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Abstract

Background: Relation extraction is an essential procedure in literature mining. It focuses on extracting semantic
relations between parts of text, called mentions. Biomedical literature includes an enormous amount of textual
descriptions of biological entities, their interactions and results of related experiments. To extract them in an
explicit, computer readable format, these relations were at first extracted manually from databases. Manual curation
was later replaced with automatic or semi-automatic tools with natural language processing capabilities. The
current challenge is the development of information extraction procedures that can directly infer more complex
relational structures, such as gene regulatory networks.

Results: We develop a computational approach for extraction of gene regulatory networks from textual data. Our
method is designed as a sieve-based system and uses linear-chain conditional random fields and rules for relation
extraction. With this method we successfully extracted the sporulation gene regulation network in the bacterium
Bacillus subtilis for the information extraction challenge at the BioNLP 2013 conference. To enable extraction of distant
relations using first-order models, we transform the data into skip-mention sequences. We infer multiple models, each
of which is able to extract different relationship types. Following the shared task, we conducted additional analysis
using different system settings that resulted in reducing the reconstruction error of bacterial sporulation network from
0.73 to 0.68, measured as the slot error rate between the predicted and the reference network. We observe that all
relation extraction sieves contribute to the predictive performance of the proposed approach. Also, features constructed
by considering mention words and their prefixes and suffixes are the most important features for higher accuracy of
extraction. Analysis of distances between different mention types in the text shows that our choice of transforming
data into skip-mention sequences is appropriate for detecting relations between distant mentions.

Conclusions: Linear-chain conditional random fields, along with appropriate data transformations, can be
efficiently used to extract relations. The sieve-based architecture simplifies the system as new sieves can be easily
added or removed and each sieve can utilize the results of previous ones. Furthermore, sieves with conditional
random fields can be trained on arbitrary text data and hence are applicable to broad range of relation extraction
tasks and data domains.

Background
We are witnessing an unprecedented increase in the
number of biomedical abstracts, experimental results
and phenotype and gene descriptions being deposited to
publicly available databases, such as NCBI’s PubMed.

Collectively, this content represents potential new dis-
coveries that could be inferred with appropriately
designed natural language processing approaches. Identi-
fication of topics that appear in biomedical research lit-
erature was among first computational approaches to
predict associations between diseases and genes and has
become indispensable to both researchers in the biome-
dical field and curators [1-4]. Information from publica-
tion repositories is often mined together with other data
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sources. Databases that store relations from integrative
mining are for example the OMIM database on human
genes and genetic phenotypes [5], the GeneRIF function
annotation database [6], the Gene Ontology [7] and clin-
ical drug information from the DailyMed database [8].
Biomedical mining of literature is a compelling way to
identify possible candidate genes through integration of
existing data.
A dedicated set of computational techniques is required

to infer structured relations from plain textual information
stored in large literature databases [9]. Relation extraction
tools [10] can identify semantic relations between entities
found in text. Early relationship extraction systems relied
mostly on manually defined rules to extract a limited
number of relationship types [11]. Later, machine learn-
ing-based methods were introduced to address the extrac-
tion task by inferring prediction models from sets of
labeled relationship types [12-14]. When no labeled data
were available, unsupervised systems were developed
to extract relationship descriptors based on the language
syntax [10]. Current state-of-the-art systems combine
both machine learning and rule-based approaches to
extract relevant information from narrative summaries
and represent it in a structured form [15,16].
This paper aims at the extraction of gene regulatory

networks of Bacillus subtilis. The reconstruction and
elucidation of gene regulation networks is an important
task that can change our understanding of the processes
and molecular interactions within the cell [17-19]. We
have developed a novel sieve-based computational meth-
odology that builds upon conditional random fields [20]
and specialized rules to extract gene relations from
unstructured text. Extracted relations are assembled into
a multi-relational gene network that is informative of
the type of regulation between pairs of genes and the
directionality of their action. The proposed approach
can consider biological literature on gene interactions
from multiple data sources. The main novelty of our
work here is the construction of a sequential analysis
pipeline for extracting gene relations of various types
from literature data (Figure 1). We demonstrate the
effectiveness and applicability of our recently proposed
coreference resolution system [21]. Our system uses lin-
ear-chain conditional random fields in an innovative
way and can detect distant coreferent mentions in text
using a novel transformation of data into skip-mention
sequences.
We evaluate the proposed methodology by measuring

the quality of extracted gene interactions that form the
well studied regulatory network of sporulation in bac-
teria B. subtilis. Sporulation is an adaptive response of
bacteria to scarce nutritional resources and involves dif-
ferential development of two cells [22,23]. Many regula-
tory genes that control sporulation or direct structural

and morphological changes that accompany this phe-
nomenon have been characterized in the last decade
[24,25]. The topology of bacterial sporulation network is
stable and suffers no controversy; thus, it is appropriate
to serve as a reference network against which the perfor-
mance of relation extraction algorithms can be com-
pared. Our evaluation demonstrates that the proposed
approach substantially surpasses the accuracy of current
state-of-the-art methods that were submitted to the Gene
Regulation Network (GRN) BioNLP-ST 2013 Challenge
(http://2013.bionlp-st.org/tasks/gene-regulation-net-
work). The source code of our approach is freely available
[26]. In this paper we represent a network extraction
algorithm, which is an improvement on our winning sub-
mission to BioNLP 2013 [27]. With these improvements

Figure 1 Architecture of the proposed sieve-based relation
extraction system. The system consists of nine sieves. The first two
prepare data for processing, then six sieves try to recognize events
and relations, and the last sieve cleans the extracted relations. Every
input document is processed sequentially by each of the sieves and
at the end a list of extracted relations is returned as a result.
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we have been able to further reduce the prediction error
from 0.73 to 0.68, measured as the slot error rate (SER).
This paper substantially extends our previous work [27].
Below, we discuss motivation for using skip-mention
sequences by analyzing distributions of distances between
various parts of text (i.e., mentions) that are used by spe-
cialized sieves. We further explain feature functions and
rules as they are key components of the system. We ana-
lyze the number of relations extracted by each sieve. The
approach described here adds a new conditional random
fields (CRFs) sieve to detect direct relations between
B. subtilis genes that are “hidden” as target mentions
within events. To better address text from biomedicine,
we use the BioLemmatizer [28] instead of a general lem-
matizer. We incorporate an additional knowledge
resource - B. subtilis protein-protein interaction network
from the STRING database [29], which is used within the
new feature function BSubtilisPPI.
We use the term sieve to represent a separate relation-

ship processing component. As we may extract new rela-
tionships or delete them in each of the sieve, the term
might not be well selected but we left the terminology to
comply with the previously published conference paper
[27] and the coreference resolution system [30] that
inspired the architecture of our proposed system.

Related work
Research in the field of relationship extraction focuses on
extraction of binary relationships between two argu-
ments. New systems are typically tested using social rela-
tionships in the Automatic Content Extraction (ACE)
evaluation datasets [31,32], where the goal is to select
pairs of arguments and assign them a relationship type.
Machine learning approaches that have been used for
relationship extraction include sequence classifiers, such
as hidden Markov models [33], conditional random fields
[20], maximum-entropy Markov models [34] and binary
classifiers. The latter usually employs support vector
machines (SVM) [35].
The ACE 2004 dataset [36] consists of two-level hier-

archical relationship types. A relationship could have
another relationship as an argument and a second level
relationship can have only non-relationship-like argu-
ments. Two-level relationship hierarchies could have a
maximum tree height of two. Wang et al. [32] proposed
a system that uses a one-against-one SVM classifier to
classify relationships in the ACE 2004 dataset by employ-
ing WordNet [37]-based semantic features. The GRN
BioNLP 2013 Shared Task aimed to detect three-level
hierarchical relationships. These relationships are inter-
actions that connect events or other types of interactions
as arguments. In comparison to the pairwise technique
[32], we extract relationships using linear-based sequence
models and manually defined rules.

A relation could be written using forms in unstructured
text. Machine learning techniques try to learn diverse
relations by adapting models against large datasets and
by exploiting informative text features. The features are
instantiated by a predefined set of feature functions,
which are applied on a specific dataset. A technique to
overcome a low number of instances of diverse relation-
ship forms was proposed by [38]. They proposed lexical-
syntactic feature functions based on patterns that are
able to identify dependency heads. The proposed solution
was evaluated against two relationship types and two lan-
guages, where they achieved promising results. In this
work we define manually assigned rules to overcome the
heterogeneity of the relationship representation.
Text used for training a relationship extraction model

is most often tagged using the IOB (inside-outside-begin-
ning) notation [39]. In the IOB, the first occurrence of
the relationship word is labeled as B-REL, second and
later consecutive tokens, which also represent relation-
ships are labeled as I-REL, and all other tokens are
O. Part of the text that most closely identifies a known
relationship between the two arguments is referred to as
a relationship descriptor. Li et al. [40] used a linear-chain
CRF model to label such descriptors. They first changed
the subject and object arguments of the accompanying
relationships into a specific value (e.g., ARG-1, ARG-2).
This transformation enabled them to correctly identify
direction of a relationship. Moreover, they also merged
all the tokens from a relationship descriptor into a single
token, which enabled them to use long distance features
using a linear model representation. We employ an ana-
logous model representation, but transform a sequence
of tokens in an innovative way that enables us to extract
the target relationship type between the arguments and
not just a relationship descriptor. Banko and Etzioni [41]
also employed linear-based classifiers for the open rela-
tionship extraction problem, that is, the identification of
a general relationship descriptor without regard to any
target relationship type. First, they analyzed specific rela-
tionship types in the text taking into account lexical and
syntactic features and then they learned a CRF model
against with synonym identification [42]. Their approach
is useful in scenarios where only a very limited number
of relationships are known. Traditional relationship
extraction methods can perform better if our goal is a
high value of recall. For this reason we focus on super-
vised relationship extraction model.
Relationship extraction methods in biomedicine have

been evaluated at several shared task challenges. The
LLL - Learning Language in Logic challenge on gene
interaction extraction [43] is related to the BioNLP 2013
Gene Regulatory Networks Shared Task, which includes
a subset of the LLL data with some additional annota-
tions. For the LLL task, Giuliano et al. [44] used a SVM
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classifier and proposed a specialized local and global
SVM kernel that uses neighboring words as contextual
information. The local kernel was based solely on men-
tion features, such as words, lemmas or part-of-speech
(POS) tags. In contrast, the global kernel used tokens on
the left side of, between and on the right side of pairs of
mentions that represent candidate arguments. To iden-
tify relationships, Giuliano et al. processed documents
that contained at least two candidate attributes and gen-

erated

(
n
k

)
example instances, where n was the number

of all mentions in a document and k was the number
of mentions that constituted a relationship (i.e., two).
Giuliano et al. used their model to predict either a non-
existing relationship, a subject-object relationship or an
object-subject relationship. On a related note, we pro-
pose the usage of contextual features and syntactic fea-
tures that depend on neighboring words. However, we
predict unoriented extracted relationships and then
determine their directionality, i.e., the subject and object
arguments, through manually defined rules.

Survey of BioNLP shared tasks
The BioNLP Shared Task challenges follow an estab-
lished research-wide trend in biomedical data mining
towards the specific information extraction tasks. Chal-
lenge events have been organized thus far in 2009 [45],
2011 [46] and 2013 [47-49], each co-located with the
BioNLP workshop at the Association for Computational
Linguistics (ACL) Conference. The first event triggered
active research in the biomedical community on various
information extraction tasks. Second shared task focused
on generalizing text types and domains, and on support-
ing different event types. The most recent shared task
took a step further and addressed the information extrac-
tion problems in semantic web, pathways, cancer-related
molecular mechanisms, gene regulation networks and
ontology populations.
The BioNLP 2011 Entity Relations challenge focused on

the entity relationship extraction. The best performing sys-
tem, called TEES [35], used a pipeline with SVMs for the
detection of entity nodes and relation prediction that was
followed by post-processing routines. It predicted relation-
ships between every two candidate mentions within a sen-
tence. The evalution showed that the term identification
step could strongly impact on the performance of the rela-
tionship extraction module. In our case, proteins and
mentions of entities, these are mentions that represent
genes, were identified prior to the beginning of the chal-
lenge, and thus, our work here focused on the extraction
of events, relations and event modification mentions.
In this work we describe the method that we devel-

oped while participating in the BioNLP 2013 Gene Reg-
ulation Network Shared Task [47]. We report on several

refinements of our approach that were introduced after
the shared task ended and that allowed us to further
improve its predictive performance. The goal of the
GRN task was to extract gene interactions from research
abstracts and to assemble a gene network, which was
informative of gene regulation. Training data contained
manually labeled texts obtained from research articles
that contained entity mentions, events and interactions
between genes. Entities were text sequences that identi-
fied entities, such as genes, proteins or regulons. Events
and relationships were defined by their type, two con-
nected arguments (i.e., entities) and the direction
between the arguments. Given a test dataset, our goal
was to predict relations describing various types of gene
interactions. Predicted network of extracted gene inter-
actions was matched with the reference gene regulatory
network and scored using a Slot Error Rate (SER) [50].
The SER measures the proportion of incorrect predic-
tions relative to the number of reference relations.

Methods
In this section we present our proposed sieve-based sys-
tem for relation extraction. We start by describing the
linear-chain conditional random field (CRF) model and
proceed by extending it with a novel data representation
that relies on skip-mentions. We provide support for
transforming data into skip-mention sequences by study-
ing various mention distributions that are used by CRF-
based sieves. We then overview feature functions used by
our model and explain the sieve-based system architec-
ture, which is an end-to-end procedure that consists of
data preprocessing, linear-chain CRF execution, rule-
based relationship identification and data cleaning.

Conditional random fields with skip-mentions
CRF [20] is a discriminative model, which estimates dis-
tribution of the objective sequence y conditioned on the
input sequence x, that is, p(y|x). Following is an exam-
ple of the input sequence from the GRN BioNLP 2013
training dataset, where the potential attributes (i.e.,
mentions) are shown in bold:

“spo0H RNA and sigma H levels during growth are
not identical to each other or to the pattern of
expression of spoVG, a gene transcribed by E
sigma H.”

The corresponding objective sequence for this example
is y - [O, O, EVENT, O, EVENT, O, TranscriptionBy],
which also corresponds to tokens in x - [spo0H, sigma H,
levels, expression, spoVG, transcribed, E sigma H]. Thus,
both sequences are of the same length.
We retrieve additional information for input sequence

x and generate sequences xLEMMA, xPARSE, xPOS that
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contain lemmas, parse trees, tokens and part-of-speech
tags for each corresponding token in x. The CRF con-
siders feature functions fj, where j denotes j-th feature
function, j = 1, 2, . . . , m (Figure 2). Feature functions
employ text sequences to model target sequence y. The
design of appropriate feature functions is the most
important step in training CRF models. They contribute
substantially to the improved performance of the sys-
tem. We implement feature functions as templates and
generate the final feature set by evaluating feature func-
tions on a training dataset. The feature functions used
by our model are described in the following section.
Training of a CRF model involves estimating the most

probable objective sequence ŷ ˆ given the input x. In
particular, we estimate

ŷ = argmax p(y—x, w),
y

where w is a vector of model parameters, weights, that
have to be learned. Here, the conditional distribution p
(y|x, w) is written as

p(y—x, w) =
exp

(∑m
j=1 wj

∑m
i=1 fj(y, x, i)

)
C(x, w)

,

where n represents the length of input sequence x, m
the number of feature functions and C(x, w) is a nor-
malization constant over all possible objective sequences
y. Here, fj (y, x, i) denotes a j-th feature that is fired for
i-th place in the input sequence. In our computations
we avoid the need of computing normalization constant
C. Instead of using the exact probabilities we rather rely
on ranking of the sequences relative to their probabil-
ities and return a sequence that is ranked first. use fea-
tures that are fired at least five times on the training
data (a parameter to our system).
The structure of a linear-chain model depends on the

references to the target sequence labels that are used by

the input feature functions. Figure 3 shows the graphical
representation of the linear-chain CRF model. From the
figure we can observe that the i-th factor can depend
only on the current yi label and the previous label yi−1
in a sequence. The training of linear CRFs is fast and
efficient. This is in contrast to more complex CRF mod-
els, whose model inference is in general intractable and
requires approximate probabilistic methods.
Model definition
We formulate the task of relationship extraction as iden-
tification of relationships between two arguments. Lin-
ear-chain CRF model with standard data representation
lacks the modeling of dependencies between mentions
on longer distances (i.e., arguments that have at least
one other token in-between). By analyzing the example
from the previous section, “gene transcribed by E
sigma H“, we conclude that untransformed data repre-
sentation can only identify relationships between two
consecutive tokens. Thus, we cannot extract all possible
relationships using a linear model. Rather than extract-
ing relationship descriptors (i.e., parts of text that iden-
tify a relationship), we would like to extract categorized
relationships between pairs of mentions. To overcome
the limitation of linear models, we introduce new
sequences that contain only mentions. We refer to these
sequences as mention sequences. Mentions are a type of
arguments that can form a relationship. In Figure 4 we
present a conversion of the text excerpt into a mention
sequence. Transformed sequence x consists of consecu-
tive entity mentions. Notice that entity mentions are
included in the training dataset.
We label target sequence y with the name of a rela-

tionship (e.g., Interaction.Transcription, EVENT) or with
the none symbol (i.e., O) when no relationship is pre-
sent. Each relationship label represents a relationship
between the current and the previous mention.
From the mention sequence generated in Figure 4, we

cannot identify relationships between mentions that are
not consecutive. This limitation becomes exacerbated

Figure 2 A feature function example. The feature function
indicates whether the current label is Gene, the previous is Other
and the previous word is “transcribes“, which returns 1 or otherwise
it returns 0.

Figure 3 The linear-chain conditional random fields model
representation. The model is represented with an input sequence
x (e.g., words) and target sequence y (i.e., relationship names)
containing n tokens.
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when mentions that are arguments of a certain relation-
ship appear on longer distances. For example, mentions
spoVG and E sigma H should be related via the Interac-
tion.Transcription relationship. However, this relation-
ship cannot be extracted from representation that
considers only consecutive mention pairs. Furthermore,
a linear model can only detect relationships between
directly consecutive mentions. To overcome this pro-
blem, we introduce a novel sequence representation
called skip-mention sequences. The number of skip-
mentions defines the number of mentions from the ori-
ginal text that exist between two consecutive mentions
in a given skip-mention sequence. Thus, the original
mention sequence (Figure 4) is a zero skip-mention
sequence, because there are zero other mentions
between any two consecutive mentions. This is opposed
to a one skip-mention sequence, which considers rela-
tionships that are one mention apart. For example, to
prepare the input data for extracting relationships
between every second mention, we create two one skip-
mention sequences for each input document. In the
example in Figure 5 we extract relationship Interaction.
Transcription based on one skip-mention sequence.
In a general setting we consider skip-mention

sequences for mentions at distance s. For a given skip-
mention number, s, we create s + 1 mention sequences

of length
[n

s

]
. After the sequences are created, one inde-

pendent linear-chain CRF model is trained for each
value skip-mention number. As the generated sequences
are independent, we can infer prediction models in par-
allel. From the models we read the extracted relation-
ships between the mentions and form an undirected
graph, where each connected component represents a
relationship. Figure 6 shows a high level representation
of data flow and relation extraction used in our
approach. The time complexity of the proposed method
is mainly determined by the time needed for training
linear CRF models, since other routines can be run in
linear time. Due to the parallel execution of the for loop
(0, 1, 2, . . . , s), we need to find the longest lasting
execution. Let us suppose that CRF training and infer-
ence has time complexity of O(ELQ) [51], where E is the
number of edges in the graph, L is the number of labels,
and Q is the size of the maximal clique. In our type of
CRF model, we use one label for each relationship type.
The number of edges E depends on the sequence input
to the algorithm. Let further assume there are n men-
tions in a document, which results in a zero skip-men-
tion sequence with 2n − 1 = O(n) edges. Moreover,
every other generated s skip-mention sequence contains

s
(⌈

2n
s

⌉
− 1

)
= 2n − s = O(n) edges. We conclude that

by employing parallelization, CRF models would use O
(nL2) = O(n) of time (number of labels L is small and
fixed). In addition to other linear time procedures, it is
also important to consider the time for initialization of
feature functions, which takes on the order of O(nm),
where m is the number of input feature functions.
Figure 7 shows the distribution of distances between the
relationship mention arguments (i.e., agents and targets)
from the BioNLP 2013 Gene Regulatory Network train-
ing dataset. The labeled arguments represent entity
mentions or events, depending on the sieve setting.
Event is a type of relation that contains only mentions
as their attributes. Events are extracted using the event
extraction sieve. The distribution of distances between
mentions is shown in the part A of Figure 7. In the
sieve (iv) we identify relationships that have only men-
tions as their attributes (B). In the training data there
are 153 relations that have another relation or an event
as their attribute. Of these, there are 11 such relations
that have another relation as their attribute. Seven con-
tain a regular relation as an attribute, while four repre-
sent negated relations, which are not scored. Relations
that contain events as attributes are extracted by the
event relations processing sieve (v) and the distribution
of distances between the attributes is shown in part C of
the figure. To use the same approach as for the other
sieves, we transform events into mentions (see the sieve

Figure 4 Zero skip-mention sequence . The initial mention
sequence that contains all the mentions (i.e., zero skip-mention)
from the document “spo0H RNA and sigma H levels during growth
are not identical to each other or to the pattern of expression of
spoVG, a gene transcribed by E sigma H.”1 A sentence from the
GRN BioNLP 2013 training dataset, article PMID-1898930-S9.

Figure 5 One skip-mention sequence. One out of two possible
one skip-mention sequences, generated from the initial zero skip-
mention sequence [spOH, sigma H, levels, expression, spoVG,
transcribed, E sigma H]. The other one consists of tokens sigma H,
expression and transcribed.
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(v) for details). Since hierarchies of events or relations
are not considered in model evaluation, we include the
gene relations processing sieve (vi). Sieve (vi) extracts
relations only between mentions, that are identified as
B. subtilis genes. The distribution of distances between
such mentions is presented in part D in the figure. We

notice a drop of number of relationships on distance
one for parts A, B and C. This is due to the fact of all
the mentions we take into account when forming men-
tion sequences. Differently, in part D, we take only gene
mentions into account which also results in not having
a drop at distance one.

Figure 6 Data flow in CRF-based relation extraction sieves. First, the initial skip-mention sequence is transformed into the selected skip-
mention sequences. Then, for each of the skip-mention sequence type, a different CRF model is trained and then used to label the appropriate
skip-mention sequences. After labeling, the relations are instantiated from the tagged sequences and returned as a result.

Figure 7 Distributions of distances between relation attributes on BioNLP GRN train dataset. (A) Mention distance distribution for events.
(B) Mention distance distribution for relations. (C) Mention and event distance distributions for relations. Events are transformed into mentions.
(D) A distribution of distances for relations in which subject and object mentions refer only to B. subtilis genes.
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From all of the distance distributions we observe that
relationships are mostly connected by the attributes on
distance of two entity mentions. These distributions
demonstrate the need to transform our data into skip-
mention sequences. Without the transformation the
linear-chain CRF model would, at best, uncover rela-
tions with attributes at zero distance (i.e., directly conse-
cutive mentions).
For our final results we train the linear CRF models

against skip-mention sequences from zero to ten skip-
mentions. We decide to use this range after observing
the distance distributions between attributes of the rela-
tions. By using up to ten skip-mentions we can retrieve
most of relations and do not overfit the model. The
findings in our previous work [21] show that after
reaching the tail of distance distributions the results do
not further improve.
The feature functions that we consider are thoroughly

explained in Table 1 and Table 2. The tables contain
short descriptions of the functions and parameters that
are used for their instantiation. Additionally, the feature
function generators generate a number of different func-
tions from the training data and for them we also
include the label types from which they are generated.

Data processing components
We introduce a pipeline-like data processing system that
combines multiple data processing sieves (see Figure 1).
Each is a separate data processing component. The whole
system consists of nine sieves. The first two deal with
data preprocessing and data preparation for efficient

relationship extraction. The main ones then consist of
linear CRF-based and rule-based relationship detection.
The last one cleans the data before returning it as a
result. The whole implementation of this proposed pipe-
line is available in a public source code repository [26].
CRFSuite [52] is used for fast CRF training and inference.
The proposed system can be easily adapted to another

domain or other relation extraction task. In order to use
it for other purposes, we would need to adapt the prepro-
cessing part to enable the import of the new data. Also,
the rule-based processing sieve would need to be dis-
carded or populated with specific rules according to a
new problem. All other sieves that extract relations could
be the same because they use trained models and those
would be specific to a domain and task. We also
employed the use of skip-mention sequences to the task
of coreference resolution and achieved comparable
results to existing approaches [21]. The pipeline starts by
transforming the input text into the internal data repre-
sentation, which could be used for further processing and
enriches the data with additional labels, such as part-of-
speech tags, parse trees and lemmas. After that we detect
also action mentions, which are attributes within events.
Next, we employ linear CRF models for event detection.
We represent events as a special relationship type. Then
the main relationships processing sieves detect relation-
ships. We propose several processing sieves for each of
the relationship type based on the argument types or
hierarchy support. After each relationship extraction step
we also use rules to set the agent and target attributes in
the right direction. The last relationship processing sieve

Table 1. Feature functions description

Name Description Options

Target label
distribution

Distribution of target labels. –

Starts upper Does a mention start with an upper case leter. current, previous mention

Starts upper
twice

Do two consequent mentions start with an upper case letter. current, previous mention

Hearst co-
occurence [58]

Does the text between the two mentions follow some predefined rules, e.g., mi such as mj. –

Mention token
distance

Distance between the two mentions in number of mentions. –

Parse tree
mention depth

Depth of the mention within the parse tree. –

Parse tree parent
value

Parse tree value of the mention on length l l ∈ {1, 2, 3}

Parse tree path Path values between the two mentions in a parse tree, e.g., DT/NP/NNS/.../NP/NP/VBG. up to three tokens from
every mention

BSubtilis If the two mentions are known as B. subtilis, what is the probability of protein-protein interaction
using STRING data [29], i.e., very low, low, medium, high, very high.

–

IsBSubtilis Is the current mention known as B. subtilis gene. –

IsBsubtilisPair Which of the two consequent mentions is known as B. subtilis genes, i.e., left, right, both or none. –

The feature functions are used by all CRF-based sieves for all selected skip-mention CRF models. All extracted features are modeled both as unigram and bigram
features. Unigram features are used for current label factor and bigram features are used for transition factor between two labels.
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performs rule-based relationship extraction and therefore
detects relationships of higher precision and boosts recall
levels. In the last step the extracted data is cleaned and
exported.
The sieves of our system are run in the same order as

shown in Figure 1. We provide detailed description of
the processing sieves in the following sections, where we
refer to the relationship attributes as subjects and
objects, as shown in Figure 8. Notice that sieves can
depend on each other if they use data extracted by
sieves executed earlier in the system pipeline (i.e., sieve
(iii) and (v)). The initial set of the mentions is produced
by the mention extraction sieve. This set is then used
throughout the system and represent relation attributes
used by extracted relations.
Preprocessing sieve
Preprocessing phase includes data importation, detection
of sentences and tokenization of input text. Additionally,
we tag the data with new labels, which are lemmas [28],
parse trees [53] and part-of-speech tags.
Mention extraction sieve
The entity mention can belong to any of the following
types: Protein, GeneFamily, ProteinFamily, ProteinCom-
plex, PolymeraseComplex, Gene, Operon, mRNA, Site,
Regulon and Promoter. Entity mentions are provided with
the corpus, however, action mentions (e.g., expresses,
transcribes) are not included in the corpus. We automati-
cally detect action mentions. They are needed to repre-
sent relationship arguments within events during the

event extraction. To identify action mentions we gather
action mention lemmas from the training dataset and
select new candidate mentions from the test dataset by
exact matching of the lemmas.
Event extraction sieve (iii)
An event can be defined as a change in the state of biolo-
gical entities, such as genes or complexes (e.g., “the pattern
of expression of spoVG“). We encode events as a special
relationship with a type name “EVENT“. In the dataset,
the event subject types can be of Protein, GeneFamily,
PolymeraseComplex, Gene, Operon, mRNA, Site, Regulon
and Promoter types, while the objects are always of the
action mention type (e.g., “expression“), which are discov-
ered in the mention extraction sieve. After the event type
relationships are identified, we employ manual rules that
change the order of arguments - they set an action

Table 2. Feature function generators description

Name Description Options Observable data

Prefix value Value of the prefix for the mention on offset distance from the current
mention.

string length: {2,
3}; offset: [−5, 5]

text

Suffix value Value of the suffix for the mention on offset distance from the current
mention.

string length: {2,
3}; offset: [−5, 5]

text

Consequent value A combination of values of the two consequent mentions on offset distance
from the current mention, e.g., PDT/NNS.

offset: [−4,4] text, part-of-speech, lemma,
entity type, coreference

Current value A value of the mention on offset distance from the current mention, e.g., NNS. offset: [−4,4] text, part-of-speech, lemma,
entity type, coreference

Context value Matching of specified length of character-based ngram values within the
selected range of words from the current and previous mentions using Jaccard
coefficient. According to the match result, feature function values are
discretized into eight levels. Different feature functions are generated for the
context left/right of both mentions, between the two, outside the two and
union of all.

range: 5, ngram:
3

text

Previous / next
value
combination

A combination of token values from the selected distance to the current and
the previous mentions.

distance: {−2, 2} text, part-of-speech, lemma

Left / right /
between value

Token values on the left/right or in between the two mentions on the
selected distance.

distance: [1,5] text, part-of-speech, lemma

Split to values Split the current mention into tokens by the selected delimiter and output first
N tokens.

N: 2, delimiter: ‘ text, lemma

According to the implementation, different options and observable values, the generators generate specific feature functions using a single scan over training
data. The feature functions are used by all CRF-based sieves for all selected skip-mention CRF models. All extracted features are modeled both as unigram and
bigram features (except prefix and suffix, which are of unigram type only). Unigram features are used for current label factor and bigram features are used for
transition factor between two labels.

Figure 8 General relation representation. Each relation (e.g., gerE
inhibits cotD) is defined with a name (e.g., Interaction.Regulation)
and subject (e.g., gerE) and object (e.g., cotD) attributes.
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mention as the object and a gene as the subject attribute
for all extracted events.
Relation processing sieves (iv, v, vi, vii)
Due to the existence of different relationships (i.e., dif-
ferent subject and object types), we extract relationships
in four phases (iv, v, vi, vii). This also enables us to
extract hierarchical relationships (i.e., relationships that
contain another relationship as its subject or object) in
order to achieve higher precision. All the sieves in this
step use the novel linear CRF-based relationship extrac-
tion method. Each processing sieve uses specific rela-
tionship properties and is executed in the following
order (the shown examples are sample extractions from
the above demonstrative document):

(iv) First, we extract relationships with only men-
tions as arguments (e.g., transcribed ® Transcrip-
tionBy ® E sigma H). Mentions can be either of the
real or action type. By real mentions we refer to the
entities that represent genes, proteins and aggre-
gates, while action mentions could represent only
arguments within events (e.g., transcription).
(v) In this step, we extract relationships that consist
of at least one event in their arguments (e.g., expres-
sion spoVG ® Interaction.Transcription ® E sigma
H). Before the extraction we map events into men-
tions, which enables us to use the same approach as
in previous step. These mentions consist of two
tokens (i.e., event arguments). We treat the newly
created event mentions the same as others and also
include them in the list of other mentions. Their
order within the list is determined by the lowest
mention token from the event. We train the models
using the same techniques as in every other CRF-
based processing sieve. The new action mentions are
treated as other mentions and from them we extract
features using the same set of feature functions.
Lastly, the final relationships are instantiated follow-
ing the same procedure as in the previous step.
(vi) The goal of the shared task is to extract Interac-
tion relations between B. subtilis genes. Thus, we
select only mentions that represent B. subtilis genes
and train the algorithm to predict the appropriate
Interaction relations (e.g., spoVG ® Interaction.
Transcription ® E sigma H if there was no tran-
scription event). For the mention selection step we
exploit a public database of the B. Subtilis genes
from the NCBI available at http://www.ncbi.nlm.nih.
gov/nuccore/AL009126.
(vii) We propose this new processing sieve in addi-
tion to the previous sieves, which we previously
introduced in the BioNLP challenge submission [27].
The goal of the challenge is to extract interactions
between genes. When there exists a relationship

between a gene G1 and and event E, the final result
in a GRN networks looks exactly the same if our
system extracts a relationship between a gene G1
and a gene G2, where G2 is the object attribute of
the event E. By taking into account the latter, we
train the models to extract relationships only
between B. subtilis genes (e.g., spoVG ® Interaction.
Transcription ® E sigma H, where spoVG is the
subject attribute within an event).

The challenge datasets include seven hierarchical rela-
tionship instances, which have another relationship as
one of its arguments. Due to the small number of
instances and newly introduced relationship extraction
sieve between genes (vi, vii), we did not extract this type
of relationship hierarchies.
Additionally, there exist four negated relation

instances. The BioNLP task considers only positive rela-
tions and there is no performance gain if negated rela-
tions are extracted. Thus, we focus on extracting positive
relations. Depending on the dataset and performance
evaluation measure, we can add a separate sieve that can
extract negated relations by applying manually defined
rules that search for negation words such as nor, neither,
whereas and not.
Rule-based processing sieve
The last phase of relationship extraction involves applica-
tion of the rules to achieve higher precision. The rules
operate directly on the input text with recognized men-
tions and use different data representation than extrac-
tors based on CRFs. We implemented the following four
approaches:
Mention triplets: This method searches for the conse-

quent triplets of mentions, where the middle mention is
an action mention. As input to the rule we set the match-
ing regular expression that searches for text that action
mention must starts with, and a target relation. For
example, from text “The rocG gene of Bacillus subtilis,
encoding a catabolic glutamate dehydrogenase, is tran-
scribed by SigL . . . “, we extract a relation rocG ® Inter-
action.Transcription ® SigL. The mention triplet in this
example is rocG, transcribed and SigL, where the middle
mention is an action mention matching the regular
expression.
Consecutive mentions: The method processes every

two consequent B. subtilis entity mentions and checks
whether the text in-between the mentions matches a spe-
cified regular expression used for extracting a target rela-
tion. By default, it forms relations that are extracted from
active sentences, otherwise it supposes the passive type
and changes the order of attribute types within the
matched relation. For example, from text “GerE binds to
a site on one of these promoters, cotX, that. . . “, we
extract relation GerE ® Interaction.Requirement ® cotX.

Žitnik et al. BMC Bioinformatics 2015, 16(Suppl 16):S1
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Notice that mentions GerE and cotX represent the B. sub-
tilis entities and text between the entities matches a regu-
lar expression “.*binds to.*”.
List of consecutive mentions: This method extends

the technique designed for consecutive mentions by
allowing potentially many entity mentions on both sides
of matched regular expression. The list of mentions
must be separated by one of the delimiters “,”, “, and” or
“and”. For example, this rule extracts two relationships
from the sentence “the cotG promoter is induced under
the control of the sigma K and the DNA-binding pro-
tein GerE.”
Sentences of consecutive mentions: This method is

similar to the rule for consecutive mentions. It first
removes subsentences that exist between two mentions
and then it extracts relationships. Subsentences are
defined as parts of text between two commas. For exam-
ple, the method extracts a relationship GerR ® Interac-
tion.Requirement ® SpoIIID from the sentence “The
sigma(E) factor turns on 262 genes, including those for
GerR, and SpoIIID.”.
The Interaction relationships are extracted using key-

words and regular expressions that depend on the type
of interaction. Biomedical literature uses many different
language forms to express the same type of a genetic
relationship. For example, some researchers prefer to
repress to to inactivate or to inhibit. We use synonyms
of this kind to extract additional relationships that are
not identified by linear CRF models. The parameters
used for rule-based extraction are shown in Table 3.
Data cleaning sieve
The data cleaning sieve removes loops of relationships
and eliminates redundancies. We call relationship a loop
if and only if both relationship arguments refer to the
same entity (i.e., mentions are coreferent). For example,
the sentence “... sp0H RNA and sigma H ...” refers to
the mentions sp0H and sigma H. Since both mentions
refer to the same entity (i.e., sigH), they cannot form a
relationship. Removal of the loops improves perfor-
mance of the system as it contributes to the reduction
of undesired insertions in the final prediction. Another
step in data cleaning phase is removal of redundant
relationships. Disregarding redundant relationships has
no affect on predictive performance of our system but it
improves the readability of the output.

Experimental setup
BioNLP GRN 2013 challenge dataset
The GRN dataset consists of sentences from PubMed
abstracts, which are mostly related to the topic of sporula-
tion in B. subtilis and from which an appropriate gene reg-
ulation network can be reconstructed. It contains
annotated text-bound entities that we call mentions. These
mentions include biochemical events and relationships that

were result of already conducted research work on cellular
mechanisms at the molecular level. The goal of BioNLP
Shared Task was to identify interactions, which represent
relations between biological entities, events or relations
and are essential for construction of GRN. The interaction
relations form a hierarchy of mechanism and effect relation
types. We were required to predict the following fine-
grained interaction relation classes: regulation, inhibition,
activation, requirement, binding and transcription.
In Table 4 we report on the features of the train,

development and test datasets that were used in our
study. The test dataset does not include labeled data
and thus we cannot perform the evaluation of each
sieve against it. In the other two datasets the sentences
are manually labeled with relationships, events and
entity mentions.

Evaluation criterion
The official evaluation criterion of the BioNLP challenge
considers edge resemblance between the predicted and
the reference gene regulatory network describing

Table 3. Rule-based processing sieve input parameters

Regular expression

Mention triplets
Transcription

transcrib

Consecutive mentions

Transcription .*directs transcription.*

Inhibition .*inactivate.*

Inhibition .*inhibits.*

Inhibition .*repressor to.*

Inhibition 1 .*is negatively regulated
by.*

Activation1 .*is governed by.*

Activation1 .*essential.*activat.*

Activation .*to.*activat.*

Activation .*turns on.*

Requirement1 .*requires.*

Requirement .*required.*

Binding .*binds.*to.*

Binding -binding.*

List of consecutive mentions

Transcription .*under.*control.*of.*

Activation1 .*is governed by.*

Inhibition .*represses.*

Inhibition .*to repress.*

Sentences of consecutive
mentions

Activation .*turns on.*

Inhibition .*repressed.*

Each of the four different rule-based extraction methods takes a target
relation name and a regular expression as input. Some of them also require to
specify whether the extraction should be made from active or passive
sentences.
1 The method is called with passive parameter set to true.
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sporulation in B. subtilis. The performance of a rela-
tion extraction system is evaluated using the SER mea-
sure [50]

SER = (S + I + D) /N,

which is the ratio between the sum of relationship
substitutions (S), insertions (I) and deletions (D), divided
by the number of edges in the reference network (N). In
short, systems that output as many wrong predictions as
correct predictions achieve a SER value of 1. Notice that
a system, which reports zero extracted relations, pro-
duces as many deletions as there are relations in a data-
set (i.e., N = D). When a system extracts a true relation,
the number of deletions decreases by one. If it detects a
false relation then either the number of substitutions or
the number of insertions increases by one. More accu-
rate systems have a lower SER. A perfect system would
correctly identify all relations and would achieve a SER
of 0. Our goal is to maximize the number of matched
relations and minimize the number of substitutions,
deletions and insertions.

Results and discussion
We represent the GRN relationship extraction challenge
as a two-level task. First, we need to identify relation-
ships among given labeled mentions and secondly, we
need to correctly identify the argument types of
extracted relationships (i.e., the direction of a relation-
ship). For the challenge evaluation procedure, only
results that match by relationship type and also by both
argument types are counted as correct.
Our approach consists of multiple submodules, i.e.,

sieves, whereas each is developed for extracting a speci-
fic relationship type (e.g., are both arguments mentions,
are arguments an event and a mention, or are both of
them gene mentions). For the CRF-based relation
extraction sieves we use skip-mention distances from

zero to ten. Thus, we first show the overall results and
then discuss the contributions of each sieve and subsets
of feature functions.

Predictive performance
We evaluated the proposed solution against the GRN
BioNLP 2013 Shared Task dataset using leave one out
cross validation on the development data, where we
achieved a SER score of 0.74, with no substitutions, 36
deletions, 14 insertions and 31 matches. According to
the results reported on the development dataset at the
BioNLP workshop [27], this is improvement for one
point in SER due to the additional sieve and new feature
functions.
The challenge test dataset consists of 290 mentions

from 67 sentences. We trained the models jointly on the
development and train datasets to detect relationships
against the test data. The challenge submission results
of other participants in the shared task are listed in
Table 5. According to the official SER measure, our sys-
tem (U. of Ljubljana) was ranked first. The other partici-
pants or participating systems were K. U. Leuven [54],
TEES-2.1 [55], IRISA-TexMex [56] and
EVEX [57]. All the participants were trying to achieve

a low number of substitutions, deletions and insertions,
while trying to increase the number of matched rela-
tionships. We obtained the lowest number of substitu-
tions and good results in the other three counters,
which resulted in the best SER score. In general also
other participants generated a high number of deletions,
which is a clear result that the relationships are encoded
in many and ambiguous forms in the text. The IRISA-
TexMex achieved the lowest number of deletions and
the maximum number of matches but received a low
final result due to a high number of insertions and
substitutions.
Since the submission of our entry to the BioNLP chal-

lenge, we have introduced some new feature functions
and implemented an additional sieve. The new sieve
(vii) extracts relations between B. subtilis genes from
hierarchically encoded relations in the training dataset.

Table 4. BioNLP 2013 GRN Shared Task development,
training and test dataset properties

Dataset dev train test

Documents 48 86 67

Tokens 1321 2380 1874

Real mentions 205 422 290

Action mentions 55 102 86

Events 72 157 –

Relations 105 254 –

Interaction relations 71 159 –

The numbers of the Interaction relations that our system reads from the
datasets is different than the real ones due to the import technique into our
internal data representation. The dev dataset contains 67 and training dataset
contains 131 reference Interaction relations. The test data contains 88 such
relation instances (The number was retrieved from the output of the official
BioNLP GRN Shared Task test evaluation service).

Table 5. BioNLP 2013 GRN Shared Task results on the
test dataset

Participant S D I M SER

U. of Ljubljana 8 50 6 30 0.73

K. U. Leuven 15 53 5 20 0.83

TEES-2.1 9 59 8 20 0.86

IRISA-TexMex 27 25 28 36 0.91

EVEX 10 67 4 11 0.92

The table shows the number of substitutions (S), deletions (D), insertions (I),
matches (M) and slot error rate (SER) metric. Best results per metric are
highlighted in bold. Reported are results announced after the BioNLP 2013
GRN challenge was closed.
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We report the improved results in Table 6. They all
include new feature functions and are grouped by the
inclusion of the new event-based gene processing (vii)
sieve and data cleaning sieves. The result without both
of them already outperforms our submitted result by
one point, with a SER score of 0.72. The new feature
functions extract more relations with increased preci-
sion. It is interesting that the inclusion of the sieve (vii)
deteriorates the final result by about 4 SER points. How-
ever, the inclusion uncovers more matches, but it inserts
a substantial number of non-correct relations, which
results in a higher error rate. Thus, the best SER score
of 0.68 was achieved without the sieve (vii) and with
data cleaning. Compared to our winning result at the
BioNLP Shared Task, this may further improve the sys-
tem by 5 SER points.
In Figure 9 we show the gene regulation network,

which is the visual representation of the results of our
system against the test dataset. Compared to our shared
task submission [27], the improved system identifies two
additional relations (i.e., spoIVFB ® Inhibition ®
spoIVFA, sigE ® Transcription ® gerR) and deletes one
(i.e., sigB ® Transcription ® yvyD). If the deleted rela-
tion is correct, we could merge the results and achieve a
SER of 0.67 with 4 substitutions, 50 deletions, 5 inser-
tions and 34 matches, given 88 relations in the test set.
To the best of our knowledge, this result represents the
most accurate prediction on BioNLP GRN dataset so
far. We were able to retrieve 39% of interactions from
the data, which suggests that automatic extraction of
gene regulatory networks is still a challenging task with
open opportunity for future research.

Analysis of extractions per sieve
Table 7 shows the number of extracted relations by each
sieve. The same relation can be extracted by multiple
sieves. Thus, we apply data cleaning as the last sieve to
remove loop and duplicate relations.
The event extraction sieve uncovers events, which we

represent as relations. Events are not part of perfor-
mance evaluation and thus their extraction does not
directly affect the SER score. Extracted events are given
as input to the event processing sieve, which extracts

relations having an event as a relation attribute. The
first two relation processing sieves (Figure 1) already
achieve promising performance on the development
dataset, while on the test set they extract seven correct
and seven incorrect relations, that is, the SER score
remains 1. The next two sieves extract more correct
relations on the test set and achieve very good results
on the development dataset. The event-based gene pro-
cessing sieve shows substantial improvements on the
development dataset, while there is a minor result
change on the test set. The lowest SER score is achieved
when not using this sieve for the test set (but the CRF
models are trained on both training and development
data). In this setting there are no further improvements
when using rules on the development data. Notice that
the rule-based sieve contributed importantly on the
development data before we introduced the event-based
gene processing sieve into the system. We observed that
many relations previously extracted by rules are now
detected by the event-based gene processing sieve. Con-
trary to development data, rules uncover substantially
more relations on the test dataset than event-based
sieves.

Assessment of subsets of feature functions
The selection of the most informative feature functions is
one of the key tasks in machine learning for improving the
quality of results. In Table 8 we show the results on the
development data when using different subsets of feature
functions. Feature functions were grouped into subsets,
ranging from more general (A-C) to more specific (D-H).
As expected, the results improve when more feature func-
tions are used. If only basic features (A) are applied, the
system detects one wrong relation, which results in a SER
higher than 1. Still, when using B. subtilis-related feature
functions (C), the results show no improvement (Table 8).
We notice a reduction of 0.12 in error rate when prefix
and suffix feature functions (D) were added. Thus, we sus-
pect that the improvement results from combining these
functions with other feature functions (D) or it is due to D
being generator feature functions that generate larger
number of features than the previous (A-C) ones. Also,
the next generator of mention values and mention pairs
(E) substantially improves the result. This is expected,
especially if the same type of relations exist in the develop-
ment dataset and in the training dataset. We confirmed
that D and E perform poorly if used separately, achieving a
SER of 0.98 and 0.87, respectively. If D and E are used
together, the system achieves a SER of 0.81. Thus, the
inclusion of diverse feature functions is important. It may
seem that the feature function subset H does not contri-
bute to the results. This does not hold and can be seen if
subset G is excluded. The latter configuration gives a SER
of 0.74.

Table 6. Results on test data

Setting S D I M SER

wo. (vii) & wo. cleaning 4 51 8 33 0.72

wo. (vii) & cleaning 4 51 5 33 0.68

(vii) & wo. cleaning 5 47 15 36 0.76

(vii) & cleaning 5 47 12 36 0.73

The table shows results on the test set using new feature functions and the
additional sieve (vii) with or without data cleaning. The abbreviations
represent the number of substitutions (S), deletions (D), insertions (I) and
matches (M). Best results per metric are highlighted in bold.
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Conclusions
We presented a sieve-based system for relationship
extraction from textual data. The system uses linear-
chain conditional random fields (CRFs) and manually
defined extraction rules. To enable extraction of rela-
tionships between distant mentions we introduced skip-
mention linear CRF, which extends the applicability of a
linear CRF model. We form skip-mentions by construct-
ing many sequences of mentions, which differ in the
number of mentions we skip.
With a SER score of 0.73 our approach scored best

among the GRN BioNLP-ST 2013 submissions, outper-
forming the second-best system by a large margin. We
described here a number of improvements of our
approach and demonstrated their utility that may be
used to further improve the result (to 0.67 SER score).

The CRF-based sieves in our approach are independent
processing components and can be trained against an
arbitrary data domain for which labeled data exists. We
anticipate the utility of our approach in related data
domains and for tasks with corpora.
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Figure 9 Predicted gene regulation network on test data. The predicted gene regulation network, generated from extracted relations on the
test dataset by our improved sieve-based system. For our winning extractions at the BioNLP 2013 GRN Shared Task see the workshop paper [27].

Table 7. Relations extracted by each sieve on
development and test datasets

Dev Test

Sieve # SER # SER

Event extraction 29 1.00 32 1.00

Mention processing 44 0.87 12 1.00

Event processing 11 0.84 2 1.00

Gene processing 14 0.84 5 0.97

Event-based gene processing1 26 0.73 15 0.96

Rule-based processing 12 0.75 53 0.76

Data cleaning 22/20 0.75 14/5 0.73

Data cleaning results represent the number of loop relations and the number
of redundant relations (separated by forward slash). Slot error rate (SER)
results are cumulative.
1 Due to additional analysis we saw that the event-based gene processing
sieve does not improve the final results, therefore we do not employ this
sieve on the test data for the final result.

Table 8. Relations extracted by different subsets of
feature functions on a development dataset

Subset of feature functions S D Dev I M SER

A 0 67 1 0 1.01

A - B 1 64 2 2 1.00

A - C 1 64 2 2 1.00

A - D 0 52 7 15 0.88

A - E 0 41 12 26 0.79

A - F 1 38 12 28 0.76

A - G 0 37 12 30 0.73

A - H 0 37 12 30 0.73

The table shows the number of substitutions (S), deletions (D), insertions (I),
matches (M) and slot error rate (SER) metric. The results are measured on the
development dataset using CRF-based sieves only. Best results per metric are
highlighted in bold. The feature function subsets are selected as follows: (A)
target label distribution, starts upper, starts upper twice, Hearst co-occurence,
mention token distance, (B) parse tree mention depth, parse tree parent
value, parse tree path, (C) BSubtilis, IsBSubtilis, IsBSubtilisPair, (D) prefix value,
suffix value, (E) consequent value, current value, (F) context value, (G)
previous/next value combination, left/right/between value and (H) split to
values. For their detailed descriptions see Table 1 and Table 2.
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