
Appendix A Further Details on SUBGNN

In this section, we outline additional details and design decisions for the implementation of SUBGNN.
In Section A.1, we provide an algorithmic overview of our method, and in Section A.2, we provide
further motivation and details on triangular random walks and the structural anchor patch embedder
algorithm.

A.1 Message Passing Algorithm

For brevity, Algorithm 1 summarizes the forward pass of SUBGNN for a single subgraph S. While
the algorithm demonstrates how to embed subgraph S, we want to emphasize that SUBGNN learns
representations for every subgraph S ∈ {S1, S2, . . . , Sn}. In practice, we extend Algorithm 1 to
multiple subgraphs using mini-batching. Note that any aggregation function that operates over
an unordered set of vectors can be used for AGGM , AGGC , AGGL, and/or READOUT. Our
implementation leverages the sum operator for AGGM and READOUT and the concat operator for
AGGC and AGGL. We empirically found that applying attention [72] over the individual subgraph
component representations did not yield any performance gains over summation for READOUT.

Algorithm 1: SUBGRAPH NEURAL NETWORK. Channels N, S, and P correspond to neighborhood,
structure, and position. Subchannels I and B correspond to internal and border subgraph topology.
Input: Graph G = (V,E); Node representations {xu|u ∈ V }; Subgraph S consisting of connected
components S(c) for c = 1, . . . , nc; Anchor patch sampler φX, anchor patch encoder ψX, and
anchor patch similarity function γX for each channel X; Nonlinear activation function σ

Output: Subgraph representation hS for subgraph S
Model Parameters: Layer-wise, channel-specific learnable weight matrices WX and QX

z
(0)
c =

∑
u∈S(c) xu

h
(0)
X,c = z

(0)
c for channel X ∈ {N, S, P} // Channel-independent initialization

for layer l = 1, . . . , L do
A

(i)
X = φX(G) for i = 1, . . . , nA and channel X ∈ {SI, SB, PB} // See Section 4.2

A
(i)
X = φX(G,S) for i = 1, . . . , nA and channel X ∈ {PI}

for connected component c = 1, . . . , nc do
A

(i)
X = φX(G,S

(c)) for i = 1, . . . , nA and channel X ∈ {NI, NB}
for channel X ∈ {{PI, PB}, {NI, NB}, {SI, SB}} do

for anchor patch i = 1, . . . , nA do
a(i)

X = ψX(A
(i)
X) // E.g., Algorithm 2

m
(l)
X,c,i = MSGA

(i)
X →S(c)

X // (Eq.1)

M
(l)
X,c[i] = m

(l)
X,c,i if X ∈ {S∗, P∗}

end
z
(l)
X,c = σ(Q

(l)
X ·M

(l)
X,c) if X ∈ {S∗, P∗} // Property-aware output rep.

g
(l)
X,c = AGGM ({m(l)

X,c,1, . . . ,m
(l)
X,c,nA

}) // Aggregate messages (Eq.2)

h
(l)
X,c = σ(W

(l)
X · [g

(l)
X,c;h

(l−1)
X,c]) // Order-invariant rep. (Eq.2)

end
z
(l)
c = AGGC(h

(l)
N,c, z

(l)
S,c, z

(l)
P,c) // Aggregate channels

end
end
zc ← AGGL({z(0)c , . . . , z

(L)
c }) // Aggregate layers

hS = READOUT({z1, . . . , znc}) // Aggregate subgraph components

14

A.2 Triangular Random Walks

In Section 4.2, we leverage triangular random walks [9] to (1) sample structure anchor patches via
φS and (2) embed the structure anchor patches via ψS. Refer to Algorithm 2 for a summary of the
structure anchor patch embedder.

Triangular random walks are parameterized by β ∈ [0, 1] and yield a sequence of nodes
X0, X1, . . . , Xn. The parameter β determines whether triangles or non-triangles will be privi-
leged during sampling. A node z is said to be a triangular successor to nodes x and y if x, y, z would
form a triangle. The triangular random walk samples triangular successors with probability β and
non-triangular successors with probability 1 − β. When performing an internal random walk, we
initialize P [X0 = x] = 1/|I| and P [X1 = y|X0 = x] = 1/dI(x), where dI(x) is number of edges
from x to other nodes in I. Similarly, we initialize a border random walk with P [X0 = x] = 1/|B|
and P [X1 = y|X0 = x] = 1/dE(X0) where dE(x) is number of edges from x to nodes in E .

We then define the transition probability for any subsequent step of the random walk as follows:
given current node y and preceding node x, the probability of transition to node z is defined as
P [Xt+1 = z|Xt = y,Xt−1 = x] = [β(1/|T |)1Xt+1∈T + (1− β)(1/|U |)1Xt+1∈U] where T is the
set of triangular successors of nodes x and y and U is the set of non-triangular successors. More
precisely, T (Xt, Xt−1) = N(Xt) ∩N(Xt−1) and U(Xt, Xt−1) = N(Xt) \N(Xt−1).

Algorithm 2: STRUCTURE ANCHOR PATCH EMBEDDER.
Input: Graph G; Anchor patch A; Node representations {xu|u ∈ A}; Triangle random walk
(TRIANGLE_RW) parameter β; Number of walks n; Length of walks k

Output: Representation a for anchor patch A
for i = 1, . . . , n do

(uπ(1), . . . , uπ(k)) = TRIANGLE_RW(G,A, β)
hi = BI-LSTM((xπ(1), . . . ,xπ(k))) where xπ(j) is representation for node uπ(j)

end
a =

∑
i=1,...,n hi

Appendix B Further Details on Datasets

We proceed by describing the construction and processing of synthetic as well as real-world datasets.
Note that we provide all datasets in our SUBGNN code release.

B.1 Synthetic Datasets for Subgraph Classification

Generating base graphs. For DENSITY, CUT RATIO, and COMPONENT, we start with a base
Barabási-Albert graph, where the number of preferentially attached edges, m, is 5 for DENSITY
and CUT RATIO and m = 1 for DIAMETER and COMPONENT. In CORENESS, the base graph is a
duplication-divergence graph where the probability of retaining the edge of the replicated node is 0.7.
Refer to Table 5 for properties of the base graphs.

Generating subgraphs. We introduce three methods for generating subgraphs: (1) the PLANT
method, which searches for n > 1 common nodes and e ≥ 1 shared edges between the base graph
and the new subgraph, and plants the subgraph on the base graph via the union of the node and edge
sets; (2) the STAPLE method, which adds an edge between a randomly sampled node in the base
graph and a node in the new subgraph; and (3) the BFS method, which creates subgraphs in the base
graph by performing breadth first search with a specified max depth d from randomly selected start
nodes. Figure 3 describes the PLANT and STAPLE approaches in more detail.

We construct subgraphs with various desired graph properties: density, cut ratio, k-coreness, and
number of components [71, 55]. Density is defined asD = (2 · |E|)/(|V | · |V −1|) for our undirected
graphs. We define cut ratio as the proportion of edges shared between the subgraph S and the rest of
the graph G, specifically CR(S) = |BS |/(|S||G \ S|), where BS = {(u, v) ∈ E|u ∈ S, v ∈ G \ S}.
The k-core of a graph is the maximum subgraph with a minimum degree of at least k. A connected
component is defined as a set of nodes in a subgraph such that each pair of nodes is connected by a
path.

15

+

(a) Base graph and new subgraph (b) Planting (c) Stapling

Nodes in graph (colors corresponding to a different subgraph)

Edges in graph

Shared nodes between base graph and new subgraph

Shared edges between base graph and new subgraph

Figure 3: Procedures for generating synthetic graphs. (a) Base graph and new subgraph to be
added. (b) New synthetic graph with a “planted” subgraph. (c) New synthetic graph with a “stapled"
subgraph. The base graph (a) has 3 subgraphs, and the new graphs (b)-(c) each have 4 subgraphs,
indicated by the colors red, light blue, light purple, and dark purple. The yellow nodes and bright red
edges are those shared between the base graph and the new subgraph.

Subgraph classification tasks. For each subgraph classification task, we generate subgraphs that
vary along a specific network property (e.g. density, cut ratio). Labels are then generated by binning
the network property values into two or three quantiles: (1) DENSITY has 250 subgraphs that are
constructed via BFS with d = 3 to have low, medium, or high density. (2) CUT RATIO has 250
subgraphs constructed by PLANTING complete graphs onto the base graph such that the subgraphs
have low, medium, or high cut ratio. (3) CORENESS has 221 subgraphs that are created using the
duplication-divergence model and constructed via PLANTING onto the base graph. These subgraphs’
labels (e.g., low, medium, or high coreness bins) are assigned by calculating the average k-coreness
of all nodes in the subgraph. Finally, (4) COMPONENT contains 250 Barabási-Albert subgraphs that
are STAPLED onto the base graph, and the associated label is the number of connected components in
the subgraph (single or multiple components). Subgraphs for synthetic datasets are split into train,
validation, and test sets via a 50/25/25 split. See Table 6 for properties of subgraphs in the datasets.

B.2 Novel, Real-World Datasets for Subgraph Classification

PPI-BP dataset. The base graph of the PPI-BP dataset is a human protein-protein interaction (PPI)
network [85], which contains 17,080 nodes and 630,226 edges. Nodes represent human proteins
specified by their Entrez IDs [38], and edges exist between nodes if there is physical interaction
between the proteins. Subgraphs are collections of proteins in the PPI network involved in the
same biological process (e.g., “alcohol biosynthetic process,” “mRNA cleavage,” etc.). These
subgraphs were obtained from the Gene Ontology (GO) gene sets from the Molecular Signatures
Database (MSigDB) [57]. PPI-BP subgraphs labels are obtained from the “GO Slim” resource in the
GO Biological Process Ontology [14, 3], which groups narrow processes into broader categories:
metabolism, development, signal transduction, stress/death, cell organization, and transport. Gene
sets are limited to those containing at least five genes, and we exclude any gene sets that comprised
70% or more of the genes in any other gene set. Subgraphs are split 80/10/10 at random into training,
validation, and test sets. There are on average 10.2 nodes per subgraph and 265.2 subgraphs across
the 6 labels [57].

HPO-NEURO dataset. The base graph is a knowledge graph containing phenotype and genotype
information about rare diseases. Nodes are phenotypes (symptoms), and edges exist between
phenotypes if (1) they are caused by a mutation in a shared gene according to DisGeNET [50],
HPO-A [34], or Orphanet [39] or (2) an edge exists between the phenotypes according to the Human
Phenotype Ontology (HPO) [52]. Each subgraph consists of a set of phenotypes associated with a
rare monogenic disease. The subgraphs contain noisy phenotypes unrelated to the disease, distractor
phenotypes related to incorrect but similar diseases, and less specific phenotypes generated by walking
up the HPO hierarchy (e.g., from “arachnodactyly” to “abnormality of the fingers”). Together, these
simulate the imperfect diagnosis process and make the diagnosis task more realistic. Subgraph

16

Table 5: Properties of base graphs in synthetic and real-world datasets.

Dataset # Nodes # Edges Density # Subgraphs # Labels

DENSITY 5,000 29,521 0.0024 250 3
CUT RATIO 5,000 83,969 0.0067 250 3
CORENESS 5,000 118,785 0.0095 221 3
COMPONENT 19,555 43,701 0.0002 250 2

PPI-BP 17,080 316,951 0.0022 1,591 6
HPO-METAB 14,587 3,238,174 0.0304 2,400 6
HPO-NEURO 14,587 3,238,174 0.0304 4,000 10
EM-USER 57,333 4,573,417 0.0028 324 2

Table 6: Properties of subgraphs in synthetic and real-world datasets.

Dataset Average # nodes Average density Average cut ratio Average # components

DENSITY 20.0±0.0 0.232±0.146 0.0010±0.0062 3.8±3.7

CUT RATIO 20.0±0.0 0.945±0.028 0.0072±0.0011 1.0±0.0

CORENESS 20.0±0.0 0.219±0.062 0.0082±0.0081 1.0±0.0

COMPONENT 74.2±52.8 0.150±0.161 5.1 ×10−6±3.4×10−6 4.9±3.5

PPI-BP 10.2±10.5 0.216±0.188 0.0036±0.0032 7.0±5.5

HPO-METAB 14.4±6.2 0.757±0.149 0.1844±0.0396 1.6±0.7

HPO-NEURO 14.8±6.5 0.767±0.141 0.1834±0.0386 1.5±0.7

EM-USER 155.4±100.2 0.010±0.006 0.0053±0.0006 52.1±15.3

labels are the diagnosis categories. This is a multi-label dataset consisting of 10 neurological
disease categories: neurodegenerative, epilepsy, ataxia, genetic dementia, central nervous system
malformation, intellectual, neurometabolic, movement, peripheral neuropathy, and neuromuscular
disease. Subgraphs are split by disease into train, validation, and test sets via an 80/10/10 split.

HPO-METAB dataset. This is a clinical diagnostic task for rare metabolic disorders, defined similarly
to HPO-NEURO, but for a different collection of diseases and disease categories. The base graph is
identical to the base graph in HPO-NEURO, and the subgraphs consist of a set of phenotypes associated
with a rare monogenic metabolic disease. The HPO-METAB dataset contains 6 labels corresponding
to types of metabolic disease: lysosomal, energy, amino acid, carbohydrate, lipid, and glycosylation.
Subgraphs are split by disease into train, validation, and test sets via an 80/10/10 split.

EM-USER dataset. The Endomondo base graph is a co-occurrence network: nodes represent work-
outs, and edges exist between workouts completed by multiple users. As such, the graph contains
cliques (i.e., small fully connected networks) of highly popular combinations of workouts. We
identify co-occurrence cliques and use random network sampling to break up cliques in the base
graph [32, 51]. Examples are split 75/15/15 by workout into train, validation, and test sets.

See Table 5 and 6 for further properties of all datasets.

Appendix C Details on Empirical Evaluation

Baseline models and SUBGNN were evaluated using Micro F1 and AUROC. Both metrics were
implemented using Scikit-learn (Version 0.20.2). AUROC scores for synthetic datasets are in Table 7,
and results for real-world datasets are in Table 8. AUROC scores for the SUBGNN channel ablation
analysis are in Table 9.

Generalizability analysis. Generalizability in subgraph representation learning is an interesting area
of future research, in part because in this context it could be defined in several competing ways. For
example, one aspect of generalizability in subgraph prediction is the ability to make predictions about
subgraphs that contain nodes that were never seen during training. To probe this aspect of SUBGNN,
we measure the test performance of the model as a function of the overlap in nodes between train and
test subgraphs, irrespective of whether the nodes were participating in similar structures or whether
the labels between the subgraphs were also shared.

17

Table 7: AUROC performance on synthetic datasets. Standard deviations are provided from runs with
10 random seeds. ‘N’ and ‘S’ stand for ‘Neighborhood’ and ‘Structure,’ respectively.

Datasets
Method DENSITY CUT RATIO CORENESS COMPONENT

SUBGNN (Ours) 0.971±0.007 0.836±0.021 0.824±0.044 0.997±0.009
Node Averaging 0.619±0.026 0.542±0.069 0.700±0.028 0.623±0.199

Meta Node (GIN) 0.602±0.039 0.602±0.023 0.670±0.047 0.873±0.026

Meta Node (GAT) 0.809±0.024 0.531±0.089 0.682±0.068 0.884±0.014

Sub2Vec Neighborhood 0.580±0.028 0.533±0.046 0.592±0.037 0.629±0.035

Sub2Vec Structure 0.553±0.026 0.504±0.093 0.539±0.084 0.539±0.104

Sub2Vec N & S Concat 0.578±0.040 0.493±0.051 0.562±0.043 0.558±0.042

Graph-level GNN 0.868±0.069 0.494±0.045 0.697±0.113 0.690±0.308

Table 8: AUROC performance on real-world datasets. Standard deviations are provided from runs
with 10 random seeds. ‘N’ and ‘S’ stand for ‘Neighborhood’ and ‘Structure,’ respectively.

Datasets
Method PPI-BP HPO-NEURO HPO-METAB EM-USER

SUBGNN (+ GIN) 0.816±0.012 0.862±0.005 0.843±0.014 0.911±0.042

SUBGNN (+ GraphSAINT) 0.797±0.008 0.863±0.011 0.771±0.027 0.947±0.009

Node Averaging 0.498±0.009 0.764±0.104 0.814±0.032 0.896±0.143

Meta Node (GIN) 0.474±0.006 0.516±0.044 0.510±0.036 0.536±0.082

Meta Node (GAT) 0.535±0.017 0.502±0.012 0.581±0.017 0.485±0.056

Sub2Vec Neighborhood 0.518±0.013 0.502±0.014 0.504±0.039 0.496±0.108

Sub2Vec Structure 0.551±0.016 0.498±0.010 0.505±0.016 0.936±0.008

Sub2Vec N & S Concat 0.544±0.011 0.504±0.010 0.496±0.015 0.518±0.048

Graph-level GNN 0.663±0.044 0.773±0.027 0.772±0.018 0.525±0.065

Notably, test subgraphs in the COMPONENT and CORENESS datasets have zero nodes in common with
any train or validation subgraphs, yet SUBGNN performs strongly on both datasets (Table 2). Figure
4 shows Micro F1 performance as a function of node overlap on one randomly selected real-world
dataset, HPO-METAB. While SUBGNN performs considerably better than majority class and random
baselines on the test subgraphs with the smallest percent overlap, it is clear that future research is
needed to improve generalization performance.

Appendix D Implementation Details

Computing infrastructure. We leverage Pytorch Geometric (Version 1.4.3) [19] and Pytorch
Lightning (Version 0.7.1) [17] for model development. Models were trained on single GPUs from a
SLURM cluster containing Tesla V100, Tesla M40, Tesla K80, and GeForce GTX 1080 GPUs.

Pretraining node embeddings. Node embeddings were pretrained using a 2-layer GIN architecture
[68]. Hyperparameters were selected from the following ranges: batch size ∈ [256, 4096], learning

Table 9: Channel ablation analyses (AUROC). Channels that encode properties relevant to each
dataset have a"and best performing channels are in bold.

Datasets
SUBGNN Channel DENSITY CUT RATIO CORENESS COMPONENT

Position (P) 0.899±0.016 0.706±0.043 0.712±0.047" 0.997±0.009"
Neighborhood (N) 0.904±0.020 0.528±0.078 0.668±0.066 0.955±0.035

Structure (S) 0.971±0.007" 0.836±0.021" 0.823±0.025" 0.834±0.142

All (P+N+S) 0.968±0.008 0.642±0.100 0.824±0.044 0.968±0.032

18

Figure 4: Micro F1 score as a function of maximum percent node overlap with any subgraph in the
HPO-METAB train set. Majority class performance = 0.026, and random performance = 0.166. Bars
represent standard deviation from runs with 10 random seeds.

rate ∈ [5e-3, 5e-5], weight decay ∈ [5e-4, 5e-5], dropout rate ∈ [0.4, 0.5], hidden layer dimension
∈ [128, 512], and output dimension ∈ [32, 128]. For all baselines and SUBGNN, we used NEIGH-
BORSAMPLER [25] in Pytorch Geometric [19] to perform mini-batching with number of hops k = 1
and neighborhood size ∈ [0.1, 1.0]. To demonstrate that SUBGNN is not dependent on GIN and
NEIGHBORSAMPLER, we replaced the GIN layers with GCN and implemented GRAPHSAINT
for mini-batching given walk length ∈ [16, 32] and number of steps ∈ [16, 32] [33, 77]. The node
features for all graphs were one-hot encodings.

Model hyperparameter tuning. Hyperparameters were selected to optimize micro F1 scores on
the validation datasets. In the following paragraph, we describe the hyperparameter ranges we
explored. The best hyperparameters selected for each model can be found at https://github.com/
mims-harvard/SubGNN.

Baseline hyperparameters were selected from the following ranges: batch size ∈ [8, 128], learning
rate ∈ [1e-5, 0.1], weight decay ∈ [5e-5, 5e-6], and feed forward hidden dimension sizes ∈ [8, 256].
For the MN-GAT baseline method, we use the default parameters for GAT, except for the number of
heads, which we set to 4. For the S2V-N and S2V-S, methods, we used all of the default parameters in
Sub2Vec [2] to train subgraph embeddings; S2V-NS concatenates the resulting embeddings from S2V-
N and S2V-S. The GC architecture and hyperparameters were adapted from the Pytorch Geometric
GIN example on the MUTAG dataset (https://github.com/rusty1s/pytorch_geometric/
blob/master/examples/mutag_gin.py) [19].

SUBGNN hyperparameters were selected from the following ranges: batch size ∈ [16, 128] , learning
rate ∈ [1e-4, 1e-3], gradient clipping ∈ [0, 0.5], number of layers l ∈ [1, 4], k-hop neighborhood
∈ [1, 2], number of internal position anchor patches |API

| ∈ [25, 75], |APB
| ∈ [50, 200], |ANI

| ∈
[10, 25], |ANB

| ∈ [25, 75], |AS| ∈ [15, 45], number of LSTM layers ∈ [1, 2] with dropout ∈ [0.0, 0.4],
and feed forward hidden dimension sizes ∈ [32, 64] with dropout ∈ [0.0, 0.4]. We additionally
experimented with both sum and max aggregation for the connected component initialization from
node embeddings, and we tested the Pytorch Lightning auto learning rate finder.

Appendix E Hyperparameter sensitivity analysis

We performed a hyperparameter sensitivity analysis to measure the dependence of SUBGNN on
training hyperparameter configuration. Starting with the best performing model for the relevant
channel, we vary one hyperparameter at a time and report validation performance on the HPO-

19

https://github.com/mims-harvard/SubGNN
https://github.com/mims-harvard/SubGNN
https://github.com/rusty1s/pytorch_geometric/blob/master/examples/mutag_gin.py
https://github.com/rusty1s/pytorch_geometric/blob/master/examples/mutag_gin.py

Figure 5: Sensitivity analysis of hyperparameters in SUBGNN. Varying most of the hyperparameters
leads to < 0.05 change in Micro F1 score.

METAB dataset. To study model behavior at the extremes, we tested wider hyperparameter ranges:
batch size ∈ [16, 128], learning rate ∈ [1e-6, 5e-2], gradient clipping ∈ [0, 1], number of layers
l ∈ [1, 4], k-hop neighborhood ∈ [1, 4], number of internal position anchor patches |API

| ∈ [1, 100],
|APB

| ∈ [10, 300], |ANI
| ∈ [1, 75], |ANB

| ∈ [1, 150], |AS| ∈ [1, 120], number of LSTM layers
∈ [1, 4] with dropout ∈ [0.0, 0.8], and feed forward hidden dimension sizes ∈ [8, 256]. Of all
hyperparameters in our model, we find that seven strongly impact performance (change in micro
F1 >.05), two of which are common across all neural networks: learning rate, feed forward hidden
dimension, connected component aggregation (sum or max), number of structure anchors, number of
internal and border neighborhood anchors, and number of border position anchors.

20

