound-to-function loadings. Each row represents a compound
sensitivity profile for an AKT inhibitor from the PRISM primary screen (2.5 uM dose), and
each column represents a Webster function learned from genetic data. Loadings values
are displayed in each cell of the heatmap. The first three gene functions model
RICTOR/AKT, PIK3CA signaling and PTEN signaling, respectively. The last function
displays a fitness effect specific to blood cell lines, and therefore captures a batch effect
present in the original PRISM data (in which suspension and adherent cell lines display
differing chemical sensitivity profiles). The median fitness effect across cells of that
compound, as well as the Pearson correlation of the approximated profile to the
measured profile, are also shown.

Additional dose-sensitive loading plots accompanying Figure 6E.
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