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BACKGROUND Electrocardiogram (ECG) deep learning (DL) has
promise to improve the outcomes of patients with cardiovascular
abnormalities. In ECG DL, researchers often use convolutional neural
networks (CNNs) and traditionally use the full duration of raw ECG
waveforms that create redundancies in feature learning and result
in inaccurate predictions with large uncertainties.

OBJECTIVE For enhancing these predictions, we introduced a sub-
waveform representation that leverages the rhythmic pattern of ECG
waveforms (data-centric approach) rather than changing the CNN
architecture (model-centric approach).

RESULTS We applied the proposed representation to a population
with 92,446 patients to identify left ventricular dysfunction. We
found that the sub-waveform representation increases the perfor-
mance metrics compared to the full-waveform representation. We
observed a 2% increase for area under the receiver operating char-
acteristic curve and 10% increase for area under the precision-recall
curve. We also carefully examined three reliability components of
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explainability, interpretability, and fairness. We provided an expla-
nation for enhancements obtained by heartbeat alignment mecha-
nism. By developing a new scoring system, we interpreted the
clinical relevance of ECG features and showed that sub-waveform
representation further pushes the scores towards clinical predic-
tions. Finally, we showed that the new representation significantly
reduces prediction uncertainties within subgroups that contributes
to individual fairness.

CONCLUSION We expect that this added control over the granu-
larity of ECG data will improve the DL modeling for new artificial in-
telligence technologies in the cardiovascular space.

KEYWORDS Deep learning, Cardiology, Electrocardiograms, Sub-
waveform representation, Machine Learning

(Cardiovascular Digital Health Journal 2022;-:1–12) © 2022 Heart
Rhythm Society. This is an open access article under the CC BY-NC-
ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
Electrocardiography is a common technique for recording
electrical activity of the heart over a time period and is
used as a noninvasive, first-line, and inexpensive diagnostic
tool.1 This process generates electrocardiogram (ECG) data
that provide physiological and structural information about
the heart and is normally used for diagnosing cardiac-
related diseases. Each ECG is obtained by placing several
electrodes on the skin in different parts of the body. The
arrangement of these electrodes with respect to each other
is called a “lead.” Each lead records a time-dependent wave-
form (eg, 10-second duration), with the magnitude being the
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KEY FINDINGS

� The sub-waveform representation of ECGs improved the
precision and reduced the uncertainties of the CNN pre-
dictions.

� The developed scoring system directly quantified the
important ECG features in the waveforms and facilitated
the interpretation of the CNN predictions.

� The sub-waveform representation of ECGs contributed
to minimizing the disparities of CNN predictions within
the protected subgroups.
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voltage difference between the corresponding electrodes. A
conventional configuration of ECGs is 12-lead, with 3 limb
leads (I, II, III), 3 augmented limb leads (aVF, aVL, aVR),
and 6 precordial leads (V1, V2, V3, V4, V5, V6).

To accelerate disease diagnosis and management, extract-
ing clinical information from ECGwaveforms using artificial
intelligence (AI) algorithms has seen a resurgence recently,
mainly owing to large datasets, powerful computers, and
new methodological developments.2–4 One of the main
promises of AI is finding hidden patterns in the data that
are invisible to human experts but visible to intelligent
algorithms.5,6 In the past, conventional statistical and ma-
chine learning methods such as support vector machines, lo-
gistic regression, random forests, and gradient boosting were
used for diagnostic predictions from ECGs.7 But these
methods normally require features that are manually pro-
vided by domain experts or signal processing techniques
such as Fourier transform. This ad hoc feature extraction is
cumbersome and expensive in terms of time and human ef-
forts because of the unstructured nature of ECGs, scale,
and the possibility of inaccurate predictions or learning irrel-
evant artifacts. To overcome these issues, deep learning (DL)
has emerged as a powerful analytics tool that automates
feature extraction for large-scale unstructured data types
such as text, imaging, and, more recently, ECG wave-
forms,2,5,6,8 to decode complex patterns in data and to pro-
vide valuable clinical insights.

In the literature, there is a body of work on changing the ar-
chitecture of neural network (NN) that is the typical core of DL
in order to improve the predictions from ECG waveforms.2

Two widely used architectures are convolutional NN (CNN)
and recurrent NN.9–11 There have also been efforts on
combining CNN and recurrent NN to further enhance the
predictions.12 Despite the important role of NN in processing
the data and finding useful patterns, major enhancements in
learning can be achieved by manipulations at the data level
while the NN is kept fixed. For many applications, the boost
in performance from data preparation, labeling, preprocessing,
and representation might outweigh searching for the optimal
NN architecture. With emerging DL applications for ECG
data type, the need for data-level manipulations has become
more important than ever, since each type has its own
complexities and therefore needs customized recipes. In the
literature, there have been several studies that investigate the
impact of transforming ECG waveforms on predictions. One
common strategy is augmenting waveforms by perturbing
the waveforms locally or creating slices from the original
waveform. For example, the windowwarpingmethod perturbs
the waveforms by dilating or squeezing a small region of the
waveform.13 Another popular augmentation technique is win-
dow slicing, which creates random slices of the waveforms
with the same label as the original full waveform by sliding
windows of the same size.14 To alleviate the potential prob-
lems caused by random slicing, a concatenate and resampling
method has been proposed that slices the waveform according
to the peaks and then concatenates the slices to reconstruct the
length of the original waveform.15 In addition to augmentation
methods, the grid-like structural representation of waveforms
for NN has been examined in the form of a 1-dimensional
(1D) waveform with 8 leads as channels or a 2D image with
time being the width and leads forming the height of the im-
age.9,10,16 Also, representing ECG waveforms as spectro-
grams using wavelet or Fourier transform techniques has
been studied.17 However, to date, finding the optimal and reli-
able representation at the waveform level has not yet been
explored. The current state-of-the-art research in DL of ECG
often uses the raw waveforms obtained from the device, which
we refer to as full-waveform representation, shown in
Figure 1A.

In this work, we introduce a novel sub-waveform repre-
sentation that extends the full-waveform representation of
ECGs to improve the DL predictions. We apply this method-
ology to identify left ventricular dysfunction (LVD), which is
present in 1.4%–2.2% of the population and 9% among the
elderly.18 Diagnosing this dysfunction is important to prevent
complications such as heart failure and to reduce mortality
risk. Once diagnosed, treatment strategies and device implan-
tation are normally effective. A primary tool for diagnosing
heart failure, which might be due to LVD, is B-type natri-
uretic peptide (BNP) levels, which require invasive blood
draws. BNP levels can be falsely low in obese patients and
falsely high in patients taking certain drugs, such as angio-
tensin receptor–neprilysin inhibitors (eg, sacubitril-
valsartan), as these drugs reduce the clearance of BNP,19

LVD is normally quantified through measuring the left ven-
tricular ejection fraction (LVEF) from manual inspection of
echocardiograms (echos), which generate ultrasound videos
of the heart.20,21 The manual processing of echos can result
in inaccurate predictions with large uncertainties.22,23 The
LVEF prediction from echo videos has been automated using
DL to accelerate the process and improve the accuracy of the
predictions.24 Recently, DL has been used to predict the
LVEF from ECG waveforms with the echos as ground
truth.25 In this work, we focus our analysis on this later devel-
opment, since we are interested in exploring the ECG data
and a clinical randomized trial has recently been conducted
to assess the efficacy of this ECG-DL tool.26 Therefore, out-
comes (ground truth labels for DL models) are LVEF values
that are extracted from echo reports.20,21



Figure 1 Electrocardiography (ECG) waveform representations. A: Full-waveform representation that directly comes from an ECG device. B–D: Rhythmic
discretization (B) and sliding of the lead I full waveform (C) to create the lead I sub-waveform representation (D). E: The same discretization and sliding as lead I
is applied to other 7 leads to create sub-waveform representation for all 8 leads.
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For LVD population, we show that sub-waveform repre-
sentation increases the predictive performance. In addition,
we explain the underlying mechanism for the improvements
gained in DL models using the proposed representation. We
develop an interpretation framework for quantifying the
importance scores of ECG features and investigate the differ-
ences between the interpretation of 2 representations. Finally,
we investigate the impact of sub-waveform representation on
the disparities in different subgroups.
Materials and Methods
Data source
We extracted data from 92,446 patients from 5 hospitals in the
Mount Sinai Health System, serving a diverse and urban popu-
lation inNewYorkCity. Our studywas approved by theMount
Sinai InstitutionalReviewBoard. Thecharacteristic of this data-
set is shown inTable 1.Our rawECGswere stored inXMLfiles
that havepatient and test demographics, diagnostic information,
andwaveform details. Eachwaveform is recorded at 500Hz for
a duration of 10 seconds (total of 5000 data points) for 12 leads.
For DL modeling, the 12-lead ECG is reduced to 8 leads
because leads III, aVF, aVL, and aVR can be derived from
the linear combination of leads I and II.
Data preprocessing
Before feeding the waveforms into NN, we performed
several preprocessing steps, as follows. To remove baseline
drift that may stem from baseline respiration or lead migra-
tion, we used a median filter (width of 1 second or 500
Hz). We removed ECGs flagged with a “Poor Diagnostic
Code” from the confirmed reading. We standardized wave-
forms to have zero-mean and unit-variance.

Outcome
We converted the continuous LVEF values to binary values.
As suggested,25 we chose LVEF �35% to be the positive
LVD (low LVEF) and LVEF .35% to be the negative
LVD. In terms of linking ECGs to the echo report, we linked
each ECG to the nearest-date echo report. We only have 1
ECG per patient; therefore, all our ECG-echo pairs are
unique.

ECG sub-waveform representation
The ECG waveforms are a measure of hemodynamics of the
heart.27 Like other physical waves, which are created by
exciting a medium, ECG waveforms are created by exciting
the heart through hemodynamics. Therefore, ECG wave-
forms should intuitively inherit the fundamentals of wave
physics. From the physics point of view, waves in nature
generally have 2 components in terms of morphology:
coherent (ordered) and incoherent (disordered).28 The or-
dered component of waves normally provides opportunities
for controlling the behavior of waves in a desirable manner.
For example, this controllability property has resulted in
developing new technologies to efficiently control light and



Table 1 Dataset for identifying left ventricular dysfunction (LVD)
by predicting left ventricular ejection fraction (LVEF) from ECG
waveforms of 92,446 unique patients from 5 hospitals at the Mount
Sinai Health System

Dataset characteristics

Training Development Test

No. patients 73,956 9246 9244
Percent positive 7.6 7.6 7.6
Race (%)
White 41.2 41.6 40.9
Black 25.1 25.0 25.4
Asian 6.6 6.6 6.4
Other 27.1 26.8 27.3

Ethnicity (%)
Hispanic 18.4 17.9 17.4
Non-Hispanic 53.1 53.4 53.9
Other 28.5 28.6 28.7

Sex (%)
Male 54.9 54.7 53.9
Female 45.1 45.2 46.0

Age (mean 6 SD) 63.4 6 15.1 63.2 614.8 63.5 6 15.1
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heat waves in materials.29–31 From the clinical perspective,
ECG waveforms do indeed have the ordered and
disordered components, and they are called rhythmic and
arrhythmic ECGs.32 As is the characteristic of ordered waves,
the rhythmic ECG waveforms offer opportunities for engi-
neering the granularity of the data to enhance learning.
This physics-based inspiration forms the basis of this work
and has motivated us to create the ECG sub-waveform repre-
sentation.

The algorithmic development of proposed sub-waveform
representation is illustrated in Figure1B–1E. The main mech-
anism underlying the improvements gained by sub-
waveform representation is heartbeat alignment, which will
be explained in detail throughout this work. It is important
to emphasize that our data-centric approach is fundamentally
different from previous model-centric approaches because
we are only transforming ECG waveforms rather than chang-
ing the NN architecture. This transformation introduces a
new space for learning optimal features and can potentially
be used for any architecture and any task. In addition, it is
worth clarifying that our approach is different from slicing-
based augmentation techniques mentioned earlier. The major
difference is that our approach uses a rhythmic discretization
based on a reference rhythmic ECG. This important property
is the core of the proposed approach because it allows align-
ing heartbeats for rhythmic ECGs with minimal impact on
arrhythmic ECGs and improves the optimality and reliability
of ECG DL predictions. Augmentation is not our main goal,
although the sub-waveform representation can still benefit
from augmentation effects. Another important difference is
that most of the previous studies on augmentation used either
the full or near-full length of the original full waveform.
However, our goal is to find an optimal representation by
creating sub-waveforms with resolution on the order of heart-
beats. In fact, for these reasons, we call it a sub-waveform
representation.
For numerical implementation of our sub-waveform rep-
resentation, we use a reference rhythmic ECG that has 13
heartbeats and has a heart rate of 78 beats per minute
(bpm), which is around the average heart rate of adults.33

Our reference heartbeat is 0.74 seconds and we use this heart-
beat to discretize all ECG full waveforms, including rhythmic
and arrhythmic ECGs, and to ensure the same input length for
all ECGs, as required for DL models. Each heartbeat is the
smallest unit of a waveform. In Figure 1B, we visualize
this discretization for lead I. The rhythmic discretization
allows us to extract sub-waveforms at rhythmic points with
a duration that is a multiple of the heartbeat. To diversify
the sub-waveforms, we introduce a “sliding” parameter that
controls where the sub-waveform should originate and how
many sub-waveforms are created depending on the duration
of sub-waveforms. In Figure 1C, we illustrate how a sub-
waveform with 3-heartbeat duration and 2-heartbeat sliding
results in 5 sub-waveforms that are generated from the orig-
inal full waveform. Once the sub-waveforms are created, the
new representation for lead I is formed, as shown in
Figure 1D. By applying the same procedure used for lead I
for all leads, the final sub-waveform representation for 8
leads is derived (shown in Figure 1E). In our Supplemental
Material, we provide the pseudocode for our algorithm.
Deep learning setup and evaluation
We used a deep neural network that has a similar structure as
in reference 9. This deep neural network takes preprocessed
waveforms as inputs and output a binary prediction. Each
ECG is represented as a 1D waveform with 8 leads as chan-
nels. Our network has 26 layers and takes advantage of resid-
ual connections to make the optimization more effective by
avoiding exploding or vanishing gradients.34 There are 3
convolutional layers followed by 11 residual blocks (2 con-
volutional layers per block) and 1 dense layer. After each
convolutional layer, we apply a batch normalization to
improve learning and a rectified linear unit to activate the
nonlinearities in the network.35 We use dropout regularizer
to minimize overfitting in training.36 The final layer is a fully
connected layer followed by a sigmoid function. For training,
we randomly initialized weights.37 We used the Adam opti-
mizer for backpropagation using initial learning rate of
0.005 and default parameters b1 5 0.9 and b2 5 0.999.38

A scheduler is used to decay the learning rate by a factor of
0.1 if a metric is not improved for a few epochs.

We used a development set for evaluating our model dur-
ing training and we used the holdout test set for reporting the
final results. We trained DLmodels to classify LVEF severity
using ECGs of 73,956 patients and used ECGs of 9244 pa-
tients for development. We evaluated the performance using
2 metrics: area under receiving operating characteristic
(AUROC) and area under precision-recall curve (AUPRC).
We report the performance for 9244 patients in a holdout
test set. For quantitative evaluation of our models, we calcu-
lated 2 curves: receiver operating characteristic (ROC) and
precision recall curve (PRC). We then reported 2 metrics



Figure 2 Systematic experiments for evaluating performance of sub-waveform with respect to full-waveform representation (baseline) for left ventricular
dysfunction (LVD) case study for 9244 patients in holdout test set. A: Minimum sliding is used and is equal to 0.74 seconds. B: Maximum sliding is used
and is equal to sub-waveform duration. For both experiments in panels A and B, we examine 2 sets of a number of sub-waveforms: 1 sub-waveform andmaximum
number of sub-waveforms. The optimal sub-waveform is highlighted by dashed circle and has a duration of 1.48 seconds with 10 sub-waveforms. Our sub-
waveform representation provides more accurate predictions with smaller uncertainties.
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calculated from these 2 curves: Area Under ROC (AUROC)
and Area Under PRC (AUROC), as shown in Figure 2. For
each final prediction, we averaged the predictions of 5 inde-
pendent DL runs with randomly initiated weights and for
bootstrapping, we extracted 1 randomly selected
sub-waveform for each run. Reported uncertainty for each
prediction is the standard deviation of the 5 bootstrapped
predictions.
Experimental design and framework
As the baseline, we predicted the LVEF for our 9244 patients
in a holdout test set using full-waveform representation using
a 1D CNN model. For sub-waveform representation, we per-
formed a set of systematic experiments to understand how it
performs compared to the full-waveform case.

In Figure 2A and 2B, we show 2 sets of experiments that
are controlled by the sliding parameter (a multiple of refer-
ence heartbeat). We set the sliding to be (1) minimum, which
equals to 1 reference heartbeat, and (2) maximum, which
equals to sub-waveform length—a sliding greater than
sub-waveform length results in losing information from the
original full waveform. For each sliding, we varied the
sub-waveform duration from 0.74 to 5.92 seconds. For
each sliding and duration, we predicted the performance for
1 randomly selected sub-waveform and the maximum
generated number of sub-waveforms.
Explanation framework
To explain our DL results, we developed an explanation
framework to directly show how aligning heartbeats im-
proves the performance. In ECG data, heart rate is predicted
by measuring the time between heartbeats. Since each ECG
captures several heartbeats (13 in the reference full-
waveform representation), we averaged the predicted heart
rates across all the heartbeats. Using heart rate variability
(quantified by coefficient of variation, CV, for each predicted
heart rate), we divided our ECG data into 2 groups: rhythmic
(CV�0.01) and arrhythmic (CV.0.01). The statistical plots
(heart rate for each patient and count vs heart rate) for 2 two
groups are shown in Figure 3A. We note that our reference
heart rate of 78 bpm falls within the 95th percentile of rhyth-
mic and arrhythmic ECGs.

To understand the impact of heartbeat alignment on per-
formance, we focused on the rhythmic group because



Figure 3 Explanation for enhanced learning by sub-waveform representation for 9244 patients in holdout test set. A: Full-waveform heart rate for each patient
(top) and heart rate histogram (bottom) for rhythmic and arrhythmic groups. Heart rate coefficient of variation (CV) is set to 0.01 to define the 2 groups. The error
bars come from averaging across different heartbeats of full-waveform representation. B: Eighty-eight lead I waveforms are taken from rhythmic group corre-
sponding to heart rate with maximum count and waveforms are left aligned for each representation. C: The aligned waveforms and their saliency maps are aver-
aged. The absolute values of a saliency map are min-max normalized for each waveform. As predicted by higher averaged maximum importance and lower CV,
features are more aligned with less uncertainty in sub-waveform representation.

6 Cardiovascular Digital Health Journal, Vol -, No -, - 2022
arrhythmic ECGs cannot be aligned owing to the random dis-
tribution of heartbeats across the full waveform. Thus we sta-
tistically investigated the learning for a set of rhythmic ECGs
with maximum count that corresponds to 88 ECGs with a
heart rate of 48-bpm. We focused our analysis on lead I, as
that is also used in wearable devices,39 but a similar analysis
is extensible to other leads. We left-padded the lead I wave-
forms by matching the first QRS complexes and then right-
padded the waveforms to match the length of the
left-padded waveforms. The aligned waveforms are shown
in Figure 3B for both full-waveform and sub-waveform rep-
resentations. For each of the 88 waveforms, we calculated a
saliency map using the DeepLIFT approach, which shows
the gradient of predicted outcome with respect to the changes
in input ECG.40 For a binary outcome, the positive and
negative values of a saliency map show the contribution of
features to positive and negative outcomes, respectively.
Because we are interested in exploring the impact of align-
ment on all features, we kept both positive and negative
portions of the saliency map and used the min-max normali-
zation of the absolute values of the saliency map. We then
averaged aligned waveforms and their saliency maps for



Figure 4 Interpretation of electrocardiographic (ECG) features for full-waveform and sub-waveform representations. A: ECG features: P wave, PR segment,
QRS complex, ST segment, and T wave. The bounding boxes show the extents of each feature.B: Predicted probability for each patient and corresponding confu-
sionmatrix.C: Positive saliencymaps for top 5 patients with positive outcome that are classified as false-negative by full-waveform representation and turned into
true positive by sub-waveform. Top-5 shows the rankingwith respect to the difference in probabilities of sub-waveform and full-waveform representations.D: For
each patient, P, PR, QRS, ST, and T importance scores are calculated and shown as a bar chart for both representations.
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8 Cardiovascular Digital Health Journal, Vol -, No -, - 2022
both representations, as shown in Figure 3C. We only
included the nonzero (ie, nonpadded) overlapping parts of
all the waveforms for averaging across samples. In the Sup-
plemental Material, we provide the algorithmic steps for our
explanation framework.
Interpretation framework
The black-box nature of DL precludes understanding what
features in ECG waveforms are meaningful and important
for a particular task.41–43 Despite the high performance that
DL models for ECGs can achieve in a variety of tasks,
interpreting the most relevant features is still a challenge,
thus limiting their use in clinical workflows.5,6,16 Therefore,
identifying clinically relevant features is crucial for tailoring
further workup and treatment strategies to optimize efficacy
in improving symptoms and clinical outcomes.44 As shown
in Figure 4A, any waveform is characterized by 5 ECG fea-
tures: P wave, PR segment, QRS complex, ST segment, and
T wave.1 These features provide significant clinical informa-
tion for assessing ECGs.

We developed an algorithm to interpret the clinical
relevance of important ECG features for DL predictions.
For each patient, we calculated the positive saliency maps
for both representations (Figure 4C), as detailed in Supple-
mental Material. We highlight that we focused only on the
positive portion of a saliency map that contributes to the pos-
itive outcome, since we are interested in patients with posi-
tive outcome, unlike an explanation saliency map, for
which we considered both positive and negative portions.

Owing to the higher predictive performance of sub-
waveform representation, we are interested in interpreting
the ECGs of patients that are classified as false-negative
(FN) in full waveform and turn into true positive (TP) using
sub-waveform, because this allows us to better understand
the clinical relevance of our predictions and how sub-
waveform representation drives the decisions from FN to
TP. Therefore, we ranked the ECGs based on the difference
in DL predicted probabilities of sub-waveform TP and full-
waveform FN.

We focused on the top 5 ranked ECGs and our cardiac
electrophysiology team annotated the 5 ECG features using
the full waveform and across all heartbeats and leads (see
Supplemental Material). For sub-waveform, we used the
same exact annotations as full waveform to provide fair com-
parisons. For each ECG feature, we calculated a normalized
score using the saliency map and annotations, which is also
described in the Supplemental Material. Each score shows
the contribution of the ECG feature to the predicted probabil-
ity—the higher the score, the higher the contribution to pre-
dicted probability.
Subgroup analysis
Another concern for DL in healthcare is the potential
disparity that the predictive capabilities of these models are
not fair to all subpopulations, which negatively impact
certain subgroups in society.45 To mitigate these biases,
fairness researchers have proposed algorithmic techniques
to minimize disparities in predictions (1) across subgroups
(called “group fairness”) and (2) within a subgroup (called
“individual fairness”).46 In our study, a potential source of
bias for predictive performance may arise from higher num-
ber of rhythmic vs arrhythmic ECGs in each subgroup,47

which can be mitigated by optimizing the waveform repre-
sentation. To investigate the impact of waveform representa-
tion on subgroup disparities, we quantified the prevalence of
arrhythmia and performance metrics for 14 racial, ethnic, and
sex subgroups in our holdout test.
Results
Predictive performance for identification of LVD
The performance metrics for full waveform (baseline) are
shown in Figure 2 and highlighted by dashed horizontal lines.
Our full-waveform predictions are close to the results in
reference 25 despite using different datasets and model archi-
tectures. We found that representations with maximum num-
ber of sub-waveforms outperforms 1 sub-waveform for both
sliding experiments because of the alignment effect, as ex-
plained below. In addition, maximum sliding (Figure 2B)
has a lower performance than minimum sliding (Figure 2A)
because a smaller number of sub-waveforms are generated,
which weakens the alignment. We found the optimal perfor-
mance to be when the duration is 1.48 seconds (2 reference
heartbeats with 10 sub-waveforms), as highlighted by dashed
circles. In addition to changes in performance, another
important observation is changes in uncertainties. We
observed that sub-waveform predictions have smaller uncer-
tainties compared to full-waveform predictions. To better un-
derstand the variabilities in a prediction, we used the
coefficient of variation (CV)—the ratio of standard deviation
(uncertainty) to mean. In particular, the full-waveform CV is
0.010 for AUROC and 0.094 for AUPRC and these values
for the optimal sub-waveform are reduced to 0.001 and
0.017.
Explanation for underlying mechanism of DL
improvements
We observed that the averaged maximum importance is
increased from 0.33 to 0.59 and the averaged CV is decreased
from 0.15 to 0.07 by changing the full-waveform to optimal
sub-waveform representation, as illustrated in Figure 3C.
This observation is remarkable, as it directly shows the
enhancement owing to alignment of rhythmic sub-
waveforms. In the full-waveform representation of rhythmic
ECGs, the repeated heartbeats that are similar in shape intro-
duce redundancies in the learned weights and sub-waveform
representation improves this deterioration in learning by
aligning heartbeats. In particular, as shown in the Supple-
mental Material, we found that full waveform causes signif-
icant overfitting in sallower NNwhile sub-waveform is stable
in terms of overfitting with respect to changes in depth of NN.
Even though the main improvements arise from rhythmic
ECGs, we emphasize that sub-waveform representation still
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captures the features of arrhythmic ECGs, as supported by
our performance results. This is because the optimal case’s
duration corresponds to the maximum heart rate of 156
bpm, which falls within the 99th percentile of arrhythmic
ECGs.
Figure 5 Impact of electrocardiographic waveform representation on 14
subgroups in holdout test set. Top plot shows prevalence of arrhythmia in
each subgroup. Area under receiver operating characteristic (AUROC) and
area under precision-recall curve (AUPRC) for full-waveform (green) and
sub-waveform (orange) representations are shown in middle and bottom
plots. The number of patients in each subgroup is shown in the parenthesis.
Less prevalence of arrhythmia in a subgroupmay induce redundancies owing
to higher number of rhythmic full waveforms that cause higher deep learning
prediction uncertainties. Sub-waveform representation provides individual
fairness by reducing these disparities within a subgroup.
Interpretation of ECG features
For interpretation analysis, we focused on the full-waveform
model with AUROC 5 0.918, AUPRC 5 0.473 and the
optimal sub-waveform model with AUROC 5 0.926 and
AUPRC 5 0.578. The predicted probabilities and confusion
matrices for both representations are shown in Figure 4B. In
fact, there were 35 patients with full-waveform FN converted
to sub-waveform TP, compared to 22 patients that were full-
waveform TP and sub-waveform FN. Following our ranking
strategy, we focused on the top 5 patients, with the difference
in probabilities ranging from 0.55 to 0.20.

Using sub-waveform representation, we observed a 1.6%
increase in FP and an 11.7% decrease in FN (Figure 4B). It is
important to highlight the decrease in FN, as the class imbal-
ance for the 2 representations is the same and the percent pos-
itive is 0.076. For our holdout test set, there are only 703
positive patients and 8543 negative patients. Especially for
emerging AI technologies in healthcare, it is extremely
important (1) not to miss any positive patient (ie, low FN)
and (2) not to have many false alarms that can impose addi-
tional costs and alarm fatigue (ie, low FP).48 We observed
that out of the top 5 ranked patients, the ECGs for patients
I and III–V are clearly rhythmic. But the rhythmic pattern
for patient II is less clear. To better understand the character-
istics of these ECGs, our cardiac electrophysiology experts
confirmed that patients I and III–V have overall sinus
rhythms49 and patient II has a vector of pacing that is consis-
tent with cardiac resynchronization therapy (CRT), which
suggests that the patient likely has underlying LVD, as
CRT is normally used in patients with heart failure and left
bundle branch block to restore left and right ventricular syn-
chrony or in patients with LVD who have a high burden of
pacing.50 This clinical validation is important to reconfirm
that sub-waveform mainly impacts the learning of rhythmic
ECGs, as per the underlying hypotheses.

In Figure 4D, we observed that sub-waveform represen-
tation transforms the important ECG features in all patients.
To better understand the meaning of the scores and connect
our DL predictions of important features with cardiologists’
predictions, we asked our cardiac electrophysiology team to
determine the specific and nonspecific LVD-related fea-
tures. They identified only patient II as the person with spe-
cific features for LVD, mainly owing to the paced vector of
QRS complexes being consistent with CRT pacing. We then
investigated our saliency maps (either of full waveform or
sub-waveform) to search for this feature. We observed
that saliency maps visually highlight the stimulation artifact
as the most important feature, but this is clinically not mean-
ingful. We noted that the ECG of patient II does not have a P
wave and PR segment. Also, determining the extents of
QRS complex, ST segment, and T wave is nontrivial for a
nonexpert. We observed that the importance scores can pre-
dict the paced QRS complex as the most important. In full-
waveform representation, the QRS complex has a score of
0.6 and it changes to 0.8 in the sub-waveform case by sup-
pressing the ST-segment score of 0.2. This clinically
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meaningful enhancement is the leading cause for pushing
the predicted probability of LVD from 0.07 to 0.47. In terms
of nonspecific features, they noted the widened and notched
QRS complex in patient I, as captured by our scoring, to be
abnormal depolarization and nonspecific for LVD. They
confirmed ST depression in patient III as a nonspecific
feature for LVD in association with myocardial ischemia
and our scoring system also predicted that important feature
switches from P wave, with a score of 0.32, to ST segment,
with a score of 0.50.
Impact of ECG waveform representation on
subgroups
In Figure 5, the prevalence of arrhythmia for 14 racial, ethnic,
and sex subgroups in our holdout test set is shown. We have
predicted the AUROC and AUPRC for these subgroups and
the results are shown in Figure 5. For both representations,
we observed disparities across subgroups that can be miti-
gated using group fairness techniques; this is not the focus
of this work. Relevant to the current work, we focus on indi-
vidual fairness, since we observed that for each subgroup, DL
uncertainty using the sub-waveform representation is much
smaller than using the full-waveform representation. This im-
plies that sub-waveform representation can help to mitigate
the disparities in DL predictions within a subgroup with a
lower prevalence of arrhythmia (ie, higher number of rhyth-
mic ECGs).
Discussion
This work proposes a new sub-waveform representation of
ECGs to enhance the DL predictions. This extension to tradi-
tional full-waveform representation shows that rearranging
the waveforms is an added control that provides opportunities
for enhancing DL modeling capabilities. We clarify that the
sub-waveform representation is solely a form of input-data
transformation and to investigate its impact on learning, we
intentionally kept all parameters of NN fixed.51 Therefore,
any gain is mainly owing to the sub-waveform representa-
tion.

We systematically investigated the performance of the pro-
posed representation for identifying LVD and observed im-
provements in performance metrics and, importantly,
reductions in uncertainties. As uncertainty is a source of
bias52 and we observed variations in prevalence of arrhythmia
across subgroups, we investigated the impact of data represen-
tation on subgroups. Because predictions for a subgroup with
low prevalence of arrhythmia (ie, higher number of rhythmic
ECGs) can be biased owing to full-waveform redundancies,
they can thus benefit from sub-waveform representation
owing to significantly reduced uncertainties for rhythmic
ECGs.We emphasize that the change in uncertainty is a direct
consequence of ECG waveform representations and their
impact on DL optimization stability. Our subgroup analysis
shows the importance of the proposed representation for
individual fairness, which primarily aims at providing homog-
enous predictions for individuals within the same subgroup.53

Indeed, we showed that waveform representation directly
controls the fluctuations in DL predictions and thus can
be used as a bias mitigation tool. To the best of our knowl-
edge, individual fairness has not been investigated in this
context, which can help to achieve the ultimate goal of oper-
ationalizing fairness for new ECG-AI systems in the real
world.54

We explained how assigning different weights to similarly
shaped heartbeats in the full-waveform of each lead impedes
the NN from finding the optimal features across similar ECG
examples. This creates redundancies that cause overfitting
and deteriorate the learning. However, by using sub-
waveform representation, assigning different weights to
similar heartbeats is less likely because of the reduced
number of heartbeats and increased number of aligned
sub-waveforms, which can also be treated as new training
examples per patient. Our explanation analysis provided
the evidence for our hypothesis on improved learning by
aligning heartbeats in the sub-waveform representation,
which provides better localization of important features
with less uncertainty.

To provide clinical interpretation of our predictions, we
developed a novel scoring system for quantifying the DL
importance of ECG features. Although visualizing saliency
maps that highlight only the important ECG data points
have been used before extensively, to the best of our knowl-
edge this is the first attempt in developing such a scoring sys-
tem for ECG-DL modeling. As we showed throughout this
work, we need to investigate the importance of a collection
of data points that represent an ECG feature rather than
only showing the importance of data points. Our interpreta-
tion framework showed that sub-waveform representation
generally performs better at localizing and highlighting
important features that result in a higher prediction probabil-
ity. To verify the predicted scores, we applied our framework
to a paced ECG with specific features of LVD, for which,
determining the importance of ECG features by visual exam-
ination of saliency maps was difficult. The importance scores
were qualitatively in high agreement with the predictions of
our cardiac electrophysiology team, connecting which would
have been very difficult without quantifying importance
scores. Other than this clinical validation, we also showed
how our interpretation framework assists clinicians in cases
for which the ECG features are nonspecific. For example,
our scoring system was useful to assist the clinicians in deter-
mining the relative importance of otherwise nonspecific find-
ings such as widened QRS complex or ST-segment
depression.

In summary, we introduced a novel sub-waveform repre-
sentation to enhance the DL modeling of ECG waveforms.
We showed that the proposed representation can perform bet-
ter than the traditional full-waveform representation for the
identification of LVD. We explained the underlying mecha-
nism for DL improvements gained by aligning sub-
waveforms. We provided an interpretation framework and
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validated this framework against cardiologists’ predictions.
Finally, we showed the advantages of developed representa-
tion in mitigating uncertainties within subgroups.
Limitations
We highlight several limitations of our study. Sub-waveform
representation can be ineffective for ECGs that have strong
temporal dependencies. Also, we do not have an evaluation
of the impact of representation on other outcomes, data sour-
ces, and architectures. In addition, we have interpreted our re-
sults only for 5 patients.

For future work, it is important to explore the potential
benefits of the proposed representation on a variety of out-
comes. Another path forward is exploring the multiscale po-
tential of full-waveform and sub-waveform representations
to gain further improvements by combining representations
at different scales (ie, waveform durations). For example,
one could train a model using full-waveform representations
and fuse the predictions with the model(s) trained using 1 or
more sub-waveform representations. This can potentially
provide even further improvements. In addition, expanding
and validating the interpretation framework at a larger scale
for both representations is of great significance for clinical
workflow because a rigorous scoring system could be used
as a tool for (1) confirming clinical understanding of DL pre-
dictions when ECG features are specific and (2) informing
clinicians, especially when features are nonspecific and
cannot be easily determined by clinicians. In addition,
more work is needed to explore the disparities arising from
waveform representation and its relation to prevalence of
arrhythmia for providing fairer predictions.
Data availability
The ECG data and labels from echo reports are not publicly
available due to HIPAA privacy rules.
Code availability
For reproducibility, all the codes used to generate the results
in this work are publicly available at https://github.com/
Glicksberg-Lab/ECG_Representation. These codes include
the ECG-DL trainer, evaluator, explainer, interpreter, and
visualizer. Further details are provided in the GitHub link.
Acknowledgments
We acknowledge Jay Havaldar, Mark Shervy, and Manbir
Singh for IT support. We thank Eddye Golden, Shelly
Kaur, and Yovanna Roa for administrative and project man-
agement support.
Funding Support
This study was supported by the National Center for
Advancing Translational Sciences, National Institutes of
Health (NIH) U54 TR001433-05. F.W. would also like to
acknowledge the support from National Science Foundation
(NSF 1750326 and NIH RF1AG072449).
Disclosures
B.S.G. has received consulting fees from Anthem AI and
consulting and advisory fees from Prometheus Biosciences.
G.N.N. has received consulting fees from AstraZeneca,
Reata, BioVie, Siemens Healthineers and GLG Consulting;
grant funding from Goldfinch Bio and Renalytix; financial
compensation as a scientific board member and adviser to Re-
nalytix; owns equity in Renalytix and Pensieve Health as a
cofounder and is on the advisory board of Neurona Health.
The other authors declare no competing interests.
Authorship
All authors attest they meet the current ICMJE criteria for
authorship.
Patient Consent
All clinical data were de-identified and written informed con-
sent was waived.
Ethics Statement
This study has been approved by the institutional review
board at the Icahn School of Medicine at Mount Sinai.
Appendix
Supplementary data
Supplementary data associated with this article can be found
in the online version at https://doi.org/10.1016/j.cvdhj.2022.
07.074
References
1. Goldberger AL, Goldberger ZD, Shvilkin A. Clinical electrocardiography: a

simplified approach e-book. Elsevier Health Sciences; 2017.
2. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521:436–444.
3. Yu K-H, Beam AL, Kohane IS. Artificial intelligence in healthcare. Nat Biomed

Eng 2018;2:719–731.
4. Wagner P, Strodthoff N, Bousseljot RD, et al. PTB-XL, a large publicly available

electrocardiography dataset. Scientific Data 2020;7:1–15.
5. Somani S, Russak AJ, Richter F, et al. Deep learning and the electrocardiogram:

review of the current state-of-the-art. Europace 2021;23:1179–1191.
6. Siontis KC, Noseworthy PA, Attia ZI, Friedman PA. Artificial intelligence-

enhanced electrocardiography in cardiovascular disease management. Nat Rev
Cardiol 2021;1–14.

7. Minchole A, Camps J, Lyon A, Rodríguez B. Machine learning in the electrocar-
diogram. J Electrocardiol 2019;57:S61–S64.

8. Miotto R, Wang F, Wang S, Jiang X, Dudley JT. Deep learning for healthcare:
review, opportunities and challenges. Brief Bioinform 2018;19:1236–1246.

9. Hannun AY, Rajpurkar P, Haghpanahi M, et al. Cardiologist-level arrhythmia
detection and classification in ambulatory electrocardiograms using a deep neural
network. Nat Med 2019;25:65–69.

10. Wo1k K, Wo1k A. Early and remote detection of possible heartbeat problems with
convolutional neural networks and multipart interactive training. IEEE Access
2019;7:145921–145927.

11. Chauhan S, Vig L, Ahmad S. ECG anomaly class identification using LSTM and
error profile modeling. Comput Biol Med 2019;109:14–21.

12. He R, Liu Y, Wang K, et al. Automatic cardiac arrhythmia classification using
combination of deep residual network and bidirectional LSTM. IEEE Access
2019;7:102119–102135.

13. Le Guennec A, Malinowski S, Tavenard R. Data augmentation for time series
classification using convolutional neural networks, ECML/PKDD Workshop on
Advanced Analytics and Learning on Temporal Data. Italy: Riva Del Garda;
2016, https://core.ac.uk/download/pdf/48148906.pdf. Accessed September 13,
2022.

https://github.com/Glicksberg-Lab/ECG_Representation
https://github.com/Glicksberg-Lab/ECG_Representation
https://doi.org/10.1016/j.cvdhj.2022.07.074
https://doi.org/10.1016/j.cvdhj.2022.07.074
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref1
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref1
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref2
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref3
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref3
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref4
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref4
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref5
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref5
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref6
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref6
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref6
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref7
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref7
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref8
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref8
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref9
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref9
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref9
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref10
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref10
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref10
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref10
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref10
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref11
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref11
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref12
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref12
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref12
https://core.ac.uk/download/pdf/48148906.pdf


12 Cardiovascular Digital Health Journal, Vol -, No -, - 2022
14. Cui Z, Chen W, Chen Y. Multi-scale convolutional neural networks for time se-
ries classification. arXiv preprint arXiv:1603.06995, 2016.

15. Cao P, Li X, Mao K, et al. A novel data augmentation method to enhance deep
neural networks for detection of atrial fibrillation. Biomed Signal Process Control
2020;56:101675.

16. Hong S, Zhou Y, Shang J, Xiao C, Sun J. Opportunities and challenges of deep
learning methods for electrocardiogram data: a systematic review. Comput Biol
Med 2020;103801.

17. Huang J, Chen B, Yao B, HeW. ECG arrhythmia classification using STFT-based
spectrogram and convolutional neural network. IEEE Access 2019;
7:92871–92880.

18. Attia ZI, Kapa S, Lopez-Jimenez F, et al. Screening for cardiac contractile
dysfunction using an artificial intelligence-enabled electrocardiogram. Nat Med
2019;25:70–74.

19. Leong DP, McMurray JJ, Joseph PG, Yusuf S. From ACE inhibitors/ARBs to
ARNIs in coronary artery disease and heart failure (Part 2/5). J Am Coll Cardiol
2019;74:683–698.

20. Yamani H, Cai Q, Ahmad M. Three-dimensional echocardiography in evaluation
of left ventricular indices. Echocardiography 2012;29:66–75.

21. Qui~nones MA, Waggoner AD, Reduto LA, et al. A new, simplified and accurate
method for determining ejection fraction with two-dimensional echocardiogra-
phy. Circulation 1981;64:744–753.

22. Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber
quantification by echocardiography in adults: an update from the American Soci-
ety of Echocardiography and the European Association of Cardiovascular Imag-
ing. Eur Heart J Cardiovasc Imaging 2015;16:233–271.

23. Farsalinos KE, Daraban AM, €Unl€u S, Thomas JD, Badano LP, Voigt JU. Head-to-
head comparison of global longitudinal strain measurements among nine different
vendors: the EACVI/ASE Inter-Vendor Comparison Study. J Am Soc Echocar-
diogr 2015;28:1171–1181.e2.

24. Ouyang D, He B, Ghorbani A, et al. Video-based AI for beat-to-beat assessment
of cardiac function. Nature 2020;580:252–256.

25. Attia ZI, Kapa S, Lopez-Jimenez F, et al. Screening for cardiac contractile
dysfunction using an artificial intelligence–enabled electrocardiogram. Nat Med
2019;25:70–74.

26. Yao X, Rushlow DR, Inselman JW, et al. Artificial intelligence–enabled electro-
cardiograms for identification of patients with low ejection fraction: a pragmatic,
randomized clinical trial. Nat Med 2021;27:815–819.

27. Mittal R, Seo JH, Vedula V, et al. Computational modeling of cardiac hemody-
namics: current status and future outlook. J Comput Phys 2016;305:1065–1082.

28. Streltsov A, Adesso G, Plenio MB. Colloquium: quantum coherence as a
resource. Rev Mod Phys 2017;89:041003.

29. Popmintchev T, Chen MC, Popmintchev D, et al. Bright coherent ultrahigh
harmonics in the keV x-ray regime from mid-infrared femtosecond lasers.
Science 2012;336:1287–1291.

30. Hussein MI, Tsai CN, Honarvar H. Thermal conductivity reduction in a nanopho-
nonic metamaterial versus a nanophononic crystal: a review and comparative
analysis. Adv Funct Mater 2020;30:1906718.

31. Honarvar H, Hussein MI. Two orders of magnitude reduction in silicon mem-
brane thermal conductivity by resonance hybridizations. Phys Rev B 2018;
97:195413.

32. Attia ZI, Noseworthy PA, Lopez-Jimenez F, et al. An artificial intelligence-
enabled ECG algorithm for the identification of patients with atrial fibrillation dur-
ing sinus rhythm: a retrospective analysis of outcome prediction. Lancet 2019;
394:861–867.
33. Coumel P, Maison-Blanche P, Catuli D. Heart rate and heart rate variability in
normal young adults. J Cardiovasc Electrophysiol 1994;5:899–911.

34. He K, Zhang X, Ren S, Sun J. Identity mappings in deep residual networks. In:
European Conference on Computer Vision. Springer; 2016.

35. Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by
reducing internal covariate shift. In: International Conference on Machine
Learning. PMLR; 2015.

36. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a
simple way to prevent neural networks from overfitting. J Mach Learn Res 2014;
15:1929–1958.

37. He K, Zhang X, Ren S, Sun J. Delving deep into rectifiers: surpassing human-
level performance on imagenet classification. In: Proceedings of the IEEE Inter-
national Conference on Computer Vision; 2015.

38. Kingma DP, Ba J. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

39. Spaccarotella CAM, Polimeni A, Migliarino S, et al. Multichannel electrocardio-
grams obtained by a Smartwatch for the diagnosis of ST-segment changes. JAMA
Cardiol 2020;5:1176–1180.

40. Shrikumar A, Greenside P, Kundaje A. Learning important features through prop-
agating activation differences. In: International Conference onMachine Learning.
PMLR; 2017.

41. Wang F, Casalino LP, Khullar D. Deep learning in medicine—promise, progress,
and challenges. JAMA Intern Med 2019;179:293–294.

42. Wang F, Kaushal R, Khullar D. Should health care demand interpretable artifi-
cial intelligence or accept “black box” medicine? Ann Intern Med 2020;
172:59–60.

43. Rudin C. Stop explaining black box machine learning models for high stakes de-
cisions and use interpretable models instead. Nat Mach Intell 2019;1:206–215.

44. Lampert J, Miller M, Halperin JL, et al. Prognostic value of electrocardiographic
QRS diminution in patients with COVID-19. J Am Coll Cardiol 2021;
77:2258–2259.

45. Chen IY, Pierson E, Rose S, Joshi S, Ferryman K, Ghassemi M. Ethical machine
learning in healthcare. Annu Rev Biomed Data Sci 2020;4:123–144.

46. Bellamy RK, Dey K, Hind M, et al. AI Fairness 360: an extensible toolkit for de-
tecting and mitigating algorithmic bias. IBM J Res Devel 2019;63. 4:1–4:15.

47. Dewland TA, Olgin JE, Vittinghoff E, Marcus GM. Incident atrial fibrillation
among Asians, Hispanics, blacks, and whites. Circulation 2013;128:2470–2477.

48. Babic B, Gerke S, Evgeniou T, Cohen IG. Direct-to-consumer medical
machine learning and artificial intelligence applications. Nat Mach Intell 2021;
3:283–287.

49. Corley SD, Epstein AE, DiMarco JP, et al. Relationships between sinus rhythm,
treatment, and survival in the Atrial Fibrillation Follow-Up Investigation of
Rhythm Management (AFFIRM) Study. Circulation 2004;109:1509–1513.

50. AbrahamWT, Hayes DL. Cardiac resynchronization therapy for heart failure. Cir-
culation 2003;108:2596–2603.

51. Zhang C, Bengio S, Hardt M, Recht B, Vinyals O. Understanding deep learning
(still) requires rethinking generalization. Communications of the ACM, 64(3),
2021, pp.107-115.

52. Lachish S, Murray KA. The certainty of uncertainty: potential sources of bias and
imprecision in disease ecology studies. Front Vet Sci 2018;5:90.

53. Zemel R,WuY, Swersky K, Pitassi T, Dwork C. Learning fair representations. In:
International Conference on Machine Learning. PMLR; 2013.

54. Gichoya JW, McCoy LG, Celi LA, Ghassemi M. Equity in essence: a call for op-
erationalising fairness in machine learning for healthcare. BMJ Health Care
Inform 2021;28:e100289.

http://refhub.elsevier.com/S2666-6936(22)00133-5/sref15
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref15
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref15
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref16
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref16
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref16
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref17
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref17
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref17
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref18
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref18
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref18
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref19
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref19
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref19
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref20
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref20
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref21
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref21
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref21
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref21
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref22
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref22
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref22
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref22
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref23
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref23
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref23
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref23
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref23
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref23
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref24
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref24
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref25
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref25
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref25
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref26
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref26
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref26
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref27
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref27
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref28
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref28
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref29
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref29
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref29
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref30
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref30
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref30
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref31
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref31
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref31
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref32
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref32
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref32
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref32
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref33
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref33
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref34
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref34
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref35
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref35
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref35
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref36
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref36
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref36
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref37
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref37
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref37
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref38
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref38
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref39
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref39
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref39
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref40
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref40
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref40
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref41
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref41
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref42
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref42
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref42
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref43
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref43
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref44
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref44
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref44
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref45
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref45
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref46
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref46
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref47
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref47
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref48
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref48
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref48
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref49
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref49
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref49
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref50
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref50
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref52
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref52
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref53
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref53
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref54
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref54
http://refhub.elsevier.com/S2666-6936(22)00133-5/sref54

	Enhancing convolutional neural network predictions of electrocardiograms with left ventricular dysfunction using a novel su ...
	Introduction
	Materials and Methods
	Data source
	Data preprocessing
	Outcome
	ECG sub-waveform representation
	Deep learning setup and evaluation
	Experimental design and framework
	Explanation framework
	Interpretation framework
	Subgroup analysis

	Results
	Predictive performance for identification of LVD
	Explanation for underlying mechanism of DL improvements
	Interpretation of ECG features
	Impact of ECG waveform representation on subgroups

	Discussion
	Limitations
	Data availability
	Code availability

	Acknowledgments
	Funding Support
	Disclosures
	Authorship
	Patient Consent
	Ethics Statement
	Appendix. Supplementary data
	References


