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Any knowledge discovery could in principal benefit from the fusion of directly or even indirectly related data
sources. In this paper we explore whether data fusion by simultaneous matrix factorization could be adapted for
survival regression. We propose a new method that jointly infers latent data factors from a number of heterogeneous
data sets and estimates regression coefficients of a survival model. We have applied the method to CAMDA 2014 large-
scale Cancer Genomes Challenge and modeled survival time as a function of gene, protein and miRNA expression data,
and data on methylated and mutated regions. We find that both joint inference of data factors and regression
coefficients and data fusion procedure are crucial for performance. Our approach is substantially more accurate than
the baseline Aalen’s additive model. Latent factors inferred by our approach could be mined further; for CAMDA
challenge, we found that the most informative factors are related to known cancer processes.

Introduction

Identification of driving events and their hazard rates for can-
cer progression remains a major challenge in cancer studies.'
Recently, initiatives such as The Cancer Genome Atlas (TCGA)*
and International Cancer Genome Consortium (ICGC)® were
launched to coordinate large-scale cancer genome studies across
different cancer types and subtypes of clinical importance. They
collect data that span patients, cancer types and diverse biological
data types to address the richness of genomic and molecular
mechanisms that play critical roles during cancer development.
Importantly, these include data from matched tumor and non-
tumor tissues.” Rich, diverse, large and complex data sets gener-
ated within cancer genome projects now require computational
methods that can collectively address them, provide interpreta-
tions on the genome-scale, and further integrate them with other
genomic, clinical and functional information.

One of the fundamental goals of bioinformatic approaches in
cancer studies is cancer subtype classification,”™® whereby a het-
erogeneous population of tumor samples is partitioned into bio-
logically and clinically meaningful subtypes. Stratification of
tumors is typically determined by the similarity of molecular pro-
files and correlated with clinical phenotypes including patient
survival time and response to chemotherapy. Most current
attempts to stratify tumors have used a single source of biological
information and have derived molecular profiles from mRNA
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expression data,®” somatic mutations'®'" or methylation data.'*
They have discovered informative subtypes in diseases such as
breast cancer and glioblastoma but have also reported a lack of
correlation between derived profiles and clinical phenotypes in
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certain cancer types, including colorectal and lung tumors. 3

These shortcomings might be due to data incompleteness, noise
inherent to biological measurements and limitations of data anal-
ysis methods.

Although individual data sets have long been used to stratify
patients, stratification based on multiple types of data, such as
expression, methylation and somatic mutation profiles, has been
more challenging. These data sets are fundamentally different
from each other, both in type and in structure. Somatic mutation
profiles are extremely sparse and dispersed since typically only a
small fraction of genes are mutated and patients diagnosed with
the same cancer type share few, if any, mutations.'* On the other
hand, methylation, miRNA expression and gene expression
measurements assign quantitative values to nearly all markers,
miRNAs and genes, respectively, in every patient. These data also
naturally come at different levels of granularity and describe dis-
tinct biological data types, such as genes, proteins, miRNAs and
methylation markers, among others. Heterogeneity of data gener-
ated by an increasing number of cancer studies hence limits the
usage of naive computational approaches that either cannot be
applied to such data or have to discard potentially beneficial bio-
logical information.

Here we report that the problems that stem from data diver-
sity can be largely surmounted by data fusion, which can collec-
tively consider a plethora of data sets coming from both directly
and indirectly related data domains and provides gains in accu-
racy through data integration."> We focus on the prediction of
patient survival time and the identification of crucial clinical and
molecular features. We propose a new machine learning
approach that can consider a potentially large number of hetero-
geneous data sets to infer latent factors for a survival regression
model. Its principal innovation is simultaneous inference of
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patient profiles and estimation of the influence of latent factors
on patient survival time. Below we describe the key concepts
behind the proposed approach and demonstrate its high predic-
tive accuracy in 3 ICGC cancer studies.

Results and Discussion

Overview of data fusion for survival regression

We here propose a method called DFME-SR that couples
Aalen’s additive model for survival regression and matrix factori-
zation-based data fusion into a joint inference procedure. The
principal novelty of the approach is the establishment of interde-
pendence between Aalen’s time-varying regression coefficients
and fused latent matrix factors during model inference. Intui-
tively, in each iteration of the algorithm, current estimates of
patients’ survival time influence the optimization of latent matrix
factors and vice-versa. Figure 1 shows an exemplar data fusion
graph of 8 data sets together with patient survival data and their
corresponding latent matrix factors as inferred by DFMEF-SR.
We summarize relationships present in every data set (R;;) with a
mapping from objects, 7.e., the units of analysis, to sets of objects
called latent factors (columns in G; and G)) and pairwise rela-
tions between latent factors themselves (8;;). The inference pro-
cess aims at identifying objects that are similar to each other in

terms of their affiliation with latent factors. Similar objects are
mapped to the same latent factor. Individual objects are allowed
to instantiate similarity patterns with multiple latent factors.
Opverall, the goal of analysis with DFMF-SR is to identify the
mapping of objects to a fixed number of latent factors, the pair-
wise relations among the factors, and regression coefficients of
the survival model. The latter are optimized against good predic-
tion of hazard rates using the mapping of individuals to latent
factors. It should be noted that latent factors are inferred simulta-
neously for all objects and every object type in the system as
shown in Figure 1. Figure 2 exposes the coupling between latent
factors and survival coefficients that are estimated by regressing
latent factors against patient survival data. Selection of a data set
whose latent factors are used in survival model estimation is done
prior to model inference. However, DFMF-SR is flexible in the
sense that it allows one to consider for survival analysis the latent
representation of any data set included in the system.

Predictive performance

Table 1 reports the errors of predicting survival time for lung,
kidney and head/neck cancer studies. We use protein expression
and somatic mutation (p corresponds to samples, » to protein or
to copy number somatic mutation; see sec. Factorized data fusion
model for survival regression) data to regress against survival
data. Our DFMF-SR approach (last row in Table 1) outperforms
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of red holds time-varying survival regression coefficients.

Figure 1. Example illustrating survival regression by data fusion (DFMF-SR). The left pane shows the data fusion graph. Nodes in the fusion graph corre-
spond to different types of objects considered by the system. Edges represent data matrices that describe relationships between objects of different
types. For example, rows of matrix ("A," "E") correspond to objects "A" and columns agree with objects of type "E." A designated node "S" in the square
box serves for the times of the events. Matrix ("A," "S") contains patient survival data. It is a binary matrix indicating the times when the respective objects
of type "A" experienced the event. Type "A" most often corresponds to patients or tumor samples and hence ("A," "S") encodes the amount of time that
has passed from primary diagnosis until a patient’s death. DFMF-SR naturally interleaves collective matrix factorization with estimation of survival regres-
sion coefficients. The right pane shows the latent data model inferred by DFMF-SR. Each matrix with gray entries identifies a mapping from objects to
their respective latent factors, which are stored in matrix columns. The number of matrices with blue entries is the same as the number of data sets;
each one stores pairwise relations between latent factors as supported by the corresponding data set. The matrix with entries colored in different shades
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Figure 2. Example illustrating the use of latent factors from matrix tri-fac-
torization for survival model estimation in DFMF-SR. Let us assume data
matrix ("A," "E") was selected as a data set whose latent factors are used
in the survival model. In each iteration of DFMF-SR, current tri-factoriza-
tion of ("A" "E") is updated toward both better reconstruction of the
matrix ("A," "E") and improved accuracy of the survival model. Parametri-
zation of the survival model is given by vectors with red and orange
entries. Since DFMF-SR builds upon Aalen’s additive model, the number
of vectors corresponds to the number of time points in the survival data.
Each vector holds information about the importance of any latent factor
for survival up to the respective time point. The dimensionality of each
vector corresponds to the number of latent factors in ("A," "E"), i.e., the
number of columns in the matrix with blue entries, plus one. An addi-
tional entry in each vector is reserved for the time-varying baseline haz-
ard for survival.

an alternative approach that does sequential survival regression by
first transforming data into the latent space and then inferring a
survival model independently of data transformation (second
and third row in Table 1). Similar gains in accuracy of DFMF-
SR are observed for other choices of » but are omitted here for
brevity.

Models inferred by DFMF-SR are also substantially better
than Aalen’s regression from the raw data (first line in Table 1).

Table 1. Cross-validated error of predicted survival time. Latent data repre-
sentations of protein expression values or somatic mutation data are
regressed against patient survival data for 3 different cancer studies. We
compare our approach (DFMF-SR) to a procedure, which first infers predic-
tive factors by data fusion (DFMF in Step I) or principal component analysis
(PCA in Step |) and then learns a regression model (Aalen in Step II). Aalen’s
regression modeling could be in principal applied to raw data (first row
without feature construction in Step 1), but fails due to high dimensionality
of data sets

Approach Protein expression Somatic mutation
Stepl Stepll HNSC KIRC LUAD HNSC KIRC LUAD
n.a. Aalen 0.83 0.89 0.80 0.95 0.91 0.99
PCA Aalen 0.73 0.70 0.69 0.71 0.73 0.72
DFMF Aalen 0.67 0.65 0.66 0.61 0.68 0.61

DFMF-SR 0.56 0.62 0.59 0.54 0.58 0.53
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The less well-studied cancer data sets in CAMDA 2014 are chal-
lenging to analyze due to noisy measurements, missing data and
high right censorship (given the available data). For example,
30% of tumor samples from the HNSC study do not have infor-
mation about donors’ last known vital status or time intervals
since their primary diagnoses. Of the remaining samples, 86%
belong to censored individuals. We observed that model perfor-
mance crucially depends on the ability to infer latent space and
reduce data dimensionality, and survival regression analysis fails
to detect predictive signals if applied to high-dimensional
untransformed data sets in the original data domain.

The additive regression model benefits from incorporating
time into estimation of regression coefficients and can give infor-
mation about effects of data features on patient survival time by
plotting components of cumulative regression coefficients B ()
against time. Figure 3 shows cumulative regression functions for
2 somatic mutation latent factors and the baseline regression
coefficient in the HNSC cancer study. The baseline coefficient
starts off small in the first 10 months after primary diagnosis and
then increases (Fig. 3, right pane). Notice the different dynamics
of regression coefficients for the 2 latent factors (Fig. 3, left
pane). Gene sets belonging to these latent factors are enriched in
biological processes known to play a role in the development of
cancer,' such as regulation of nitric-oxide synthase activity,
monooxygenase and oxidoreductase activity, nitric oxide pro-
cesses, and cyclase activity (FDR < 4 x 10™%). This finding
points to a possible utility of the proposed approach for uncover-
ing critical factors and their changing influence across different
stages of cancer progression.

Materials and Methods

We begin by briefly describing the Aalen’s additive model for
survival analysis and a recent approach to collective matrix factor-
ization, which form the foundation of our work here. We then
present our survival regression model that uses data fusion and
latent factor parametrization, and conclude with an overview of
considered data sets from the ICGC and a procedure for evalua-
tion of predictive performance.

Background and preliminaries

Survival analysis and regression

Survival analysis studies the relationship between risk factors
and a patient’s time to the event (e.g. death, cancer relapse). The
patient is referred to as right-censored if the event has not yet
occurred by the end of the study. Traditional statistical techni-
ques usually cannot be applied because of the skewness of the dis-
tribution of patient lifetime data, time-dependent features and
data censoring. The survival probability until at least some time
point is most often estimated with Kaplan-Meier statistics. When
additional patient data are available, such as clinical covariates or
information about somatic mutations that are present in the
tumor, we can model time to the event through survival
regression.
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constructed as follows. If the zth individual
is at risk at time 7 (the event has not yet
occurred), then the corresponding row of
X(#) contains the individual’s feature pro-
file, otherwise it is replaced with an all-
zeros row. Aalen’s model estimates cumu-
lative regression coefficients defined by
B;(t)= [, B;(s) ds,i€[m+1]. This is
done by finding B*(¢t) = >, _, V(tc) Ik,

where #; are ordered times of events and Iy

18 21 24 3
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. is a binary vector indicating an individual

who experiences the event at time #;. The

Figure 3. Cumulative hazard plots produced by DFMF-SR showing (a) the cumulative hazards of
selected somatic mutation latent factors, i.e, B; (t) of latent factor i for times t, of the events, and
(b) the baseline hazard in the HNSC cancer study. Notice that regression coefficients are the deriva-
tives of the cumulative hazards and so it is the slopes of the plots that are informative.

matrix V' (f) is computed by the least
squares formula from X (7).

Aalen’s additive model of survival regression

Aalen’s additive model is an alternative to Cox’s proportional
hazards model.'®"® It has time-varying regression coefficients, poses
no assumptions about their parametric form and can provide infor-
mation about the changing effects of data features on survival. Let
A(#) denote a vector of hazard rates for n individuals where 4,(z)
denotes the hazard rate of individual 7. The additive model is given
by A() = X()B(2), where vector B(f) € R"*! holds the baseline
hazard and m regression coefficients that measure the influence of
the respective features in X(¢) € R** ™+ The matrix X(2) is

Data fusion by matrix factorization
(DFMF)

We have recently proposed a data fusion approach called
DFMF" (data fusion by matrix factorization) that can jointly
factorize possibly many data matrices into low-dimensional
matrix factors in a way that latent matrix factors are shared
between factorizations of related data matrices. In DFMF, data
matrices encode relations between 2 object types, say genes and
gene ontology terms. Data matrices are related if they share an
object type. An example of related matrices are the gene expres-
sion matrix and gene ontology term assignment matrix, as both

Methylation ). [Copy number
~\ somatic

mutation

Survival
data

matrices provide data on genes. DFMF can
6| consider a set of data matrices. It can addi-
tionally consider constraints on the latent

Gene
Ontology
term

data representation that are expressed as
matrices that relate objects of the same
type, such as data on protein interactions.
We have previously reported the udlity of
DEMEF in functional genomics,15 inference
on new diseases associations,'” and drug-
induced liver injury prediction.20 All these
variants of data fusion assume the same fac-
torization model, which is also used in our
proposed extension of data fusion for sur-
vival regression.

Formally, let 7 and j denote 2 types
of objects, such as genes and Gene
Ontology terms, and let there be #;
objects of type i and similarly 7; objects
of type 7. DEMF considers a collection
R of relation matrices RjeR"™*",

where R;; encodes relations between

ontology.

Figure 4. Data sources and their relations. Nodes in the graph correspond to different types of
objects and edges denote data matrices R;; or constraint matrices ;. For example, matrix Ry con-
tains protein expression values, R;s relates tissue samples to mutated genes in the tumor, and DNA
methylation matrix R;; reports on gene-based methylation Beta values of interrogated sites. Gene
annotations from Gene Ontology are given in matrices Ryg, X € {3, 4, 5, 7}. Constraint matrix @¢ enco-
des the semantic similarity of Gene Ontology terms as defined by the directed acyclic graph of the

objects of types 7 and j, and a collection
C of constraint matrices G)l(/) for I € (1],
where @l(l) is Ith constraint matrix for
objects of type 7. DFMF organizes data
sets in a data fusion graph. An example
of a data fusion graph is shown in

Figure 4. The main component of
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DFEMEF is inference of latent matrix factors G; (G; > 0) and S;
G SUGT ||Fro

G;).In this way, every relation matrix

by minimizing loss function ER IR —

Eo ECZI_I tf(GT®

R;; is tri-factorized into G ijG]«T such that tri-factorization rep-
resents a good reconstruction of Ry, R; = G,—SijGjT, given the
loss function of DFMF. Importantly, the inferred latent model
contains both object type-specific latent matrix factors (G;) that
are shared between decompositions of related data matrices and
data set-specific matrix factors (§;) that together constitute
latent data representation and are used for prediction.

Factorized data fusion model for survival regression

Solving the optimization problem
Following the notation introduced in the previous section and
in Zitnik & Zupan (2015),"> DFMF-SR infers latent matrix fac-
tors G (G; > 0) and §j; for all 7 and j, and cumulative regression
B(® for all points of the events,
< ty, by minimizing the following objective function:

coefficients time

fh<t)<-

2 1Ry = GiSyG I, + > S o(6ea)

Rijer 0;,eCl=1

3 11— GoSp () B(1) 1)

te <ty

Here, p and r are object types and specify data set whose
fused latent representation we use to regress against survival
data. The example in Figure 1 uses data set (“A,” “E”) to
regress against survival data (“A,” “S”), hence in that example
p corresponds to “A” and r to “E” (see also Fig. 2). The
times # in Eq. (1) are ordered times of the events and
I € R™ is a binary vector consisting of zeros except for a one in
the position corresponding to an individual who experiences
the event at time 7. In our analysis, p refers to samples and  to
features (e.g., protein expression profiles or mutated chromo-
somal regions).

We expand the objective function in Eq. (1) using a trace
operator similar to that in Zitnik & Zupan (2015)"
derive iterative multiplicative update rules for the unknowns
from the associated Lagrangian L. Derivatives of L with
respect to G for i # p remain the same as in Zitnik & Zupan
(2015)"° and thus, their update rules are unchanged. The muldi-
plicative update of latent matrix factor G, (not shown here) fol-
lows from the following expression after some algebraic
manipulation:

(~RyG;S}; + G,S,G] GS)
JRy €R

+2 > (-RLGS;,+G,S,GIGyS), )

JRjpeR
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+ Gy ()8, () B(1)ST) - C,.

where C), is a constant factor. Similarly, update rules of latent
matrix factors Sj; for i,j # p,r are the same as those reported
in Zitnik and Zupan (2015)."° The rule for S, is obtained
from the associated partial derivative of the Lagrangian L given

by:

= —G,R,G,+2G]G,S, GG,
a8,

-2 Z G, (1) i B(tx)

<ty

+23 Gy(1) Gyl

<ty

tk)sprﬂ<tk)Tﬂ(tk)~ (2)

To properly formulate the multiplicative update rule S,,,
one would need to solve a generalized linear matrix equa-
tion.?'*? Such equations are difficult to analyze in their full
generality, and necessary and sufficient conditions for the exis-
tence of their solutions are not known.?* Also, current numeri-
cal techniques for solving generalized linear matrix equations
We tackle
this problem by randomly selecting a particular #, in each itera-
tion of the DFMFE-SR algorithm and its associated term from
the last component of the right side of Eq. (2). Based on this
reduction we update S, by solving a Sylvester equation, a

are lacking or are not robust in large-scale settings.24

well-characterized type of linear matrix equation in which the
coefficient matrices occur on both sides of the unknown matrix
Spyr.

Finally, Aalen’s time-varying coefficients are computed in
each iteration of DFMF-SR by regressing current estimates
of G,S,,(#;) for all #; against lifetimes ordered by the times of
the events with regularized least squares formulation (Fig. 2).
The parameter selection and stopping criteria of the DFMF-
SR algorithm are similar to those of the base DFMF
algorithm.15

Determining assignment of objects to latent factors

DFMEF-SR regresses against latent factors in G,S),. Latent
factor in Gy, i.e., a particular column in G;, corresponds to a
group of objects of type 7. Since a latent factor does not directly
represent any individual object, it is not readily interpretable in a
biologically meaningful manner. To decipher the meaning of any
latent factor, we wish to identify objects that are associated with
it. By definition, the elements in G can only take nonnegative
values and represent object membership strengths to latent fac-
tors. Membership strengths are nonnegative and real-valued due
to the relaxation of orthogonality constraints on G; in DFMEF.
Therefore, for a given latent factor ¢ from G}, we can determine,
which objects are most important and have the greatest
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membership to factor ¢. Specifically, object x of type 7 belongs to
a factor cif ¢ = arg max: G;(x,¢).

Data and experimental setup

We consider large-scale cancer studies of 3 cancer types
selected for the CAMDA 2014 Challenge in the 15.1 release of
the International Cancer Genome Consortium (ICGC).®> These
are head and neck squamous cell carcinoma (HNSC; 368
donors), kidney renal clear cell carcinoma (KIRC; 505 donors)
and lung adenocarcinoma (LUAD; 461 donors). The ICGC pro-
vides data from matched tumor and non-tumor tissues. For each
cancer type, data include protein, miRNA and normalized gene
expression values, genome-wide information on the state of
methylated fragments, somatic mutations and clinical annota-
tion. We consider these data sets alongside Gene Ontology anno-
tations, amounting to a total of 10 data sources (Fig. 4) for each
cancer study. The base object type (p) is given by tumor samples
that are associated with survival data based on the donor’s last
known vital status ("donor’s vital status") and the interval from
primary diagnosis to the last follow-up date in months ("donor’s
interval of last follow-up").

We evaluate the performance of survival models by leave-
one-out cross-validation of tumor samples and score the
models based on predicted survival times. We report trans-
formed absolute error loss of survival time defined by
1y, p)=|log(y) —log®,) |, where ,, is the predicted median
of survival time y. The median is the optimal predictor of the
absolute error loss and is less affected by the long tails of survival
distributions than the squared error loss. Log transformation
addresses the concern that the absolute difference between pre-
dicted and actual survival time at a distant time point should
result in smaller error than the same absolute difference

. . .2
achieved at a nearer time point. >

Conclusion

Data fusion for survival regression is a new computational
approach that predicts patient’s survival time from a collection
of heterogeneous data sets. The approach builds upon recently
proposed collective matrix factorization'” and a well-known
Aalen’s additive model for survival regression.'® Unlike exist-
ing methods for survival time prediction, we formulated a
joint inference procedure that allows us to simultaneously infer
model parameters of collective matrix factorization and regres-
sion coefficients of Aalen’s model. We demonstrated improved
performance of our method over several baselines in case stud-
ies involving 3 cancer types from the International Cancer
Genome Consortium and diverse data sets, such as gene and
miRNA expression profiles, somatic mutation data, methyla-
tion and gene annotations from the Gene Ontology. Both
latent data representation and joint inference, the 2 features of
our approach, contribute substantially to accurate prediction
of survival time. Our results allude to the potential benefits of
data fusion when inferring survival models that are predictive
of clinical outcomes.
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