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SkipGNN: predicting molecular 
interactions with skip‑graph 
networks
Kexin Huang1, Cao Xiao2, Lucas M. Glass2, Marinka Zitnik3 & Jimeng Sun4*

Molecular interaction networks are powerful resources for molecular discovery. They are increasingly 
used with machine learning methods to predict biologically meaningful interactions. While deep 
learning on graphs has dramatically advanced the prediction prowess, current graph neural network 
(GNN) methods are mainly optimized for prediction on the basis of direct similarity between 
interacting nodes. In biological networks, however, similarity between nodes that do not directly 
interact has proved incredibly useful in the last decade across a variety of interaction networks. Here, 
we present SkipGNN, a graph neural network approach for the prediction of molecular interactions. 
SkipGNN predicts molecular interactions by not only aggregating information from direct interactions 
but also from second‑order interactions, which we call skip similarity. In contrast to existing GNNs, 
SkipGNN receives neural messages from two‑hop neighbors as well as immediate neighbors in 
the interaction network and non‑linearly transforms the messages to obtain useful information 
for prediction. To inject skip similarity into a GNN, we construct a modified version of the original 
network, called the skip graph. We then develop an iterative fusion scheme that optimizes a GNN 
using both the skip graph and the original graph. Experiments on four interaction networks, including 
drug–drug, drug–target, protein–protein, and gene–disease interactions, show that SkipGNN achieves 
superior and robust performance. Furthermore, we show that unlike popular GNNs, SkipGNN learns 
biologically meaningful embeddings and performs especially well on noisy, incomplete interaction 
networks.

Molecular interaction networks are ubiquitous in biological systems. Over the last decade, interaction networks 
have advanced our systems-level understanding of  biology1. Further, they have enabled discovery of biologi-
cally significant, yet previously unmapped  relationships2, including drug–target interactions (DTIs)3, drug–drug 
interactions (DDIs)4, protein–protein interactions (PPIs)5, and gene–disease interactions (GDIs)6. To assist in 
these discoveries, a plethora of computational methods, primarily optimized for link prediction from networks 
(e.g.,7), were developed to predict new interactions in molecular networks. Recently, deep learning on graphs has 
emerged as a dominant class of methods that have revolutionized state-of-the-art in learning and reasoning over 
network datasets. These methods, often referred to as graph neural networks (GNNs)8 and graph convolutional 
networks (GCNs)9,10, operate by performing a series of non-linear transformations on the input molecular net-
work, where each transformation aggregates information only from immediate neighbors, i.e., direct interactors 
in the network. While these methods yield powerful predictors, they explicitly take into account only direct 
similarity between nodes in the network. Therefore, GNNs are limited at fully capturing important information 
for prediction that resides further away from a particular interaction in the network that we want to  predict11.

Indirect similarity between nodes that do not directly interact, e.g., the similarity in second-order interac-
tions, has proved incredibly useful across a variety of molecular networks, including genetic interaction and 
protein–protein interaction  networks12–15. This is because interactions can exist between nodes that are not 
necessarily similar, as illustrated in Fig. 1. For example, in a drug–target interaction (DTI) network, an edge 
indicates that a drug binds to a target protein. Thus, two drugs are similar because they bind to the same target 
protein. In contrast, a drug and a target protein are not biologically similar, although they are connected by an 
edge in the DTI network. This example illustrates the importance of second-order interactions, which we refer 
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to as skip similarity (Fig. 1). For this reason, we need GNNs to predict molecular interactions, not only via direct 
interactions but also via similarity in second-order interactions.

Present work. Here, we present SkipGNN, a graph neural network (GNN) method for the prediction of 
molecular interactions. In contrast to existing GNNs, such as  GCN9, SkipGNN specifies a neural architecture, 
in which neural messages are passed not only via direct interactions, referred to as direct similarity, but also via 
similarity in second-order interactions, referred to as skip similarity (Fig. 1). Importantly, while the principle of 
skip similarity governs many types of molecular interaction networks, popular GNN methods fail to capture the 
principle. Because of that, as we show here, they cannot fully utilize molecular interaction networks. SkipGNN 
takes as input a molecular interaction network and uses it to construct a skip graph. This second-order network 
representation captures the skip similarity. SkipGNN then uses both the original graph (i.e., the input interaction 
network) and the skip graph to learn what is the best way to propagate and transform neural messages along 
edges in each graph to optimize for the discovery of new interactions.

We evaluate SkipGNN on four types of interaction networks, including two homogeneous networks, i.e., 
drug–drug interaction and protein–protein interaction networks, and two heterogeneous networks, i.e., drug–tar-
get interaction and gene–disease interaction networks. SkipGNN outperforms baselines that use random walks, 
shallow network embeddings, spectral clustering, network metrics and various state-of-the-art graph neural 
 networks11,15,17–21.

By examining SkipGNN ’s performance in increasingly harder prediction settings when large fractions of 
interactions are removed from the network, we find that SkipGNN achieves robust performance. In particular, 
across all interaction networks, SkipGNN consistently outperforms all baseline methods, even when interaction 
networks are highly incomplete (“Predicting molecular interactions, Robust learning on incomplete interaction 
networ” section). We find that the robust performance of SkipGNN can be explained by the spectral property of 
skip graph, as it can preserve network structure in the face of incomplete interaction information (Supplemen-
tary D), which is also confirmed experimentally (“Ablation studies” section).

Further, we examine embeddings learned by SkipGNN and find that SkipGNN learns biologically meaningful 
embeddings, whereas a regular GCN does not (“SkipGNN learns meaningful embedding spaces” section). For 
example, when analyzing a drug–target interaction network, SkipGNN generates the embedding space in which 
drugs are generally separated from most of proteins while still being positioned close to the proteins to which they 
directly bind. Lastly, in the case of the drug–drug interaction network, we use the literature search to find evidence 
for SkipGNN ’s novel drug–drug interaction predictions (“Investigation of SkipGNN’s novel predictions” section).

Related work. Existing link prediction methods belong to one of the following categories. (1) Heuristic or 
mechanistic methods (e.g.,15,22–24) calculate an index similarity score to measure the probability of a link given 
the network structure around the two target nodes, such as Preferential Attachment (PA)25 and Local Path Index 
(LP)26. However, these methods usually make strong assumptions about the network structure and hence suffer 
from instability of  performance15,22. (2) Direct embedding methods generate embeddings for every node in the 
network capturing the node’s local network topology (e.g.,27–29). A popular approach is to use random walks 
with a skip-gram model, such as  DeepWalk17,  node2vec18, and  LINE30. The other popular approach leverages 
the spectral graph theory to generate a spectral embedding such as spectral  clustering20. The generated node 
embeddings are then fed into a decoder classifier to predict the link existing probability. (3) Neural embedding 
methods, such as Graph Neural Networks (GNNs)9,31, Variational Graph Autoencoders (VGAE)32,33, and Graph 
Attention Networks (GAT)10 use neighborhood message passing scheme to generate node embeddings and these 
embeddings are directly optimized in an end-to-end manner by a link prediction loss (e.g., cross-entropy). 
GNNs are a powerful class of models in capturing complicated graph topology. Typically, an L-layers GNN is 
able to propagate information of nodes in the L-hop  neighborhoods9,21. However, the messages of nodes farther 
away from the central node have discounted propagation power. Thus, the vanilla GNN is limited at capturing 
skip similarity, which is from second-hop neighbors. In contrast, SkipGNN utilizes an additional skip-graph to 
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Figure 1.  Direct versus skip similarity. (Left) Traditionally, an interaction between nodes A and B implies that 
A and B are similar and vice  versa16. (Right) In contrast, in molecular interaction networks, directly interacting 
entities are not necessarily similar, which has been observed in numerous networks, including genetic 
interaction  networks12,13 and protein–protein interaction  networks14,15.
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fully exploit this important quality for biomedical interaction network. Notably, there are recent advancements 
in GNN such as  MixHop11, JK-Net34 which are designed to capture higher order graph structures through skip 
connections and higher order adjacency matrix. However, they are motivated by general network model and 
does not propose a solution for the specific challenge of 2-hop skip similarity in biomedical network.

In molecular interaction networks, the goal is to predict if a given pair of biomedical entities such as proteins, 
drugs or diseases will interact. We can divide methods for interaction prediction into three main groups. (1) 
Structural representation learning generates embeddings for each entity using the entity’s structural representa-
tion, such as a compound’s molecular graph or a protein’s amino acid sequence. The embeddings of two entities 
are then combined and fed into a decoder for prediction. For  example35–37, use graph-convolutional (GCN) and 
convolutional (CNN) networks on molecular graphs and gene sequence data to predict binding of drugs to target 
proteins.  Similarly38–40, learn embedding for drugs and concatenate embeddings of drug pairs to predict drug–drug 
interactions. (2) Similarity-based learning is based on the assumption that entities with similar interaction patterns 
are likely to interact. These methods devise a similarity measure (e.g., a graphlet-based signature of proteins in the 
PPI  network41) and then use the measure to predict interactions based on how similar a candidate interaction is to 
known interactions. A variety of techniques are used to aggregate similarity values and score interactions, including 
matrix  factorization42,  clustering43, and label  propagation44. (3) Finally, network relational learning views the task as 
a network completion problem. It uses network structure together with side information about nodes to complete 
the network and predict  interactions4,33,45. SkipGNN belongs to the structural representation learning category.

Preliminaries on graph neural networks (GNNs). Next, we describe graph neural networks as they are 
one of the state-of-the-art models for link prediction and are also the focus of our study. The input to a GNN 
is the network, represented by its adjacency matrix A . Most often, the goal (output) of the GNN is to learn an 
embedding for each node in the network by capturing the network structure as well as node attributes. GNN can 
be represented as a series of neighborhood aggregations layers (e.g.,9): H(l+1) = σ(D̃− 1

2 ÃD̃
− 1

2H
(l)
W) , where 

H
(l) is a matrix of node embeddings at the lth layer, H(0) are input node attributes, W is a trainable parameter 

matrix, σ is a non-linear activation function, and D̃ and Ã are the renormalized degree and adjacency matrices, 
defined as: Ã = A+ I and D̃ii =

∑
j Ãij ( I is the identity matrix). The GNN propagates information across net-

work neighborhoods and transforms the information in a way that is most useful for a downstream prediction 
tasks, such as link prediction.

Methods
SkipGNN is a graph neural network uniquely suited for molecular interactions. SkipGNN takes as input a 
molecular interaction network and uses it to construct a skip graph, which is a second-order network repre-
sentation capturing the skip similarity. SkipGNN then specifies a novel graph neural network architecture that 
fuses the original and the skip graph to accurately and robustly predict new molecular interactions. Notations 
are described in Table 1.

Problem formulation. Consider an interaction network G on N nodes representing biomedical entities V 
(e.g., drugs, proteins, or diseases) and M edges E representing interactions between the entities. For example, 
G can be a drug–target interaction network recording information on how drugs bind to their protein  targets3. 
For every pair of entities i and j, we denote their interaction with a binary indicator eij ∈ {0, 1} , indicating the 
experimental evidence that i and j interact (i.e., eij = 1 ) or the absence of evidence for interaction (i.e., eij = 0 ). 
We denote the adjacency matrix of G as A , where Aij is 1 if nodes i and j are connected ( eij = 1 ) in the graph 
and otherwise 0 ( eij = 0 ). Further, D is the degree matrix, a diagonal matrix, where Dii is the degree of node i.

Problem (Molecular Interaction Prediction) Given a molecular interaction network G = (V ,E ) , we aim to 
learn a mapping function f : E → [0, 1] from edges to probabilities such that f(i, j) optimizes the probability that 
nodes i and j interact.

Construction of the skip graph. Next, we describe skip graphs, the key novel representation of interac-
tion networks that allow for effective use of GNNs for predicting interactions. We realize Skip similarity by 
encouraging the GNN model to embed skipped nodes close together in the embedding space. To do that, we 
construct skip graph Gs , in two-hop neighbors are connected by edges. This construction creates paths in Gs 
along which neural messages can be exchanged between the skipped nodes.

Formally, we use the following operator to obtain the skip graph’s adjacency matrix As:

The corresponding degree matrix is Dii
s =

∑
j A

ij
s . An efficient way to implement the skip graph is through 

matrix multiplication:

where sign(x) is the sign function, sign(x) = 1 if x > 0 and 0 otherwise, which is applied element-wise on AAT . 
It counts the number of two-hop paths from node i to j . Hence, if an entry for node i, j in AAT is larger than 0, it 
means there exists a skipped node between node i, j. Then, we convert the positive entry into 1 to construct the 
skip graph’s adjacent matrix. Given this skip graph, we proceed to describe the full SkipGNN model.

A
ij
s =

{
1 if ∃ k s.t. (i, k) ∈ E and (k, j) ∈ E

0 otherwise.

(1)As = sign(AAT),
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Table 1.  Notation used in SkipGNN.

Notation Definition

G : {V ,E } Graph with nodes V and edges E

D,A ∈ N
N×N Degree and adjacency matrices for graph G

D̃, Ã ∈ N
N×N Normalized degree and adjacency matrices for G

X ∈ R
N×D D-dimensional node embeddings

eij ∈ {0, 1} Ground-truth interaction between nodes i and j

Gs Skip graph

Ds ,As ∈ N
N×N Degree and adjacency matrices for Gs

D̃s , Ãs ∈ R
N×N Normalized degree and adjacency matrices for Gs

H
(l)
, S

(l) Node embeddings for G and Gs , in layer l

E Final node embeddings

pij ∈ [0, 1] Probability of interaction between nodes i and j

yij ∈ {0, 1} Binary indicator of interaction between nodes i and j

L ∈ R Binary cross-entropy loss

W
(l)
o ,W

(l)
s Weight matrix for original (o) and skip (s) graphs, layer l

W
′(l)
o Weight matrix for skip-to-original-graph fusion

W
′(l)
s Weight matrix for original-to-skip-graph fusion

Wd , b Decoder weight matrix and bias parameter

Figure 2.  Neural architecture of SkipGNN. (Left) SkipGNN  constructs skip graph Gs (denoted by adjacency 
matrix As ) based on the input graph G (denoted by adjacency matrix A ) using Eq. (1). (Middle) Initial node 
embeddings, H(0) and S(0) , are specified using side information (e.g., gene expression vectors if nodes represent 
genes) or generated using  node2vec18. In SkipGNN, node embeddings are then propagated along edges of Gs 
and G and transformed through a series of computations (layers), which output powerful embeddings that can 
then be used for downstream prediction of interactions. Illustrated is a two-layer iterative fusion scheme. In 
the first layer, two GNNs with parameter weight matrices W(0)

o  and W(0)
s  (operating on A and As , respectively) 

are fused via weight matrices W
′(0)
o  and W

′(0)
s  based on Eq. (2). This completes computations in the first layer of 

SkipGNN, producing embeddings H(1) and S(1) . In the second layer, those embeddings are transformed via W(1)
o  

and W(1)
s  using Eq. (3), resulting in final embeddings E . (Right) Embeddings Ei and Ej of target nodes i and j are 

retrieved, concatenated, and then fed into a decoder (parameterized by Wd ). Decoder returns pij , representing 
the probability that nodes i and j interact.



5

Vol.:(0123456789)

Scientific Reports |        (2020) 10:21092  | https://doi.org/10.1038/s41598-020-77766-9

www.nature.com/scientificreports/

The SkipGNN  model. In this section, we describe how we leverage the skip graph for link prediction. After 
we generate the novel skip graph from “Construction of the skip graph” section, we propose an iterative fusion 
scheme for SkipGNN  to allow the skip graph and the original graph to learn from each other for better integra-
tion. Lastly, a decoder is used to output a probability measuring if the given pair of molecular entities interact.

Iterative fusion. We want a model to automatically learn how to balance between direct similarity and skip 
similarity in the final embedding. We design an iterative fusion scheme with aggregation gates to combine both 
similarity information. The motivation is that to represent biomedical entity to its fullest extent, node embed-
ding must capture its complicated bioactive functions with skip/direct similarities. Hence, instead of simply con-
catenating the output node embeddings from the GNN output of the original graph G that captures direct simi-
larity and skip graph Gs that captures skip similarity, we allow two GNNs on G and Gs to interact with each other 
iteratively via the following propagation rules (see Fig. 2):

where F = D̃
− 1

2 ÃD̃
− 1

2 , Fs = D̃
− 1

2
s ÃsD̃

− 1
2

s . Here, H(l), S(l) are node embeddings at the lth layer from direct 
similarity graph G and skip similarity graph GS , respectively. F,Fs are the re-normalized adjacency matrices 
from direct similarity and skip similarity, respectively. And W(l)

o ,W
′(l)
o ,W

(l)
s ,W

′(l)
s  are the transformed weights 

for layer l. H(0) and S(0) are set to be X , the input node attributes generated from node2vec. The aggregate gate 
AGG in Eq. (2) can be a summation, a Hadamard product, max-pooling, or some other aggregation  operator46. 
Empirically, we find that summation gate has the best performance. σ() is the activation function and we use 
ReLU(·) = max(·, 0) to add non-linearity in the propagation.

In each iteration, the node embedding for original graph H(l+1) is first updated with its previous layer’s node 
embedding H(l) , combined with skip graph embedding S(l) . After obtaining the updated original graph embed-
ding H(l+1) , we then update the skip graph embedding S(l+1) in a similar fashion.

This update rule is very different from simple concatenation as it is an iterative process where each update of 
the node embedding for each graph is affected by the most recent node embedding from both graphs. This way, 
two embedding are learned to find the best dependency structure between each other and fuse into one final 
embedding instead of a simple concatenation. In the last layer, final node embedding E is obtained through:

where (1) is the index for the last layer and AGG is the summation gate. As in the motivation, we are interested 
only in up to second order neighbors, thus we use two layers GNN, see Fig. 2. We don’t use activation function 
here as it does not require an extra non-linear transformation to be fed into the decoder network. Empirically, 
we show this fusion scheme boosts predictive performance in “Ablation studies” section.

SkipGNN decoder. Given the target nodes (i, j) and their corresponding node embedding Ei ,Ej , we implement 
a neural network as a decoder to first combine Ei ,Ej to obtain an input embedding through a COMB function 
(e.g., concatenation, sum, Hadamard product). Then, the combined embedding is fed into a neural network 
parametrized by weight Wd and bias b as a binary classifier to obtain probability pij:

where pij represents the probability that nodes i and j interact (i.e., f(i, j). We use concatenation as the COMB 
function as it consistently yield the best performance across different types of networks.

(2)H
(l+1) = σ(AGG(FH(l)

W
(l)
o , FsS

(l)
W

′(l)
o )), S

(l+1) = σ(AGG(FsS
(l)
W

(l)
s , FH(l+1)

W
′(l)
s )),

(3)E = AGG(FH(1)
W

(1)
o , FsS

(1)
W

(1)
s ),

(4)pij = σ(WdCOMB(Ei ,Ej)+ b),
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The SkipGNN algorithm. The overall algorithm is shown in Algorithm 1. Here, we only leverage acces-
sible network information (adjacent matrix A of the network G) to predict links. In all experiments, we initialize 
embeddings using  node2vec18 as: X = node2vec(A).

Second, we construct the skip graph with adjacent matrix As via Eq. (1) to capture the skip-similarity principle. 
Next, at every step, a mini-batch of interaction pairs M with labels y is sampled. Then, two graph convolutions 
networks are used for the original graph and the skip graph respectively. In the propagation step, we use iterative 
fusion (Eq. (2)) to naturally combine embeddings convolved on the original graph and on the skip graph, corre-
sponding to direct and skip similarity, respectively. In the last layer, embeddings are stored in E . We then retrieve 
the embeddings for each node in the mini-batched pairs M and concatenate them to feed into decoder (Eq. (4)).

During training, we optimize the SkipGNN ’s parameters W(l)
o  , W

′(l)
o ,W

(l)
s  , W

′(l)
s  , Wd , b in an end-to-end 

manner through a binary cross-entropy loss: L =
∑

(i,j)∈M yij log pij + (1− yij) log (1− pij), where yij is the 
true label for nodes i and j that are sampled during training via mini-batching, (i, j) ∈ M , and M is a mini-batch 
of interaction pairs. After the model is trained, it can be used to make predictions. Given two entities i and j, the 
model predicts probability f(i, j) that i and j interact.

Results
We conduct a variety of experiments to investigate the predictive power of SkipGNN (“Predicting molecular 
interactions” section). We then study the method’s robustness to noise and missing data (“Robust learning 
on incomplete interaction networ” section) and demonstrate the skip similarity principle (“SkipGNN learns 
meaningful embedding spaces” section). Next, we conduct ablation studies to examine contributions of each 
of SkipGNN ’s components towards the final SkipGNN performance (“Ablation studies” section). Finally, we 
investigate novel predictions made by SkipGNN (“Investigation of SkipGNN’s novel predictions” section).

Data and experimental setup. Next we provide details on molecular interaction datasets, baseline meth-
ods, and experimental setup.

Molecular interaction networks. We consider four publicly-available network datasets. (1) BIOSNAP-DTI47 
contains 5,018 drugs that target 2,325 protein through 15,139 drug–target (DTI) interactions. (2) BIOSNAP-
DDI47 consists of 48,514 drug–drug interactions (DDIs) between 1,514 drugs extracted from drug labels and 
biomedical literature. (3) HuRI-PPI48 is the human reference protein–protein interaction network generated by 
multiple orthogonal the high-throughput yeast two-hybrid screens. We use HI-III network, which has 5,604 
proteins and 23,322 interactions. (4) Finally, we consider DisGeNET-GDI49 collects curated gene–disease inter-
actions (GDIs) from GWAS studies, animal models and scientific literature. The dataset has 81,746 interactions 
between 9,413 genes and 10,370 diseases. Dataset statistics are described in Table 2.

SkipGNN implementation and hyperparameters. We implemented SkipGNN   using PyTorch deep learning 
framework (The source code implementation of SkipGNN is available at https ://githu b.com/kexin huang 12345 /
SkipG NN). We use a server with 2 Intel Xeon E5-2670v2 2.5GHZ CPUs, 128GB RAM and 1 NVIDIA Tesla P40 
GPU. We set optimization parameters as follows: learning rate is 5e−4 using the Adam  optimizer50, mini-batch 
size is |M| = 256 , epoch size is 15, and dropout rate is 0.1. We set hyper-parameters using 10 runs random 
search based on best average prediction performance on validation set of DTI task. We find the setup is robust in 
other datasets. The ranges of hyper-parameters are set as follows: learning rate: [1e−3, 5e−4, 1e−4, 5e−5]; mini-
batch size [32, 64, 128, 256, 512]; dropout rate [0, 0.05, 0.1, 0.2]; hidden size [16, 32, 64, 128]. Specifically, we set 
hidden size in the first layer as d(1) = 64 and hidden size in the second layer as d(2) = 16.

Baseline methods. We compare SkipGNN to seven powerful predictors of molecular interactions from network 
science and graph machine-learning fields. From machine learning, we use three direct network embedding 
methods: DeepWalk17, node2vec18, and we also include struc2vec19. The latter method is conceptually dis-
tinct by leveraging local network structural information, while the former methods use random walks to learn 
embeddings for nodes in the network. Further, we examine five graph neural networks: VGAE32, GCN9, GIN21, 
JK-Net34 and MixHop11. They all use the same input encoding as SkipGNN. From network science, we consider 
Spectral Clustering20. We also use L315 heuristic, which was recently shown to outperform over 20 network sci-
ence methods for the problem of PPI prediction. Further details on baseline methods, their implementation and 
parameter selection are in supplementary.

Table 2.  Data statistics. ‘A’ indicates average node degree.

Dataset Prediction task # nodes # edges A

DTI Drug–target interaction 7343 15,139 4.12

DDI Drug–drug interaction 1514 48,514 64.09

PPI Protein–protein interaction 5604 23,322 8.32

GDI Gene–disease interaction 19,783 81,746 8.26

https://github.com/kexinhuang12345/SkipGNN
https://github.com/kexinhuang12345/SkipGNN
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Experimental setup. In all our experiments, we follow an established evaluation strategy for link predic-
tion  (e.g.,4,51). We divide each dataset into train, validation, and test sets in a 7:1:2 ratio, which yields posi-
tive examples (molecular interactions). We generate negative counterparts by sampling the complement set of 
positive examples. The cardinality of negative samples are set to be the same as positive data points. For every 
experiment, we conduct five independent runs with different random splits of the dataset. We select the best 
performing model based on the loss value on the validation set. The performance of selected model is calculated 
on the test set. To calculate prediction performance, we use: (1) area under precision-recall curve (PR-AUC): 
PR-AUC =

∑n
k=1 Prec(k)�Rec(k), where k is kth precision/recall operating point ( Prec(k), Rec(k) ); and (2) 

area under the receiver operating characteristics curve (ROC-AUC): ROC-AUC =
∑n

k=1 TP(k)�FP(k), where 
k is kth true-positive and false-positive operating point ( TP(k), FP(k) ). Higher values of PR-AUC and ROC-
AUC indicate better predictive performance. In addition to the PR-AUC and ROC-AUC, we rank each method 
in each dataset based on its PR-AUC and provide the average rank of a method across four datasets. The rank 
suggests the overall performance of the method compared to others. To further show the performance gain of 
SkipGNN, we resort to statistical test. For each method, we take the ROC-AUC and PR-AUC of each run for 
each dataset as the data samples. Then, we compute the p value for Wilcoxon signed-rank test between SkipGNN 
and the compared method.

Predicting molecular interactions. We start by evaluating SkipGNN on four distinct types of molecu-
lar interactions, including drug–target interactions, drug–drug interactions, protein–protein interactions, and 
gene–disease interactions, and we then compare SkipGNN ’s performance to baseline methods.

In each interaction network, we randomly mask 30% interactions as the holdout validation (20%) and test 
(10%) sets. The remaining 70% interactions are used to train the SkipGNN and each of the baselines. After train-
ing, each method is asked to predict whether pairs of entities in the test set will likely interact.

We report results in Table 3 and the method rank, along with the p values for statistical test are provided in 
Table 4. We see that SkipGNN  is the top performing method out of 11 methods across all molecular interac-
tion networks. SkipGNN has the best predictive performance for DTI and PPI datasets and has the second best 
performance in DDI and GDI datasets, with an average rank of 1.5. In contrast, the best performing baseline 
MixHop has average rank of 2.5, as it sometimes is worse than JK-Net and GIN. We also see that SkipGNN’s 
improvement over all baselines is statistically significant ( < .05 ). To show the usefulness of skip graph, we com-
pare with GCN-backend baselines GCN and VGAE. We see up to 2.7% improvement of SkipGNN  over GCN 
and up to 8.8% improvement over VGAE on PR-AUC. Since GCN and VGAE can only use direct similarity, this 
finding provides evidence that considering skip similarity and direct similarity together, as is made possible by 
SkipGNN, is important to be able to accurately predict a variety of molecular interactions. Compared to direct 
embedding methods, SkipGNN has up to 28.8% increase over DeepWalk, 20.4% increase over node2vec, and 
15.6% over spectral clustering on PR-AUC. These results support previous  observations4 that graph neural net-
works can learn more powerful network representations than direct embedding methods. Finally, all baselines 
vary in performance across datasets/tasks while SkipGNN consistently yields the most powerful predictor.

Robust learning on incomplete interaction networks. Next, we test SkipGNN ’s performance on 
incomplete interaction networks. Due to knowledge gaps in biology, many of today’s interaction networks are 
incomplete and thus it is crucial that methods are robust and able to perform well even when many interactions 
are missing.

In this experiment, we let each method be trained on 10%, 30%, 50%, and 70% of edges in the DTI, DDI, and 
PPI datasets and predict on the rest of the data (we use 10% of test edges as validation set for early stopping).

Results in Fig. 3 show that SkipGNN  gives the most robust results among all the methods. In all tasks, Skip-
GNN achieves strong performance even when having access to only 10% of the interactions. Further, in almost 
every percentage point, SkipGNN  is better than the baselines. In addition, we see that VGAE is not robust as its 
performance dropped to around 0.5 PR-AUC in highly-incomplete settings on DTI and DDI tasks. Performance 
of node2vec and GCN steadily improve as the percentage of seen edges increases. Further, while spectral cluster-
ing is robust to incomplete data, its performance varies substantially with tasks. We conclude that SkipGNN  is 
robust and is especially appropriate for data-scarce networks.

SkipGNN learns meaningful embedding spaces. Next, we visualize embeddings learned by GCN and 
SkipGNN in an effort to investigate whether SkipGNN can better capture the structure of interaction networks 
than GCN. For that, we use DTI and GDI networks in which drugs/diseases are linked to associated proteins/
genes. We use t-SNE52 and visualize the learned embeddings in Fig. 4 (DTI network) and Fig. 5 (GDI network). 
Note that both GCN and SkipGNN uses the same input embedding, which means the only difference is whether 
or not skip similarity is used.

First, we observe that GCN cannot distinguish between different types of biomedical entities (i.e., drugs 
vs. proteins and disease vs. genes). In contrast, SkipGNN can successfully separate the entities, as evidenced 
by distinguishable groups of points of the same color in the t-SNE visualizations. This observation confirms 
that SkipGNN has a unique ability to capture the skip similarity whereas GCN cannot. This is because GCN 
forces embeddings of connected drug-protein/gene–disease pairs to be similar and thus it embeds those pairs 
close together in the embedding space. However, by doing so, GCN conflates drugs with proteins and genes 
with diseases. In contrast, SkipGNN generates a biologically meaningful embedding space in which drugs are 
distinguished from proteins (or, genes from diseases) while drugs are still positioned in the embedding space 
close to proteins to which they bind (or, in the case of GDI network, diseases are positioned close to relevant 
disease-associated genes).
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Table 3.  Predictive performance. SkipGNN  achieves the best performance across all metrics and tasks 
compared to baselines. Results of five independent runs on DDI, PPI, DTI and GDI tasks on state of the art 
link prediction algorithms.

Task Method PR-AUC ROC-AUC Rank

DTI

DeepWalk 0.753± 0.008 0.735± 0.009 10

node2vec 0.771± 0.005 0.720± 0.010 9

struc2vec 0.677± 0.007 0.656± 0.010 11

SC 0.818± 0.007 0.743± 0.008 8

L3 0.891± 0.004 0.793± 0.006 6

VGAE 0.853± 0.010 0.800± 0.010 7

GCN 0.904± 0.011 0.899± 0.010 5

GIN 0.922± 0.004 0.907± 0.006 3

JK-Net 0.921± 0.006 0.907± 0.008 4

MixHop 0.921± 0.006 0.920± 0.004 2

SkipGNN   0.928± 0.006 0.922± 0.004 1

DDI

DeepWalk 0.698± 0.012 0.712± 0.009 10

node2vec 0.801± 0.004 0.809± 0.002 8

struc2vec 0.643± 0.012 0.654± 0.007 11

SC 0.749± 0.009 0.816± 0.006 9

L3 0.860± 0.004 0.869± 0.003 4

VGAE 0.844± 0.076 0.878± 0.008 7

GCN 0.856± 0.005 0.875± 0.004 5

GIN 0.856± 0.005 0.876± 0.003 5

JK-Net 0.870± 0.009 0.885± 0.005 1

MixHop 0.861± 0.006 0.879± 0.004 3

SkipGNN   0.866± 0.006 0.886± 0.003 2

PPI

DeepWalk 0.715± 0.008 0.706± 0.005 11

node2vec 0.773± 0.010 0.766± 0.005 10

struc2vec 0.875± 0.004 0.868± 0.006 8

SC 0.897± 0.003 0.859± 0.003 7

L3 0.899± 0.003 0.861± 0.003 6

VGAE 0.875± 0.004 0.844± 0.006 8

GCN 0.909± 0.002 0.907± 0.006 4

GIN 0.907± 0.004 0.897± 0.006 5

JK-Net 0.912± 0.003 0.901± 0.005 3

MixHop 0.909± 0.004 0.913± 0.003 2

SkipGNN   0.921± 0.003 0.917 ± 0.004 1

GDI

DeepWalk 0.827± 0.007 0.832± 0.003 11

node2vec 0.828± 0.006 0.834± 0.003 10

struc2vec 0.910± 0.006 0.909± 0.005 4

SC 0.905± 0.002 0.863± 0.003 6

L3 0.899± 0.001 0.832± 0.001 8

VGAE 0.902± 0.006 0.873± 0.009 7

GCN 0.909± 0.002 0.906± 0.006 5

GIN 0.916± 0.004 0.900± 0.005 1

JK-Net 0.891± 0.049 0.898± 0.002 9

MixHop 0.912± 0.005 0.916± 0.004 3

SkipGNN   0.915± 0.003 0.912± 0.004 2

Table 4.  Predictive performance ranking and statistical testing. We rank each tested method’s PR-AUC in 
each dataset and computes the average rank and also computes the performance difference from SkipGNN 
using Wilcoxon signed-rank test. SkipGNN  has the highest rank compared with 10 other baselines and its 
performance gain is statistically significant.

Method DeepWalk node2vec struc2vec SC L3 VGAE GCN GIN JK-Net MixHop SkipGNN

Average Rank 10.5 9.25 8.50 7.50 6.00 7.25 4.75 3.75 4.00 2.50 1.50

p value < .001 < .001 .006 .003 .016 .005 .012 .017 .025 .042 N/A
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We also calculate the silhouette score of the t-SNE plot, which measures the inter-cluster and intra-cluster 
distance and is used to calculate the goodness of a clustering technique. A higher value indicates that the sample 
is better matched to its own cluster and poorly matched to neighboring clusters. Here SkipGNN has a silhouette 
score of 0.114 for DTI whereas GCN has a score of 0.014 for DTI. For GDI, SkipGNN has a score 0.079 and GCN 
has a score 0.018. The up to 8 times increase in silhouette scores suggest that SkipGNN can better distinguish 
the entities than GCN.

Figure 3.  Predictive performance as a function of network incompleteness. SkipGNN  provides robust result 
in varying fraction of missing edges. Fivefold average with 95% confidence interval for PR-AUC against 
various fractions of missing edges on four prediction tasks: drug–target interaction prediction (DTI), drug–
drug interaction prediction (DDI), protein–protein interaction prediction (PPI) and gene–disease interaction 
prediction (GDI) on node2vec, Spectral Clustering (SC), Variational Graph Auto-Encoder (VGAE), Graph 
Convolutional Network (GCN), and SkipGNN. We omit DeepWalk as it has similar performance as node2vec. 
SkipGNN consistently shows the best performance even when networks are highly incomplete.

Figure 4.  Visualizations of drug–target interaction network. GCN does not distinguish drug and target gene 
as it only captures direct similarity whereas SkipGNN is able to distinct drug and target gene embeddings, 
confirming its ability to capture skip similarity. We use GCN and SkipGNN on the drug–target interaction 
dataset to learn drug/target embeddings, which are visualized using t-SNE.
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Further, we find that GCN and its graph convolutional variants cannot capture skip similarity because they 
aggregate neural messages only from direct (i.e., immediate) neighbors in the interaction network. SkipGNN 
solves this problem by passing and aggregating neural message from direct as well as in-direct neighbors, thereby 
explicitly capturing skip similarity.

Ablation studies. To show that each component of SkipGNN has an important role in the final perfor-
mance of SkipGNN, we conduct a series of ablation studies. SkipGNN has four key components, and we study 
how the metho performance changes when we remove each of the components:

• -fusion replaces SkipGNN ’s fusion scheme with a simple concatenation of node embeddings generated by 
GCN.

• -skipGraph removes skip graph and degenerates to GCN.
• -Weighted-L1 uses weighted-L1 gate in Eq. (2) as AGG(A, B) = |A− B| , where | · | is the absolute value 

operator.
• -Hadamard replaces the summation gate with Hadamard operator ‘ ∗ ‘ in Eq. (2) such that AGG(A, B) = A ∗ B.

Table 5 show results of deactivating each of these components, one at a time. We find that -fusion outperforms 
-skipGraph (i.e., GCN) by a large margin. This finding identifies skip graph as a key driver of performance 
improvement. Further, we find that our iterative fusion scheme is important, indicating that successful methods 
need to integrate both direct and skip similarity in interaction networks. Next, we see that weighted L1 gate has 
comparable or worse performance than the summation gate and Hadamard operator performs the worst, sug-
gesting that SkipGNN ’s summation gate is the best-performing aggregation function. Altogether, we conclude 
that all SkipGNN ’s components are necessary for its strong performance.

Investigation of SkipGNN ’s novel predictions. The main goal of link prediction on graphs is to find 
novel hits that do not exist in the dataset. We conduct a literature search and find SkipGNN is able to discover 
novel hits. We select pairs that are not interacted in the original dataset but are flagged as interaction from our 
model. We then pick the top 10 confident interactions and feed them into literature database and see if there are 
evidence supporting our findings. We find promising result for the DDI task (Table 6). Out of the 10 top-ranked 
interaction pairs, we are able to find 6 pairs that have literature evidence support.

For example, for the interaction between Warfarin and  Calozapine53, reports that “Clozapine increase the 
concentrations of commonly used drugs in elderly like digoxin, heparin, phenytoin and Warfarin by displac-
ing them from plasma protein. This can lead to increase in respective adverse effects with these medications.” 
Also, the  manufacturer59 also reports that “Clozapine may displace Warfarin from plasma protein-binding sites. 
Increased levels of unbound Warfarin could result and could increase the risk of hemorrhage.” Take another 
example between Warfarin and  Ivacaftor54, conducts a DDI study and reports that “caution and appropriate 
monitoring are recommended when concomitant substrates of CYP2C9, CYP3A and/or P-gp are used during 
treatment with Ivacaftor, particularly drugs with a narrow therapeutic index, such as Warfarin.” Finally, we 
provide the top 10 outputs for DTI, PPI, and GDI tasks in Appendix 3.

Figure 5.  Visualizations of gene–disease interaction network. GCN does not distinguish disease and gene as it 
only captures direct similarity whereas SkipGNN is able to distinct disease and gene embeddings, confirming 
its ability to capture skip similarity. We use GCN and SkipGNN on the gene–disease interaction dataset to learn 
gene/disease embeddings, which are visualized using t-SNE.
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Discussion
We introduced SkipGNN, a novel graph neural network for predicting molecular interactions. The architecture 
of SkipGNN is motivated by a principle of connectivity, which we call skip similarity. Remarkably, we found that 
skip similarity allows SkipGNN to much better capture structural and evolutionary forces that govern molecular 
interaction networks that what is possible with current graph neural networks. SkipGNN achieves superior and 
robust performance on a variety of key prediction tasks in interaction networks and performs well even when 
networks are highly incomplete.

There are several future directions. We focused here on networks in which all edges are of the same type. As 
SkipGNN is a general graph neural network, it would be interesting to adapt SkipGNN to heterogeneous net-
works, such as drug-gene–disease networks. Another fruitful direction would be to implement skip similarity 
in other types of biological networks.

Appendix 1: Experiments on the importance of each layer of GNN for biomedical link 
prediction
To further support our claim on the importance of integrating skip similarity for GNN-based methods on bio-
medical interaction network link prediction, we vary the architecture of vanilla GNN and perform predictive 
comparison on DDI, PPI, and DTI tasks. Here are the variations:

Table 5.  Results of ablation experiments. SkipGNN’s model components setup achieve the best result. 
Ablation study result of five independent runs on DDI, PPI and DTI tasks.

Task Method PR-AUC ROC-AUC 

DTI

SkipGNN   0.928± 0.006 0.922± 0.004

-fusion 0.909± 0.011 0.907± 0.013

-skipGraph 0.904± 0.011 0.899± 0.010

-Weighted-L1 0.927± 0.013 0.926± 0.011

-Hadamard 0.796± 0.116 0.795± 0.116

DDI

SkipGNN   0.866± 0.006 0.886± 0.003

-fusion 0.864± 0.007 0.884± 0.002

-skipGraph 0.856± 0.005 0.875± 0.004

-Weighted-L1 0.863± 0.006 0.885± 0.003

-Hadamard 0.833± 0.054 0.883± 0.003

PPI

SkipGNN   0.921± 0.003 0.917 ± 0.004

-fusion 0.912± 0.004 0.906± 0.005

-skipGraph 0.909± 0.002 0.907± 0.006

-Weighted-L1 0.917± 0.003 0.908± 0.006

-Hadamard 0.909± 0.025 0.914± 0.010

GDI

SkipGNN   0.915± 0.003 0.912± 0.004

-fusion 0.896± 0.029 0.892± 0.014

-skipGraph 0.909± 0.002 0.906± 0.006

-Weighted-L1 0.913± 0.009 0.898± 0.010

-Hadamard 0.883± 0.041 0.891± 0.025

Table 6.  Novel predictions of drug–drug interactions. Shown are top-10 predicted drug–drug interactions 
together with the relevant literature providing evidence for predictions.

Rank Drug 1 Drug 2 Evidence for DDI

1 Warfarin Clozapine Mukku et al.,  201853

2 Warfarin Ivacaftor Robertson et al.,  201554

3 Phenelzine Deferasirox

4 Warfarin Paraldehyde DuPont, Product  Information55

5 Warfarin Cyclosporine Snyder,  198856

6 Phenytoin Sipuleucel-T

7 Warfarin Netupitant

8 Phenelzine Suvorexant Merck, Product  Information57

9 Leuprolide Picosulfuric acid

10 Deferasirox Bexarotene Ligand, Product  Information58
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• TwoLayers-OriGraph is the two layers GCN on original graph. It uses an indirect two-hops neighborhood 
aggregation because the two-hops nodes information is conveyed to the center node through the one-hop 
nodes.

• OneLayer-OriGraph is a one layer vanilla GCN. It only utilizes the immediate one-hop neighbor informa-
tion. Hence, it is a direct measure of direct similarity.

• TwoLayers-SkipGraph is the vanilla two layers GCN that operates on the skip graph. It uses direct connec-
tion of center node with its two-hops neighborhood as against the indirect connection in vanilla GCN. As 
it is two layer, it also considers indirect four-hops neighbor nodes.

• OneLayer-SkipGraph is the one layer version of GCN-A2. As it only uses two-hop neighbor information, 
it directly measures the skip similarity.

• OneLayer-3Hops is the one layer version of GCN-A3. We test to show the significance of higher order 
neighbors.

Table 7 compares the results. From the large improvement of TwoLayers-OriGraph over OneLayer-OriGraph, 
this is the initial evidence that two-hops neighborhood, which contains skip similarity node relation assumption, 
is essential. Then, comparing OneLayer-OriGraph and OneLayer-SkipGraph, the large margin improvement of 
OneLayer-SkipGraph implies two-hops neighbor alone has more predictive information than one-hop neigh-
bor alone, supporting our motivation analysis of the importance of skip similarity for biomedical interaction 
network. Note also that the improvement from OneLayer-OriGraph to TwoLayers-OriGraph is much larger 
than the improvement from OneLayer-SkipGraph to TwoLayers-SkipGraph, meaning second-hop is essential 
and higher-order neighborhood is of limited importance for interaction link prediction. Lastly, TwoLayers-
OriGraph performs better than TwoLayers-SkipGraph, meaning that biomedical interaction link prediction 
is a balance between immediate neighbor and two-hops neighbor, confirming with our intuition that an ideal 
network should pursue a balance between them and adding support for the iterative fusion scheme. Note that 
OneLayer-SkipGraph uses only the second hop neighborhood, without the first-hop neighborhood informa-
tion. This suggests first-hop importance, and a necessity to integrate both first and second hop neighbors, such 
as SkipGNN’s iterative fusion scheme. We also find 3-hops neighbor is less important than 2-hops neighbor 
when comparing OneLayer-SkipGraph and OneLayer-3Hops, further confirming the importance of 2-hops in 
biomedical interaction network.

Appendix 2: Details about baseline methods

• L315 counts the length-3 paths among all the network nodes pairs. The number of length-3 paths are then 
normalized by the degree of node pairs.

Table 7.  Skip Similarity is important for biomedical interaction prediction when using GCN. Results of five 
independent runs on DDI, PPI and DTI tasks with varying architectures of GCN.

Task Method PR-AUC ROC-AUC 

DTI

TwoLayers-OriGraph 0.904± 0.011 0.899± 0.010

OneLayer-OriGraph 0.807± 0.024 0.781± 0.026

TwoLayers-SkipGraph 0.849± 0.041 0.826± 0.052

OneLayer-SkipGraph 0.780± 0.047 0.756± 0.046

OneLayer-3Hops 0.806± 0.005 0.789± 0.017

DDI

TwoLayers-OriGraph 0.856± 0.005 0.875± 0.004

OneLayer-OriGraph 0.810± 0.029 0.831± 0.029

TwoLayers-SkipGraph 0.848± 0.003 0.863± 0.002

OneLayer-SkipGraph 0.844± 0.008 0.862± 0.004

OneLayer-3Hops 0.830± 0.013 0.851± 0.009

PPI

TwoLayers-OriGraph 0.909± 0.002 0.907± 0.006

OneLayer-OriGraph 0.806± 0.013 0.815± 0.015

TwoLayers-SkipGraph 0.900± 0.003 0.888± 0.004

OneLayer-SkipGraph 0.873± 0.023 0.863± 0.017

OneLayer-3Hops 0.858± 0.039 0.853± 0.022

GDI

TwoLayers-OriGraph 0.909± 0.002 0.906± 0.006

OneLayer-OriGraph 0.846± 0.043 0.845± 0.039

TwoLayers-SkipGraph 0.888± 0.008 0.905± 0.007

OneLayer-SkipGraph 0.876± 0.016 0.883± 0.018

OneLayer-3Hops 0.868± 0.006 0.881± 0.011
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• DeepWalk17 performs uniform distributed random walk and applies skip-gram model to learn a node embed-
ding. We use 20 walk lengths and then concatenate the target nodes embedding with a logistic regression 
classifier.

• node2vec18 builds on DeepWalk and uses biased random walk based on depth/breath first search to consider 
both local and global network structure. We use 20 walk length as the paper suggests longer walk lengths 
improve the embedding quality. The paper also reported Hadamard product perform better than average 
and weighted L1/L2 for link prediction. However, in our experiment, the simple concatenation is better than 
Hadamard. After the concatenation, we feed into a logistic regression classifier as described in the paper.

• struc2vec19 leverages the local network structure in addition to the node2vec. We use 80 walk length and 20 
number of walks, following author’s recommendation. We then concatenate the latent embedding and feed 
into a logistic regression classifier.

• Spectral Clustering20 projects nodes on top-16 eigenvectors of the normalized Laplacian matrix and uses 
the transposed eigenvectors as node embeddings. The embeddings are then multiplied and pass through a 
sigmoid function to obtain link probabilities.

• VGAE32 applies variational graph auto-encoder and learns node embeddings that best reconstruct the adja-
cent matrix. We use a two-layer GCN with hidden size 64 for layer one and 16 for layer two. The learning 
rate is set to be 5e−4 with Adam optimizer for 300 epochs. The dropout rate is set to be 0.1.

• GCN9 uses two-layers GCN layers on original adjacency matrix to obtain node embeddings, others are with 
same setting as SkipGNN  . We use a two-layer GCN with hidden size 64 for layer one and 16 for layer two. 
The learning rate is set to be 5e−4 with Adam optimizer for 10 epochs with batch size 256.

• GIN21 uses multi-layer perceptron (MLP) as the aggregation function. We use a five layer GIN with hidden 
size 32. The learning rate is set to be 5e−4 with Adam optimizer for 10 epochs with batch size 256.

Table 8.  Top-ranked novel predictions for PPI, DTI and GDI tasks. Potential novel hits for PPI, DTI, GDI 
tasks. For long drug names, we use the DrugBank ID instead.

Task Rank Drug Target Gene

DTI

1 Dpb-T L3MBTL1

2 Progabide PANX1

3 Glutamic acid NARS2

4 DB04530 CYP2D6

5 Glutamic acid AZIN2

6 DB08152 BCHE

7 CR002 CYP2C19

8 Ecabet F2

9 Insulin CYP2C19

10 RU84687 CYP2C19

Task Rank Protein 1 Protein 2

PPI

1 GOLGA6A CYSRT1

2 CYSRT1 IPCEF1

3 PRKAR1B REL

4 CEP70 UBQLN1

5 ADAMTSL4 MTUS2

6 SIX1 CYSRT1

7 RBPMS MTUS2

8 KRT31 CCDC36

9 TRAF2 MIPOL1

10 DES MEOX2

Task Rank Gene Disease

GDI

1 RAPGEF3 Intellectual disability

2 ISL1 Intellectual disability

3 UHRF1BP1L Intellectual disability

4 RCN3 Intellectual disability

5 UGT1A4 Schizophrenia

6 DDX11 Schizophrenia

7 SOD2 Mental Retardation

8 IL1B Diabetes mellitus type 2

9 TNF Osteosarcoma

10 POMC Tactile Allodynia
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• JK-Net34 uses skip connections across each layer of GNN propapagation. We use the GIN backend for JK-
Net. We use three layers GIN with hidden size 64. The learning rate is set to be 5e−4 with Adam optimizer 
for 10 epochs with batch size 256.

• MixHop11 uses multiple higher-order adjacency matrix to propagate messages. We use three layers for both 
the top and lower towers with size 200, 200, 200. The L2 regularization is set to be 0.0005.

We determine all parameters for the baseline methods using the random search on a validation set.

Appendix 3: Potential novel hits for PPI, DTI, and GDI
We conducted a literature search for the DDI novel hits in the main text. Here, we also provide the novel hits 
discovered through SkipGNN for the PPI, DTI, and GDI tasks in Table 8.

Appendix 4: A network heuristic explanation
So far, we found that SkipGNN has robust performance on incomplete interaction networks and next we inves-
tigate what makes SkipGNN to perform so robustly. We hypothesize that SkipGNN  is robust because its skip 
graphs can preserve the graph topology much better than original graphs and this feat becomes prominent 
when interaction data are scarce. Note that SkipGNN  uses the skip graph whereas other methods only use the 
original graph.

To test the hypothesis, we measure the relative error between the original graph G and the incomplete graph 
Gp in which edges are missing at rate p. We use a metric that calculates the relative error of the spectral norm 
for the graph Laplacian matrix: Err(A, p) = (�L�2 − �Lp�2)/�L�2, where L = A−D , Lp = A

p −D
p , A ( Ap ) 

is adjacency matrix of G ( Gp ), � · �2 = σmax(·) , the σmax is the largest singular  value60.
Figure 6 shows the relative error Err of original and skip graphs against 100 fractions p of missing edges on 

the DDI task. We see that the skip graph’s relative error is much lower than that of original graph in almost all 
settings. This observation provides evidence for our hypothesis, confirming that skip graphs can better capture 
the graph topology than original graphs. Because of that, SkipGNN  can learn high-quality embeddings even 
when interaction data are scarce.

Appendix 5: Biomedical interaction network visualization
A visualization of biomedical network is provided in Fig. 7.

Figure 6.  The ability of skip graph and original graph to capture the network structure in the face of incomplete 
data. Skip graph can better preserve the network structure than the original graph, as evidenced by skip graph’s 
smaller relative error ("Robust learning on incomplete interaction network" section) than that of the original 
graph. This is true for all % of missing edges, indicating that skip graph can keep useful information about 
interaction structure even when networks are highly incomplete and many interactions are missing.
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