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Abstract

As Graph Neural Networks (GNNs) are
increasingly being employed in critical
real-world applications, several methods
have been proposed in recent literature to
explain the predictions of these models.
However, there has been little to no work
on systematically analyzing the reliability of
these methods. Here, we introduce the first-
ever theoretical analysis of the reliability of
state-of-the-art GNN explanation methods.
More specifically, we theoretically analyze
the behavior of various state-of-the-art GNN
explanation methods with respect to several
desirable properties (e.g., faithfulness, stabil-
ity, and fairness preservation) and establish
upper bounds on the violation of these prop-
erties. We also empirically validate our the-
oretical results using extensive experimenta-
tion with nine real-world graph datasets. Our
empirical results further shed light on several
interesting insights about the behavior of
state-of-the-art GNN explanation methods.

1 INTRODUCTION

Graph Neural Networks (GNNs) have emerged as pow-
erful tools for effectively representing graph structured
data, such as social, information, chemical, and biolog-
ical networks. As these models are increasingly being
employed in critical applications (e.g., drug repurpos-
ing (Zitnik et al., 2018), crime forecasting (Jin et al.,
2020)), it becomes essential to ensure that the relevant
stakeholders can understand and trust their function-
ality (Ying et al., 2019). Only if the stakeholders have
a clear understanding of the behavior of these models,
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they can evaluate when and how much to rely on these
models, and detect potential biases or errors in them.
To this end, several approaches have been proposed
in recent literature to explain the predictions of
GNNs (Baldassarre and Azizpour, 2019; Faber et al.,
2020; Huang et al., 2020; Lucic et al., 2021; Luo et al.,
2020; Pope et al., 2019; Schlichtkrull et al., 2021; Vu
and Thai, 2020; Ying et al., 2019). Based on the tech-
niques they employ, these approaches can be broadly
characterized into perturbation-based (Luo et al.,
2020; Schlichtkrull et al., 2021; Ying et al., 2019),
gradient-based (Simonyan et al., 2014; Sundararajan
et al., 2017), and surrogate-based (Huang et al., 2020;
Vu and Thai, 2020) methods (Yuan et al., 2020b).

While several classes of GNN explanation methods
have been proposed in recent literature, there is little
to no understanding as to which of these approaches
are more effective than the others and/or if some of
these approaches are better suited for certain kinds
of real-world applications. This lack of understanding
not only limits the applicability of GNN explanation
methods in practice but also hinders the progress
of research in graph XAI. More specifically, without
such a deeper understanding, stakeholders in real-
world settings may not be able to determine which
approaches to employ, and researchers in the field
may expend a lot of resources studying ineffective
solutions. This lack of understanding mainly stems
from the fact that there is very little work on system-
atically analyzing the reliability of various classes of
state-of-the-art GNN explanation methods.

Few recent works have focused on empirically evalu-
ating GNN explanation methods (Yuan et al., 2020b).
For instance, Sanchez-Lengeling et al. (2020) focused
on evaluating methods that output attributions (i.e.,
highlight input features influential to model predic-
tions). They outlined various properties a GNN expla-
nation method should satisfy — e.g., accuracy, faith-
fulness, and stability. Using these metrics, they em-
pirically evaluated only gradient-based GNN explana-
tion methods (e.g., SmoothGrad, GradCAM). More
recently, Faber et al. (2021) highlighted the pitfalls
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of using arbitrary ground truth patterns in the data
when evaluating GNN explanations as there may be a
mismatch between these patterns and the GNN itself.
They introduced three benchmark datasets to alleviate
the aforementioned pitfalls. While these works make
initial attempts at empirically evaluating GNN expla-
nations, the metrics outlined are neither generalizable
nor exhaustive. For example, most of the proposed
metrics rely on the availability of ground truth expla-
nations, thus severely limiting the kinds of datasets
that can be used during evaluation. Those metrics
do not account for fairness properties of explanations
which are critical to applications like crime forecast-
ing (Aivodji et al., 2019). Further, these works do not
focus on theoretically analyzing the reliability or effec-
tiveness of state-of-the-art GNN explanation methods.

Present work. In this work, we introduce the first
ever theoretical analysis of the reliability of state-of-
the-art GNN explanation methods. More specifically,
we analyze the behavior of various GNN explanation
methods w.r.t. several key desirable properties such as
faithfulness (i.e., faithfully mimicking the predictions
of the underlying model), stability (to small changes in
the input), and fairness preservation (i.e., preserving
the (un)fairness of the underlying model). While we
leverage existing notions of faithfulness and stability
outlined in prior literature, we introduce the notion
of fairness preservation for GNN explanations for the
first time in this work. As GNNs are increasingly be-
ing deployed in domains such as criminal justice and
financial lending, it becomes critical to ensure that the
GNN explanations preserve the fairness properties of
the underlying GNN models. For instance, if a GNN
model is biased against a protected group (e.g., vio-
lates the notion of statistical parity), then the corre-
sponding explanation should reflect that.

We formalize the above properties such that they do
not rely on the availability of ground truth explana-
tions and are therefore more generalizable to different
domains and datasets. We then leverage these for-
malisms to establish theoretical upper bounds on the
violation of the aforementioned properties for various
state-of-the-art GNN explanation methods (Sec. 3).
To carry out our theoretical analysis, we leverage the
notion of Lipschitz continuity (Theorems 2-7) and em-
ploy concepts from information theory and probability
theory such as data processing inequalities (Theorems
1-8) and total variation distance (Theorem 8). We also
perform an extensive empirical evaluation with GNN
explanation methods on nine real-world datasets and
multiple learning tasks (i.e., node classification, link
prediction and graph classification). Our empirical re-
sults validate our theoretical bounds and also unearth
some critical insights about the behavior of state-of-

the-art GNN explanation methods, 1) Gradient-based
methods exhibit poor performance w.r.t. faithfulness
and stability, but perform quite well w.r.t. counter-
factual fairness; perturbation-based methods, on the
other hand, exhibit the best performance at preserv-
ing group fairness (Fig. 5), 2) Random baselines (par-
ticularly random edge baseline) perform either on par
or sometimes even better than state-of-the-art GNN
explanation methods (Fig. 6) w.r.t. faithfulness and
group fairness preservation, and 3) on average across
all datasets and all our key properties, explanations
comprising of graph structures perform slightly better
than those that comprise of node features (Fig. 4).

2 RELATED WORK

This paper builds upon a wealth of previous research at
the intersection of explanation methods, graph neural
networks, and systematic evaluation of explanations.

Explanation methods for GNNs. GNNs specify
non-linear transformation functions that map graph
structures (nodes, edges or entire graphs) into com-
pact vector embeddings (Li et al., 2021). A variety of
GNN architectures have been designed (Pareja et al.,
2020; Yun et al., 2019; Zitnik et al., 2018), and recent
research has focused on developing methods to explain
GNN predictions (Baldassarre and Azizpour, 2019;
Pope et al., 2019; Ying et al., 2019; Huang et al., 2020;
Luo et al., 2020; Vu and Thai, 2020; Schlichtkrull
et al., 2021; Chen et al., 2021; Han et al., 2021). Early
methods developed graph analogs of gradient-based
methods from computer vision literature, including
gradient heatmaps (Simonyan et al., 2014) and inte-
grated gradients (Sundararajan et al., 2017). Recently,
perturbation-based methods (Ying et al., 2019; Luo
et al., 2020; Schlichtkrull et al., 2021) explain GNN
predictions by observing the change in model pre-
dictions w.r.t. different input perturbations to study
node and edge importance. Finally, surrogate-based
methods (Huang et al., 2020; Vu and Thai, 2020) fit an
interpretable model to local neighborhoods of the node
such that the model captures the GNN’s behavior in
the local vicinity of target nodes. See Appendix A for
a detailed overview of the explanation methods.

Evaluation of GNN explanation methods.
Empirical studies of deep neural network explana-
tions evaluated methods and designed benchmarks
for image, text, audio, time series, and sensory
datasets (Jeyakumar et al., 2020; Liu et al., 2021;
Arya et al., 2019; Fauvel et al., 2020; DeYoung et al.,
2020; Amparore et al., 2021). However, due to the
relative infancy of GNN explainability as a field, rig-
orous analyses of GNN explanation methods are very
limited. While few works such as Sanchez-Lengeling
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et al. (2020); Yuan et al. (2020b); Faber et al. (2021)
make initial attempts at empirically evaluating GNN
explanation methods, the metrics outlined are neither
generalizable nor exhaustive. For instance, most of
the proposed metrics rely on the availability of ground
truth explanations, thus severely limiting the kinds of
datasets that can be used for evaluation. The proposed
metrics also do not account for fairness properties of
explanations which are critical to applications such as
crime forecasting (Aivodji et al., 2019). Furthermore,
despite few preliminary attempts at theoretical
analysis of generic XAI techniques such as LIME and
SmoothGrad (Chen et al., 2018; Agarwal et al., 2021b;
Garreau and Luxburg, 2020), no theoretical analysis
of GNN explanation methods has been attempted.

3 THEORETICAL ANALYSIS OF
GNN EXPLANATION METHODS

In this section, we theoretically analyze the reliability
of various state-of-the-art GNN explanation methods.
We first outline and formalize the key desirable
properties that capture the reliability of a given GNN
explanation, namely, faithfulness, stability, and fair-
ness preservation. More specifically, we posit that a
reliable GNN explanation should faithfully mimic the
predictions of the underlying GNN model, preserve
critical model characteristics such as (un)fairness of
the underlying model, and exhibit stability to small
input perturbations. While we adopt existing notions
of faithfulness and stability outlined in prior litera-
ture, we introduce and define the notion of fairness
preservation for GNN explanations for the first time in
this work. We then leverage these formalisms to derive
upper bounds on the violation of the aforementioned
properties for several GNN explanation methods.

Notation: Graphs and GNNs. Let G=(V, E ,X)
denote an undirected and unweighted graph compris-
ing of a set of nodes V, a set of edges E , and a set
of node feature vectors X={x1, . . . ,xN} correspond-
ing to nodes in V, where xu∈RM . Let N=|V| denote
the number of nodes in the graph and A ∈ RN×N be
the adjacency matrix, where element Aij=1 if nodes
i and j are connected by some edge in E , and Aij=0
otherwise. We use Nu to denote the 1-hop neighbors
of node u excluding itself. Without loss of general-
ity, we focus on the node classification task and use
f to denote a GNN model trained to predict node la-
bels. Note that the metrics we consider in this work
can also be applied to other graph machine learning
tasks (e.g., link prediction and graph prediction) as
we demonstrate in Sec. 4. The GNN model’s predic-
tion for node u is given by ŷu=f(Gu), where Gu is the
computation graph for node u and ŷu∈[0, 1]C . The

associated adjacency matrix and node attributes for
Gu are denoted by Au∈{0, 1}N×N (an element in this
matrix has the value 1 if it corresponds to an edge
connecting node u and some node in Nu; otherwise
it is set to 0) and Xu={xi|i ∈ {u,Nu}} respectively.
Also, ŷu= arg maxc ŷu is the predicted label, where
ŷu ∈ {0, 1, . . . , C − 1} and C is the number of classes.

Notation: GNN explanations. In this work, we
focus on instance level explanations which are the
most popular class of explanations studied in GNN
literature. Instance level explanations, as the name
suggests, explain model predictions associated with in-
dividual entities (e.g., nodes) in the graph (and do not
capture the global behavior of the entire GNN model).
For instance, the explanation Eu corresponding to
node u comprises of a subset of node features and a
subset of edges that influence the prediction of node
u, i.e., ŷu. In particular, the explanation Eu consists
of a discrete node feature mask ru∈{0, 1}M and/or
a discrete edge mask Ru∈{0, 1}N×N . An element
in ru or Ru takes the value 1 if the corresponding
node feature or edge (respectively) influences the
prediction (and is therefore important), and is set to
0 otherwise. We use t(Eu,Gu) to denote a masking
function which zeroes out all those node features and
incident edges of u that are not deemed as important
by the explanation Eu, i.e., t(Eu,Gu) updates the
node attributes and adjacency matrix corresponding
to Gu as follows: Xu={xu ◦ ru} ∪ {xi|i ∈ Nu} and
Au=Ru ◦ Au. Finally, we use ŷEu =f(t(Eu,Gu)) to
denote the prediction label output by f for node u
when the masked subgraph is provided as the input.

3.1 Theoretical Guarantees on Faithfulness

A reliable explanation should highlight the key
node/edge features that the underlying GNN lever-
ages to make a prediction. In a GNN’s neural
message-passing scheme, every node has access to a
local view of the graph created by propagating neural
messages (embeddings) along edges in the node’s local
neighborhood (Vignac et al., 2020). Following Pope
et al. (2019) and Yuan et al. (2020b), we evaluate
the faithfulness of the explanation corresponding to
any given node u by leveraging both its features as
well as the incident edges. Formally, we say that an
explanation Eu corresponding to a node u is faithful if
it accurately captures the behavior of the underlying
model f in the local region around u. To operational-
ize this, we first generate the local region around u by
constructing a set K of nodes comprising of node u and
its perturbations. These perturbations are generated
by making infinitesimally small changes to its node
features and/or rewiring the edges incident on node u
with a small probability. Next, we obtain the model
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predictions as well as explanation Eu’s predictions for
node u and all its perturbations. Note that the expla-
nation’s predictions can be obtained by first using the
mapping function t, which takes an explanation mask
and applies it to any given node and its subgraph (See
Notation on GNN explanations above) to generate a
new masked subgraph, which is then passed as input to
the model f to obtain a prediction. The average differ-
ence between the model and explanation predictions
for all the nodes in K will provide us with an estimate
of how unfaithful the explanation Eu is. The smaller
this estimate, the more faithful the explanation Eu.

Definition 1 (Faithfulness). Given a set K compris-
ing of a node u and its perturbations, an explanation
Eu corresponding to node u is said to be faithful if:

1
|K|

∑
u′∈K

||f(Gu′)− f(t(Eu,Gu′))||2 ≤ δ, (1)

where Gu′ denotes a subgraph of node u′ and δ is an
infinitesimally small constant. Note that the left hand
side of Eqn. 1 is a measure of unfaithfulness of the ex-
planation Eu. So, higher values indicate higher degree
of unfaithfulness.

Now we derive upper bounds on unfaithfulness of ex-
planations output by GNN explanation methods.

Theorem 1. Given a node u and a set K of node
perturbations, the unfaithfulness (Sec. 3.1, Eqn. 1) of
its explanation Eu can be bounded as follows:

1
|K|

∑
u′∈K

||f(Gu′)−f(t(Eu,Gu′))||2 ≤ γ
(1+|K|)
|K|

||∆||2,

where f(Gu′)=ŷu′ are softmax predictions using orig-
inal graph attributes, f(t(Eu,Gu′))=ŷEu′ are softmax
predictions using important attributes identified by
Eu, γ is the product of the Lipschitz constants for
GNN’s activation function and layer weights, and ∆
represents the embedding difference for node u when
we exclude unnecessary nodes/node features/edges as
identified by an explanation.

Proof Sketch. In Theorem 1, the bound estimates
an explanation’s unfaithfulness and is tight if the Lip-
schitz constant of the activation functions and `p-
norm of the GNN weights are bounded. The theorem
demonstrates that the bound is dependent not only on
the output explanation but also on the weights of the
GNN and is small when the difference between the em-
beddings using Eu (see notations) is small or for GNN
layers having smaller Lipschitz constant values.

We show that unfaithfulness of a node fea-
ture explanation (like GraphLIME) is bounded by
γ11

1+|K|
|K| ||(1−ru) ◦ xu||2, where γ11 is the product

of the Lipschitz constant for GNN’s activation func-

tion, weights of the last classification layer and self-
attention weight of node u across all GNN layers,
and ∆ for GraphLIME is (1−ru) ◦ xu representing
the difference in node u’s features when we exclude
the unimportant node features identified by the ex-
planation. Similarly, for an edge-level explanations
(like GraphMASK), the unfaithfulness is bounded by
γ12

(1+|K|)
|K| ||∆xv ||2, where γ12 is similar to γ11 but uses

weights associated with u’s immediate neighbors in-
stead of self-attention weight and ∆xv

is the difference
between embeddings of u’s neighbors where we exclude
unnecessary edges as identified by the GraphMASK
explanation. See Appendix B.1 for more details.

3.2 Theoretical Guarantees on Stability

Another key trait of a reliable explanation is that
it should exhibit stability, i.e., infinitesimally small
perturbations to an instance (which do not affect its
model prediction) should not change its explanation
drastically (Lakkaraju et al., 2020; Yuan et al., 2020b).
To this end, we use the definition of stability outlined
in Yuan et al. (2020b). An explanation Eu for node
u’s prediction is considered stable if the explanations
corresponding to u (i.e., Eu) and its perturbation u′

(denoted by Eu′) are similar. Here, the perturbation
u′ is generated in the same way as above by rewiring
the edges incident on u with a small probability and/or
making small changes to its node features.

Definition 2 (Stability). Given a node u and its
perturbation u′, an explanation Eu corresponding to
node u is said to be stable if:

D
(
Eu,Eu′

)
≤ δ, (2)

where Eu′ is the explanation for u′, D(·) computes dis-
tance between two explanations, and δ is an infinitesi-
mally small constant. The left side of Eqn. 2 measures
instability of the explanation Eu and higher values in-
dicate higher instability.

Now, we take a representative explanation method
for each class of gradient-based (VanillaGrad (Si-
monyan et al., 2014)), perturbation-based (Graph-
MASK (Schlichtkrull et al., 2021)), and surrogate-
based (GraphLIME (Huang et al., 2020)) methods and
derive bounds on the instability of their explanations.

Theorem 2 (VanillaGrad). Given a non-linear ac-
tivation function σ that is Lipschitz continuous, the in-
stability (Sec. 3.2, Eqn. 2) of explanation Eu returned
by VanillaGrad method can be bounded as follows:

||Oxu′ f − Oxuf ||p ≤ γ3||xu′ − xu||p, (3)

where γ3 is the product of the `p-norm of the pre-
diction difference between the original and perturbed
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node, the weight of the final classification layer, and
GNN’s weight matrices.

Proof Sketch. Using data processing inequalities, we
prove that the `p-norm of the difference between the
gradient explanations generated using the original and
perturbed node features is Lipschitz continuous. In
Theorem 2, we demonstrate that the instability of a
VanillaGrad explanation is upper bounded by the in-
stability of the underlying GNN model, e.g., Vanilla-
Grad explanation has higher instability for GNNs with
higher `p-norm layer weights. See Appendix B.2.1 for
more details.

Theorem 3 (GraphMASK). Given concatenated
embeddings of node u and v, the instability (Sec. 3.2,
Eqn. 2) of explanation Eu returned by GraphMASK
method can be bounded as follows:

||zlu′,v − zlu,v||2 ≤ γl4 ||qlu′,v − qlu,v||2, (4)

where zlu,v is the GraphMASK explanation indicating
whether an edge connecting node u and v∈Nu in layer
l can be dropped or not, qlu,v is the concatenated
embeddings for node u and v∈Nu at layer l, and γl4
denotes the Lipschitz constant which is a product of
the `2-norm of the weights in the l-th layer and the
Lipschitz constants for the layer’s normalization and
softplus activation function.

Proof Sketch. We prove that a GraphMASK’s expla-
nation for an edge at layer l is Lipschitz continuous
and γl4 is the product of the Lipschitz constants of the
layer’s normalization function and the `2-norm of the
weight matrices of the erasure function. Intuitively,
the instability of GraphMASK explanation is bounded
by the difference between the GNN’s embedding for
the original and perturbed node and the Lipschitz con-
stant, i.e., GraphMASK explanation have higher in-
stability if the `2 difference between the concatenated
embeddings qlu,v for the original and perturbed nodes
is high. Details are in Appendix B.2.2.

Theorem 4 (GraphLIME). Given the centered
Gram matrices for the original and perturbed node fea-
tures, the instability (Sec. 3.2, Eqn. 2) of explanation
Eu returned by GraphLIME method can be bounded as:

||β
′

k − βk||F ≤ γ2 · tr((
1

eTW−1e )−1 − I), (5)

where β′

k and βk are attribute importance generated
by GraphLIME for the perturbed and original node
features, γ2 is the trace of the Gram matrix for the
original graph and its predictions, e is an all-one vec-
tor, and W is a matrix comprising of the noise added
to the graph.

Proof Sketch. We prove that GraphLIME’s instability
is bounded by the trace of the Gram matrix for the

output label and the perturbed Gram matrix due to
noise added in the input graph. In Theorem 4, we first
derive the closed-form of the attribute importance
coefficient β and then use it derive the upper bounds
for the GraphLIME’s instability. The theorem demon-
strates that the bounds are tighter when the trace
of the Gram matrix for the original and perturbed
graphs are bounded, i.e., GraphLIME explanation
have higher instability if the `2-norm of the Gram
matrix is high. Details are in Appendix B.2.3.

3.3 Theoretical Guarantees on Fairness
Preservation

As GNNs are increasingly employed in critical appli-
cation domains, such as financial lending and criminal
justice, it becomes crucial to ensure that the GNN
explanations preserve the fairness properties and cap-
ture the biases of the underlying model. For instance,
if a model is biased against a protected group, then its
explanations should reflect that. This will help both
model developers and practitioners in recognizing and
addressing these prejudices. Analogously, if a model is
fair, then its explanations should reflect that. To this
end, we introduce and consider two notions of fairness
for GNN explanation methods, namely, counterfactual
fairness preservation and group fairness preservation.

a) Counterfactual Fairness Preservation. An ex-
planation Eu preserves counterfactual fairness if the
explanations corresponding to u (i.e., Eu) and its sen-
sitive feature perturbation us (denoted by Eus) are
similar (dissimilar) if their model predictions are sim-
ilar (dissimilar). Note that the sensitive feature per-
turbation us is generated by flipping/modifying the
sensitive feature s in the node feature vector of u (de-
noted by xu) while keeping everything else constant.

Definition 3 (Counterfactual Fairness Preserva-
tion). Given a node u and its sensitive feature per-
turbation us, an explanation Eu is said to preserve
counterfactual fairness if:

D
(
Eu,Eus

)
∝ f(Gu)− f(Gus), (6)

where Eus is explaining us’s prediction, Gu and Gus are
subgraphs associated with u and us, respectively. The
left hand side of Eqn. 6 is a measure of counterfactual
fairness mismatch of the explanation Eu.

Analogous to the stability analysis (Sec. 3.2), we now
derive the bounds for counterfactual fairness mismatch
of VanillaGrad, GraphMASK, and GraphLIME expla-
nation methods.

Theorem 5 (VanillaGrad). Given a non-linear ac-
tivation function σ that is Lipschitz continuous, the
counterfactual fairness mismatch (Sec. 3.3, Eqn. 6)



Probing GNN Explainers: A Rigorous Theoretical and Empirical Analysis of GNN Explanation Methods

of an explanation Eu returned by VanillaGrad method
can be bounded as follows:

||Oxus f − Oxuf ||p ≤ γ3, (7)

where xu is node u features, xus is the generated coun-
terfactual by flipping xu’s sensitive feature, and γ3 is
similar to that in Theorem 2.

Proof Sketch. The `p distance between xus and xu is
one in Eqn. 7 as all the individual node attributes are
the same except the sensitive attribute which is flipped
(either from 0→1 or 1→0). The right term in Eqn. 7
is similar to Eqn. 3. Hence, using ||xu′−xu||p=1 in
Eqn. 3, we derive the equation in Theorem 5. The
theorem demonstrates that the counterfactual fairness
mismatch for a VanillaGrad explanation is bounded
by the `p-norm of the weights of GNN layers and the
prediction difference between the original and counter-
factual node.

Theorem 6 (GraphMASK). Given concatenated
embeddings for node u and v, the counterfactual fair-
ness mismatch (Sec. 3.3, Eqn. 6) of an explanation Eu

returned by GraphMASK method can be bounded as:

||zlus,v − zlu,v||2 ≤ γl4 ||qlus,v − qlu,v||2, (8)

where zlus,v is the GraphMASK explanation indicating
whether an edge between node us and v∈Nus in layer
l can be dropped or not, qlus,v is the concatenated
embeddings for node us and v∈Nus at layer l, and γl4
is the same constant as defined in Theorem 3.

Proof Sketch. A counterfactual node us is generated
by flipping one sensitive attribute from xu. The term
qlus,v denotes the concatenated embedding for node us
and v ∈ Nus at layer l. Note, for the first layer, the
right term of Eqn. 8 simplifies to just γl4 as the `p be-
tween the xus and xu is one, i.e., ||xus−xu||p=1. The
Theorem states that GraphMASK explanation have
higher counterfactual fairness mismatch if the product
of the `2 difference between the concatenated embed-
dings qlu,v and the Lipschitz constant is high.

Theorem 7 (GraphLIME). Given the centered
Gram matrices for the original and counterfactual
node attributes, the counterfactual fairness mismatch
(Sec. 3.3, Eqn. 6) of an explanation Eu returned by
GraphLIME method can be bounded as follows:

||βsk − βk||F ≤ γ2 · tr((
1

eTW̄−1e
)−1 − I), (9)

where βsk and βk are GraphLIME’s attribute impor-
tance for the k-th feature of us and u, respectively,
and γ2 is similar to that in Theorem 4.

Proof Sketch. Let us consider the k-th node feature
as a binary sensitive attribute where s∈{0, 1}. In The-
orem 7, we obtain a matrix W where η in W will be

either 1 or −1, i.e., η=1 when flipping the sensitive
attribute from 0→1, and η=−1 when flipping from
1→0. This does not change the positive semidefinite
and invertible property of W as all diagonal elements
are still 1 (invertible) and the off-diagonal elements are
exponential (always positive). We denote this modi-
fied matrix as W̄. The proof is similar to Theorem
4.

b) Group Fairness Preservation. The notion of
group fairness preservation has been quantified us-
ing different metrics, such as statistical parity (SP)
(Dwork et al., 2012), equality of opportunity (Hardt
et al., 2016) etc. Here, we focus on SP which en-
sures that the probability of a positive outcome is in-
dependent of the sensitive features. Formally, an ex-
planation Eu preserves group fairness if it accurately
captures the SP of the underlying GNN f in the lo-
cal region around u. To operationalize this, we first
construct a set K of nodes comprising of the orig-
inal node u, and its perturbations. Next, we ob-
tain the model and explanation Eu’s predictions for
all nodes in set K. Note, the perturbations, the
model and explanation predictions are obtained in the
same way as described in Sec. 3.1. We denote the
model predictions and explanation predictions using
ŷK = {ŷ1, ŷ2, . . . , ŷ|K|} and ŷEu

K = {ŷEu
1 , ŷEu

2 , . . . , ŷEu

|K|}
respectively. Now, if the SP computed using the two
vectors ŷK and ŷEu

K are similar, then the explana-
tion Eu is said to preserve group fairness. The sta-
tistical parity estimates for ŷK can be computed as
SP(ŷK)=|Pr(ŷu′=1|s=0)−Pr(ŷu′=1|s=1)|, where the
probabilities are computed over all the nodes in K. Fi-
nally, SP(ŷEu

K ) estimate can be computed analogously
using explanation Eu’s predictions.

Definition 4 (Group Fairness Preservation).
Given a set K of node u and its perturbations, an ex-
planation Eu preserves group fairness if:

| SP(ŷK)− SP(ŷEu

K ) | ≤ δ, (10)

where the left hand side term of the inequality in
Eqn. 10 is a measure of group fairness mismatch of
the explanation Eu. So, higher values indicate that
the explanation is not preserving group fairness. Next,
we derive bounds for the graph fairness mismatch.

Theorem 8. Given a node u, a sensitive feature s,
and a set K comprising of node u and its perturbations,
the group fairness mismatch (Sec. 3.3, Eqn. 10) of an
explanation Eu can be bounded as follows:

| SP(ŷK)−SP(ŷEu

K ) | ≤
∑

s∈{0,1}

|ErrDs(f(t(Eu,Gu′))−f(Gu′))|,

where SP(ŷK) and SP(ŷEu

K ) are statistical parity esti-
mates, D is the joint distribution over node features



Chirag Agarwal, Marinka Zitnik, Himabindu Lakkaraju

xu′ in Gu′ and their respective labels yu′ for ∀u′ ∈ K,
Ds is D conditioned on the value of the sensitive fea-
ture s, and ErrDs

(·) is the model error under Ds.

Proof Sketch. We show that group fairness mismatch
of an explanation is bounded by the sum of the model
errors ErrDs

(·) under distribution Ds. For a set of K
nodes, the error is computed by taking the expectation
of the difference between their true labels, set of model
predictions using the original node features and inci-
dent edges, and their corresponding predictions using
the explanation Eu. In Theorem 8, the upper bound
is the approximation error and reflects the error due
to the prediction differences. The theorem shows that
the ability of an explanation to preserve group fairness
is quantified by the model error under the distribution
Ds, i.e., an explanation obtains lower group fairness
mismatch for smaller difference in model predictions
when using only the important features identified by
the explanation. Details are in Appendix B.3.

4 EMPIRICAL ANALYSIS OF GNN
EXPLANATION METHODS

Here, we present empirical analysis of state-of-the-art
GNN explanation methods. Firstly, we verify the
validity of our theoretical bounds by evaluating the
faithfulness, stability, and fairness preservation prop-
erties of GNN explanation methods on node classifica-
tion datasets. Next, we analyze the trade-offs between
the aforementioned properties. Lastly, we evaluate
the aforementioned properties on other downstream
tasks such as link prediction and graph classification.

Datasets. We use 9 real world datasets to empirically
analyze the behavior of GNN explanation methods
w.r.t. key properties outlined in Sec. 3. We consider
6 benchmark datasets (Cora, PubMed, Citeseer, Ogb-
mag, Ogb-arxiv, MUTAG) and 3 datasets (German
credit, Recidivism, Credit defaulter) with sensitive
features (e.g., race, gender) from high-stakes domains.
See Appendix C for a detailed overview of datasets.

Evaluation metrics. We quantify the reliability of
an explanation using properties from Sec. 3. In
particular, we calculate unfaithfulness (Eqn. 1) as:

1
|K|
∑
u′∈K ||f(Gu′)−f(t(Eu,Gu′))||2, where the differ-

ence is between predictions made using original and
masked node features/edges; instability (Eqn. 2) as:
D
(
Eu, Eu′

)
, where D is normalized `1 distance be-

tween explanations generated for the original and
perturbed node; counterfactual fairness mismatch
(Eqn. 6) as: D

(
Eu, Eus

)
, where D is normalized `1

distance between explanations (Note that an explana-
tion consists of node feature masks and/or edge masks
as defined in Section 3 (Notation)) generated for the

original and counterfactual node; and group fairness
mismatch (Eqn. 10) as: | SP(ŷK)−SP(ŷEu

K ) |, where
SP is the statistical parity metric calculated on the
group K of predictions. For each node in the test
set, we compute the above metrics and report their
mean and standard errors for all explanation methods.
While our theoretical analysis uses node classification
as learning task, the metrics can also be used to eval-
uate explanations for other downstream tasks.

Explanation methods. We evaluate 9 explanation
methods, including gradient-based: VanillaGrad (Si-
monyan et al., 2014), Integrated Gradients (Sun-
dararajan et al., 2017); perturbation-based: GNNEx-
plainer (Ying et al., 2019), PGExplainer (Luo et al.,
2020), GraphMASK (Schlichtkrull et al., 2021); and
surrogate-based methods: GraphLIME (Huang et al.,
2020), PGMExplainer (Vu and Thai, 2020). As base-
lines, we consider two methods which produce random
explanations: Random Node Features (a node feature
mask drawn from an M -dimensional Gaussian vector)
and Random Edges (an N×N edge mask drawn from
a uniform distribution over u’s incident edges).

Implementation details. We follow the established ap-
proach of generating explanations (Huang et al., 2020;
Ying et al., 2019) and use reference implementations of
explanation methods. We select top-p (p = 25%) node
features/edges, and use them to generate explanations
for all explanation methods. Details on hyperparam-
eter selection, training of the GNN predictors, expla-
nation methods, and training details for other down-
stream tasks are in Appendix C.

Empirically verifying our theoretical bounds.
We analytically evaluated our theoretical bounds by
computing the LHS of Eqns. 1,2,6,10 for all the nine
explanation methods. Fig. 1 shows the empirical and
theoretical bounds for the unfaithfulness of methods,
empirically confirming that none of our theoretical
bounds were violated. Not only are we introducing
theoretical bounds (RHS of the Eqns. 1,2,6,10) for a
broad range of explanation methods, but our bounds
are also tight in the sense that their differences with
empirical estimates are an order of magnitude smaller
than those provided by the worst-case upper bounds
(calculated using the maximum difference between
the softmax scores of predictions made using original
and masked node features/edges). For instance,
the empirical estimate and the theoretical bound
for the unfaithfulness of GNNExplainer match very
closely (Fig. 1). We also computed the Spearman’s
rank correlation between the rankings for each of
nine methods based on the theoretical bounds vs.
empirical estimates of unfaithfulness. The corre-
lation is 0.72 (p-value=0.03) suggesting a strong
correspondence between our theoretical bounds and
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Random-F Random-E VanillaGrad Integrated Gradients GraphLIME PGMExplainer GraphMASK GNNExplainer PGExplainer
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Theoretical Upper Bound

Figure 1: Empirically calculated unfaithfulness (in red) and our theoretical bounds for unfaithfulness (in blue) across nine
explanation methods. Results on the German credit graph dataset show no violations of our theoretical bounds. Results
for stability, counterfactual fairness mismatch, and group fairness mismatch are shown in Appendix Figs. 2-3.

Table 1: Systematic evaluation of GNN explanation methods (random strategies (in grey), gradient- (in yellow), surrogate-
(in purple), and perturbation-based (in red) methods) for node classification. Shown are average values and standard
errors of evaluation metrics across all test set nodes. Arrows (↓) indicate the direction of better performance. Surrogate-
based methods produce most reliable explanations across all datasets. Note that fairness does not apply to some datasets
(i.e., N/A) as they do not contain sensitive features. See Table 3-4 for results on all 9 datasets.

Evaluation metrics
Dataset Method Unfaithfulness (↓) Instability (↓) Fairness Mismatch (↓)

Counterfactual Group

Credit
defaulter
graph

Random Node Features
Random Edges
VanillaGrad
Integrated Gradients
GraphLIME
PGMExplainer
GraphMASK
GNNExplainer
PGExplainer

0.098±0.002
0.020±0.001
0.092±0.002
0.147±0.003
0.038±0.002
0.283±0.002
0.012±0.001
0.021±0.001
0.028±0.001

0.426±0.002
0.376±0.000
0.333±0.002
0.140±0.002
0.225±0.004
0.156±0.002
0.036±0.002
0.375±0.000
0.364±0.001

0.424±0.002
0.376±0.000
0.171±0.002
0.069±0.001
0.063±0.003
0.154±0.002
0.004±0.000
0.366±0.000
0.348±0.002

0.045±0.002
0.017±0.001
0.042±0.002
0.053±0.002
0.018±0.001
0.161±0.003
0.010±0.001
0.019±0.001
0.022±0.001

Ogbn-arxiv

Random Node Features
Random Edges
VanillaGrad
Integrated Gradients
GraphLIME
PGMExplainer
GraphMASK
GNNExplainer
PGExplainer

0.529±0.002
0.431±0.002
0.528±0.002
0.528±0.002
0.260±0.003
0.413±0.002
0.586±0.001
0.430±0.002
0.338±0.002

0.375±0.000
0.378±0.001
0.359±0.001
0.372±0.000
0.374±0.004
0.270±0.002
0.125±0.002
0.376±0.001
0.381±0.001

N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A

N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A

empirical estimates. Results for stability and fairness
preservation are shown in Figs. 2-3 in the Appendix.

Evaluating the reliability of GNN explanation
methods. We compare the reliability of explanation
methods by computing unfaithfulness (Eqn. 1), insta-
bility (Eqn. 2), counterfactual (Eqn. 6) and group fair-
ness mismatch (Eqn. 10) metrics as described above.
Results in Table 1,3,4 show that surrogate-based ex-
planation methods produce more reliable explanations
than gradient- and perturbation-based methods. We
observe that while no explanation method simulta-
neously preserves all properties, on average across
all node classification datasets (Fig. 5), surrogate-
based methods outperform other methods in insta-
bility (+55.1%) and counterfactual fairness mismatch
(+103.7%), whereas perturbation-based methods out-
perform other methods in unfaithfulness (+23.8%) and
group fairness mismatch (+116.7%). Interestingly, we
find that the Random Edge baselines, which output

explanations that correspond to random sets of edges
incident on the target node, achieves the lowest (best
possible) unfaithfulness score on most datasets, high-
lighting the urgent need for further probing of the
behavior of all the GNN explainers. Finally, across
all datasets (Fig. 4), explanations based on graph
structure are slightly more faithful (+11.6%), stable
(+6.2%), and counterfactually fair (+3.1%).

Analyzing the trade-offs between faithfulness,
stability, and fairness mismatch. We explore the
trade-offs and possible connections between different
properties defined in Sec. 3. Results in Table 1,3,4
(e.g., GNNExplainer on Recidivism and Credit de-
faulter graphs) indicate that methods with lower val-
ues of unfaithfulness (Eqn. 1) also exhibit lower val-
ues of group fairness (Eqn. 10) mismatch (and vice
versa). To verify this connection, we compute the
Pearson’s and Spearman’s rank correlation on the un-
faithfulness and group fairness mismatch values and
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observe a strong positive correlation between them
(Pearson’s r=0.87 with p-value=4.82e-09; Spearman’s
ρ=0.87 with p-value=2.67e-09). We also observe a
connection between instability (Eqn. 2) and coun-
terfactual fairness mismatch (Eqn. 6) metrics, where
methods with lower values of instability (e.g., Graph-
MASK on Credit defaulter graph) also exhibit lower
values of counterfactual fairness mismatch (and vice
versa). We further observe a strong positive corre-
lation between instability and counterfactual fairness
mismatch (Pearson’s r=0.85 with p-value=2.72e-08;
Spearman’s ρ=0.86 with p-value=6.13e-09).

Other downstream tasks. We also apply our
framework to link prediction and graph classification.
We extend some existing methods for these tasks
as most GNN explanation methods were developed
only for node classification. Explanations for these
tasks also consist of a node feature mask and/or edge
mask. We generate these node feature/edge masks
as described in Sec. 3 and evaluate all the properties.
Similar to node classification, we observe that random
baselines perform at least on par or better than the
state-of-the-art GNN explanation methods (Table 5).

5 CONCLUSIONS

We introduce the first-ever theoretical analysis of the
reliability of GNN explanation methods. To this end,
we analyze the behavior of nine diverse state-of-the-art
GNN explanation methods through the lens of various
desirable properties such as faithfulness, stability, and
fairness preservation. Specifically, we establish theo-
retical upper bounds on the violation of each of these
properties. Our theoretical analyses rely on informa-
tion and probability theory concepts including data
processing inequalities and total variation distance,
and Lipschitz continuity. Further, we carry out exten-
sive empirical analysis with nine real world datasets to
verify our theoretical guarantees, and examine trade-
offs between faithfulness, stability, and fairness preser-
vation properties. These results yield critical insights
on the behavior of state-of-the-art GNN explanation
methods which can in turn inform the design and de-
velopment of future explanation methods.
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Supplementary Materials: Probing GNN Explainers: Rigorous
Theoretical and Empirical Analysis of GNN Explanation Methods

A Overview of GNN Explanation Methods

We now provide an in-depth overview of the different GNN explanation methods that we analyze in this work.
As described in the main text (Sec. 3), a G=(V, E ,X) denote an undirected and unweighted graph comprising of
a set of nodes V, a set of edges E , and a set of node feature vectors X={x1, . . . ,xN} corresponding to nodes in
V, where xu∈RM . The GNN model’s f softmax prediction for node u is given by ŷu = f(Gu), where Gu denotes
the subgraph associated with node u and ŷu ∈ [0, 1]C . Finally, the explanation Eu consists of a discrete node
feature mask ru ∈ {0, 1}M for v ∈ Nu and/or a discrete edge mask Ru ∈ {0, 1}N×N , where 1 indicates that a
node attribute/edge is included in the explanation and 0 indicates otherwise.

Random Explanations. As a control, we consider two methods which produce random explanations: 1)
Random Node Features–a node feature mask defined by an M -dimensional Gaussian distributed vector; and 2)
Random Edges–an N ×N edge mask drawn from a uniform distribution over u’s incident edges.

VanillaGrad. Gradient (Simonyan et al., 2014) based explanation generate local explanations for the prediction
of a differentiable GNN model f using its gradient with respect to the node features xu: Oxu

f . Intuitively,
gradient represents how much difference a tiny change in each feature of a node u would make to its corresponding
classification score. VanillaGrad output an M -dimensional vector that comprises the vanilla gradient of the
model, as explanations.

Integrated Gradients. Gradient explanations are often noisy and suffer from saturation problems (Sundarara-
jan et al., 2017). Integrated gradients addresses the gradient saturation problem by averaging the gradients over
a set of interpolated inputs derived using node u’s attribute and a baseline. Formally, integrated gradient
explanation for a node u is an M -dimensional vector given by:

Eu = (xu − x̃)×
∫ 1

α=0

∂f(Gu′)
∂xu

dα, (11)

where x̃ is the baseline input which can be vector of all zeros/ones and Gu′ denotes the graph with the interpolated
node attribute xu′=x̃+α(xu−x̃).

GraphLIME. GraphLIME (Huang et al., 2020) is a local interpretable model explanation for GNNs that identi-
fies a nonlinear interpretable model over the neighbors of a node that is locally faithful to the node’s prediction.
It considers a feature-wise kernelized nonlinear method called Hilbert-Schmidt Independence Criterion Lasso
(HSIC Lasso) as an explanation model. For each node prediction, the HSIC Lasso objective function is defined
as:

min
β∈Rd

1
2 ||L−

M∑
k=1

βkK(k)||2F + ρ||β||1, (12)

where || · ||F is the Frobenius norm, ρ ≥ 0 is the regularization parameter, || · ||1 is the l1 norm to enforce sparsity,
L is the centered Gram matrix, Lij = L(yi, yj) is the kernel for the output labels of the nodes, Kk is the centered
gram matrix for the k-th feature, and Kij = K(x(k)

i , x
(k)
j ) is the kernel for the k-th dimensional input node

features xu.

PGMExplainer. Probabilistic Graphical models (PGMs) are statistical models that encode complex distri-
butions using graph-based representation and provides a simple interpretation of the dependencies of those
underlying random variables. Specifically, Bayesian network, a PGM represents conditional dependencies among
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variables via a directed acyclic graph. Given a target prediction ŷu to be explained, our proposed PGM expla-
nation is the optimal Bayesian network B∗ of the following optimization:

arg max
B∈BEu

Rŷu(B), (13)

where Rŷu
: Eu → R associates each explanation with a score, BEu

is the set of all Bayesian networks, the
optimization is subjected to the condition that the number of variables in B is bounded by a constant to
encourage a compact solution and another constraint to ensure that the target prediction is included in the
explanation.

GraphMASK. GraphMASK (Schlichtkrull et al., 2021) detect edges at each layer l that can be ignored without
affecting the output model predictions. In general, dropping edges from a given graph is non-trivial, and, hence,
for each edge at layer l, GraphMASK learns a binary choice zlu,v that indicates whether the edge can be dropped,
and then replaces the given edge with a learned baseline. Here, zlu,v indicates an edge connecting node u and
v. GraphMASK learns zlu,v for all (u, v) ∈ E for the training data points using an erasure function gπ, where π
denotes the parameters of g. For explaining a given prediction, GraphMASK uses this trained function gπ and
generates a masked representation of the graph using:

h̃lu=Zl ◦ hlu + αl ◦ (1− Zl), (14)

where Zl comprises of all the individual binary scores zlu,v = gπ(hlu, hlv), αl is the learned baseline, and ‘◦’ denotes
the element-wise Hadamard product.

GNNExplainer. For a single-instance explanation for node u, GNNExplainer (Ying et al., 2019) generates an
explanation by identifying a subgraph of the computation graph for u and a subset of node features that are most
influential for the model f ’s prediction. Formally, GNNExplainer determines the importance of individual node
attributes and incident edges for node u by leveraging Mutual Information (MI) using the following optimization
framework:

max
GS

MI(Y, (GS ,XS)), (15)

where GS ⊆ Gu is a subgraph and XS is the associated node attributes that are important for the GNN’s
prediction ŷu. Intuitively, MI quantifies the change in probability of prediction ŷu when u’s computation graph
is limited to the explanation graph GS and its corresponding node attributes XS .

PGExplainer. In contrast to GNNExplainer, PGExplainer (Luo et al., 2020) generates explanation only on the
graph structure. The direct optimization of the mutual information framework in Eqn. 15 is intractable (Ying
et al., 2019; Luo et al., 2020). Thus, PGExplainer consider a relaxation by assuming that the explanatory graph
GS is a Gilbert random graph, where selections of edges from the input graph Gu are conditionally independent
to each other. Due to the discrete nature of GS , PGExplainer employs the reparameterization trick where they
relax the edge weights from binary to continuous variables in the range (0, 1) and then optimize the objective
function using gradient-based methods. It approximates the sampling process of GS with a determinant function
of parameters Ω, temperature ρ, and an independent random variable ε. Specifically, the weight for each edge
ê(i, j) is calculated by:

ε ∼ Uniform(0, 1), ê(i, j) = σ((logε− log(1− ε) + ωij)/ρ), (16)

where σ(·) is the Sigmoid function, ωij ∈ R is a trainable parameter. With the reparameterization, the objective
function of PGExplainer becomes:

min
Ω

Eε∼Uniform(0,1) H(Y |Gu = ĜS), (17)

where H is the conditional entropy when the computational graph for Gu is restricted to GS .

Note that recently proposed explanation methods, such as GNN-LRP (Schnake et al., 2020), Xgnn (Yuan et al.,
2020a), and Gem (Lin et al., 2021), can also be empirically analyzed using our framework because all these
methods generate explanations using subgraphs around the target node with associated edges and node attributes.
Hence, we can select the topk edges/nodes from the subgraph and calculate the metric scores.
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B Proofs for Theorems in Section 3

B.1 Analyzing Faithfulness of GNN Explanation Methods

Theorem 1. Given a node u and a set K of node perturbations, the unfaithfulness (Sec. 3.1, Eqn. 1) of its
explanation Eu can be bounded as follows:

1
|K|

∑
u′∈K

||f(Gu′)− f(t(Eu,Gu′))||2 ≤ γ
(1+|K|)
|K|

||∆||2,

where f(Gu′) = ŷu′ are softmax predictions that use original attributes and f(t(Eu,Gu′)) = ŷEu′ are softmax
predictions that use attributes marked important by explanation Eu. Further, γ denotes the product of the
Lipschitz constants for GNN’s activation function and GNN’s weight matrices across all layers in the GNN, and
∆ is an explanation method-specific term.

Proof. Without loss of generality, we use a two-layer GNN model for our proof and show its extension to a GNN
model with L layers. The two-layer GNN formulated as a message-passing network is defined as:

h1
u=sp(W1

axu + W1
n

∑
v∈Nu

xv)

h2
u=Wfch1

u + b
ŷu=softmax(h2

u),

where W1
n is the weight matrix associated with the neighbors of node u, W1

a is the self-attention weight matrix
at layer one, and “sp” is the softplus activation function. For the fully-connected layer, we have Wfc as the
weight matrix and b as the bias term. The softplus function is a smooth approximation of the ReLU function.
We generate |K| perturbations of node u by adding normal Gaussian noise to the node features, i.e., xu′=xu+τ ,
and rewire edges with some probability pr. For faithfulness, we get the predictions for node u using the weighted
node features of node u, i.e., the element-wise product between ru (the feature importance mask generated as an
explanation) and xu. Let ŷEu denote the softmax output for node u using the explanation Eu, i.e., f(t(Eu,Gu)).
Therefore, the updated equations using the explanations are:

(h1
u)E = sp

(
W1

a(ru ◦ xu) + W1
n

∑
v∈N ′

u

xv
)

(h2
u)E = Wfc(h1

u)E + b
ŷEu = softmax((h2

u)E),

where N ′u denotes the new neighborhood for node u due to the adjacency mask matrix Ru. The difference
between the predicted labels for the original and the important node features can be given as:

ŷu − ŷEu = softmax(h2
u)− softmax((h2

u)E) (18)

Corollary 1. For any differentiable function g : Ra → Rb,

||g(x)− g(y)||2 ≤ ||J||∗F ||x− y||2 ∀x, y ∈ R, (19)

where ||J||∗F = maxx ||J||F and J is the Jacobian matrix of g(x) w.r.t. x. This is implied from the mean value the-
orem, where for any function g(x) and its derivative ∂g(x)

∂x , we have: g(x)−g(y) = ∂g(φ)
∂φ (x−y), for some φ ∈ (y, x).

Hence, taking the norm on both sides in Eqn. 18, we get,

||ŷu − ŷEu ||2 = ||softmax(h2
u)− softmax((h2

u)E)||2
≤ Cfc||h2

u − (h2
u)E ||2, (Using Corollary 1)

where Cfc represents the Lipschitz constant for the softmax function. Substituting the values of h2
u and (h2

u)E
we get:

||ŷu − ŷEu ||2 ≤ Cfc||Wfch1
u + b−Wfc(h1

u)E − b||2
≤ Cfc||Wfch1

u −Wfc(h1
u)E ||2

≤ Cfc ||Wfc||2 ||h1
u − (h1

u)E ||2 (Using Cauchy-Schwartz inequality)
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Substituting the values of h1
u and (h1

u)E we get:

||ŷu − ŷEu ||2 ≤ Cfc ||Wfc||2 ||sp
(
W1

axu + W1
n

∑
v∈Nu

xv
)
− sp

(
W1

a(ru ◦ xu) + W1
n

∑
v∈N ′

u

xv
)
||2

≤ Cfc C1 ||Wfc||2 ||W1
axu + W1

n

∑
v∈Nu

xv −W1
a(ru ◦ xu)−W1

n

∑
v∈N ′

u

xv||2 (Using Corollary 1)

≤ Cfc C1 ||Wfc||2
(
||W1

a

(
xu − (ru ◦ xu)

)
||2 + ||W1

n∆xv ||2
)
, (Using triangle inequality)

where ∆xv
is the difference between the representations of the neighbors of u after dropping edges using the edge

masks. This difference can be neglected for gradient and GraphLIME methods as they provide explanations in
the node feature space. Now, using Cauchy-Schwartz inequality, the prediction difference for a node u using its
original and just important node features is bounded by:

||ŷu − ŷEu ||2 ≤ Cfc C1 ||Wfc||2 ||W1
a||2 ||(1− ru) ◦ xu)||2, (20)

where C1 is the Lipschitz constant for the softplus activation function and 1 ∈ RM is vector with all ones. For
mathematical brevity, let γ11 = Cfc C1 ||Wfc||2 ||W1

a||2. Similarly, the prediction difference for GraphMASK
which provides an explanation with respect to edges is bounded by:

||ŷu − ŷEu ||2 ≤ Cfc C1 ||Wfc||2 ||W1
n||2 ||∆xv

||2, (21)

where γ12 = Cfc C1 ||Wfc||2 ||W1
n||2.

Node feature explanations. Since all the perturbed nodes use the same node feature explanation ru, we
obtain the difference between the predictions for a perturbed node u′ using the perturbed and the masked node
features, i.e.,

||ŷu′ − ŷEu′ ||2 ≤ γ11 ||xu′ − (ru ◦ xu′)||2,

where ŷu′ is the softmax prediction using the perturbed node feature xu′ = xu + τ , and as per the definition of
faithfulness we use the explanation mask of node u for node u′. Finally, we get:

||ŷu′ − ŷEu′ ||2 ≤ γ11 ||(1− ru) ◦ xu′ ||2 (22)

For faithfulness, we generate a set of K perturbed nodes and get |K| predictions from the model for each of the
corresponding perturbations. Using Eqns. 20 and 22, and getting the predictions from all |K| perturbations, we
get: ∑

u′∈K
||ŷu′ − ŷEu′ ||2 ≤ γ11 ||(1− ru) ◦ xu)||2 + γ11

∑
u′∈K

||(1− ru) ◦ xu′ ||2

≤ γ11 ||(1− ru) ◦ xu)||2 + γ11 ||(1− ru) ◦
∑
u′∈K

xu′ ||2,

Assuming τ to be drawn from a normal distribution, we get:
∑
u′∈K xu′ = |K|xu +

∑
u′∈K τk. For sufficiently

large |K|, we have:
∑
u′∈K(x′

u)k ≈ |K|xu. Putting everything together and taking the average across K samples
we get,

1
|K|

∑
u′∈K

||ŷu′ − ŷEu′ ||2 ≤
1
|K|
(
γ11 ||(1− ru) ◦ xu)||2 + γ11 |K| ||(1− ru) ◦ xu||2

)
≤ γ11

(1+|K|)
|K|

||(1− ru) ◦ xu||2

For a GNN model with L message-passing layers and one fully-connected layer for node classification, γ11 takes
the general form of:

γ11 = Cfc ||Wfc||2
L∏
l=1
Cl||Wl

a||2, (23)
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where Cfc is the Lipschitz constant for the softmax activation operating on the fully-connected layer, Wfc is the
weight matrix associated with the fully-connected layer, Cl is the Lipschitz constant of the softplus activation of
each message-passing layer, and Wl

a is the self-attention weight associated with the l-th message-passing layer.

Edge explanations. Note, the difference between the predictions for a perturbed node u′ using the perturbed
and the masked node features will be similar to Eqn. 21 as for faithfulness, the perturbations are made only in
node u, i.e.,

||ŷu′ − ŷEu′ ||2 ≤ γ12 ||∆xv ||2,

Also, since we use the same explanation for all the nodes in set K, the bound for faithfulness using edge
explanations is given by:

1
|K|

∑
u′∈K

||ŷu′ − ŷEu′ ||2 ≤ γ12
(1+|K|)
|K|

||∆xv
||2,

where as in Eqn. 23, γ12 can take the general form for L message-passing layers as: γ12 =
Cfc ||Wfc||2

∏L
l=1 Cl||Wl

n||2.

B.2 Analyzing Stability of GNN Explanation Methods

B.2.1 VanillaGrad Explanation

Theorem 2. Given a non-linear activation function σ that is Lipschitz continuous, the instability (Sec. 3.2,
Eqn. 2) of explanation Eu returned by VanillaGrad method can be bounded as follows:

||Oxu′ f − Oxu
f ||p ≤ γ3||xu′ − xu||p, (24)

where γ3 is a constant, xu is node u’s feature vector, and xu′ is the perturbed node feature vector.

Proof. Similar to Sec. B.1, let us consider a two-layer GNN model trained on a node classification task using
softmax cross-entropy loss function with the first layer a message-passing GNN layer and the second layer as a
fully-connected layer. The cross-entropy (CE) loss is given as:

CE = −
∑
i

yi log ŷu, (25)

where y is a vector with one one non-zero element (which is 1), ŷu=softmax(h2
u), h2

u=Wfch1
u + b, and

h1
u=sp(W1

axu + W1
n

∑
v∈Nu

xv). W1
n is the weight matrix associated with the neighbors of node u and W1

a

is the self-attention weight matrix at layer one. For the fully-connected layer, we have Wfc as the weight matrix
and b as the bias term. “sp” is the softplus activation function which is a smooth approximation of the ReLU
function. For stability, we generate xu′ by adding noise to the node features of node u and keep everything else
constant. Therefore, h1

u′ = sp(W1
axu′ + W1

n

∑
v∈N ′

u
xv). Now, the differentiation of the model w.r.t. the node

features can be given as:

Oxuf = ∂(CE)
∂xu

= ∂(CE)
∂h2

u

∂h2
u

∂h1
u

∂h1
u

∂xu
, (By chain rule)

Note, the advantage of using softplus activation function is that it is differentiable for all x, i.e.,

sp(x) = ln(1 + expx)
∂(sp(x))
∂x = expx

1 + expx ·
(1/ expx)
(1/ expx)

= 1
1 + exp−x

= σ(x),
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where σ(·) is the sigmoid activation function. Putting it all together we get,

Oxuf = (yu − ŷu)(Wfc)Tσ(W1
axu + W1

n

∑
v∈Nu

xv)(W1
a)T (26)

Oxu′ f = (yu − ŷu)(Wfc)Tσ(W1
axu′ + W1

n

∑
v∈N ′

u

xv)(W1
a)T (27)

Note, ŷu is same for both original and perturbed node according to the Definition 2 in Sec. 3 and we drop the
second neighborhood term since the probability (pr) of rewiring the edges is very small to maintain the original
graph structure. Hence, subtracting the explanations (model gradients) for the original and perturbed node
features and taking the norm on both sides, we get:

||Oxu′ f − Oxuf ||p = ||(yu − ŷu)(Wfc)T
(
σ(W1

axu′)− σ(W1
axu)

)
(W1

a)T ||p,

Using Cauchy-Schwartz inequality, we get:

||Oxu′ f − Oxuf ||p ≤ ||yu − ŷu||p ||(Wfc)T ||p ||σ(W1
axu′)− σ(W1

axu)||p ||(W1
a)T ||p

Assuming that σ(·) is normalized Lipschitz, i.e., ||σ(b)− σ(a)||p ≤ ||b− a||p, we get,

||Oxu′ f − Oxuf ||p ≤ ||yu − ŷu||p ||(Wfc)T ||p ||W1
axu′ −W1

axu||p ||(W1
a)T ||p

≤ ||yu − ŷu||p ||(Wfc)T ||p ||W1
a(xu′ − xu)||p ||(W1

a)T ||p
≤ ||yu − ŷu||p ||(Wfc)T ||p ||W1

a||p ||xu′ − xu||p ||(W1
a)T ||p (Using Cauchy-Schwartz inequality)

≤ γ3 ||xu′ − xu||p,

where γ3 = ||yu − ŷu||p ||(Wfc)T ||p ||W1
a||p ||(W1

a)T ||p.

For a GNN model with L message-passing layers and one fully-connected layer for node classification, γ3 takes
the general form of:

γ3 = ||yu − ŷu||p ||(Wfc)T ||p
L∏
l=1
||Wl

a||p ||(W1
a)T ||p, (28)

where Wl
a is the self-attention weight associated with the l-th message-passing layer.

B.2.2 GraphMASK

Setup. GraphMASK computes the parameters π for the erasure function using fully-connected layers with
non-linearity and layer-wise normalization. The scalar location parameter zlu,v is given as:

zlu,v = Wl
2 sp(LNl(Wl

1qlu,v)), (29)

where sp is the softplus activation function, LN is the layer normalization function, and qlu,v represents the
concatenated representations of hlu and hlv. Note, the representations at l=0 are the the node features in the
original graph xu and xv. Since we are considering the task of node-classification, there is no relation-specific
representation with respect to each edge. For explaining node u’s prediction, GraphMASK generates zlu,v for
all its incident edges. Finally, the parameters π of the erasure function are trained on multiple datapoints, and
then used for explaining predictions (Schlichtkrull et al., 2021). For deriving the instability and counterfactual
fairness mismatch of GraphMASK, we first state a lemma that helps us prove that a layer normalization function
is Lipschitz.

Lemma 1. A normalization function LN for layer l is Lipschitz continuous, i.e.,

||LNl(hlu′)− LNl(hlu)||2 ≤ ClLN ||(hlu′ − hlu)||2, (30)

where ClLN is the Lipschitz constant of the normalization function for layer l.

Proof. The layer normalization function is a reparametrization trick that significantly reduces the problem of
coordinating updates across different layers. A given representation hlu is normalized using mean and standard
deviation parameters that are learned during the training stage, i.e.,

LNl(hlu) = (hlu − µl)
ς l

, (31)
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where µl is the mean and ς l is the standard deviation of the representations at layer l, and are fixed after the
training completes. Using Eqn. 31, the difference between the layer normalized output at layer l of a perturbed
and original representation can be given as:

LNl(hlu′)− LNl(hlu) = (hlu′ − µl)
ς l

− (hlu − µl)
ς l

LNl(hlu′)− LNl(hlu) = (hlu′ − hlu)
ς l

Taking L2-norm on both sides and applying Cauchy-Schwartz inequality, we get:

||LNl(hlu′)− LNl(hlu)||2 ≤ ||
1
ς l
||2 ||(hlu′ − hlu)||2

For consistency, we define ClLN=|| 1
ςl ||2 as the Lipschitz constant for the lth normalization layer.

Theorem 3. Given concatenated embeddings of node u and v, the instability (Sec. 3.2, Eqn. 2) of explanation
Eu returned by GraphMASK method can be bounded as follows:

||zlu′,v − zlu,v||2 ≤ γl4 ||qlu′,v − qlu,v||2, (32)

where zlu,v is the explanation output by GraphMASK indicating whether an edge connecting node u and v ∈ Nu
in layer l can be dropped or not, qlu,v is the concatenated embeddings for node u and v ∈ Nu at layer l, and
γl4 denotes the Lipschitz constant which is a product of the weights of the l-th fully-connected layer, and the
Lipschitz constants for the layer normalization and softplus activation function.

Proof. Using Eqn. 29, the scalar location parameter for a perturbed node u′ can be written as:

zlu′,v = Wl
2 sp(LNl(Wl

1qlu′,v))

Note, for explanation all the parameters of the fully-connected layers are fixed as they are trained initially using
a set of training data points.

zlu′,v − zlu,v = Wl
2 sp(LNl(Wl

1qlu′,v))−Wl
2 sp(LNl(Wl

1qlu,v))
zlu′,v − zlu,v = Wl

2
(
sp(LNl(Wl

1qlu′,v))− sp(LNl(Wl
1qlu,v))

)
Taking L2-norm on both sides and applying Cauchy-Schwartz inequality, we get:

||zlu′,v − zlu,v||2 ≤ ||Wl
2||2 ||sp(LNl(Wl

1qlu′,v))− sp(LNl(Wl
1qlu,v))||2

≤ CSP||Wl
2||2 ||LNl(Wl

1qlu′,v)− LNl(Wl
1qlu,v)||2, (Using Corollary 1)

where CSP is the Lipschitz constant for the softplus activation function. Simplifying further we get:

||zlu′,v − zlu,v||2 ≤ CSP ClLN||Wl
2||2 ||Wl

1qlu′,v −Wl
1qlu,v||2 (Using Lemma 1)

≤ CSP ClLN||Wl
2||2 ||Wl

1||2 ||qlu′,v − qlu,v||2 (Using Cauchy-Schwartz inequality)

Hence, for a given layer l the difference between the scalar location parameter of a perturbed and original node
u is given by:

||zlu′,v − zlu,v||2 ≤ γl4 ||qlu′,v − qlu,v||2, (33)

where γl4 = CSP ClLN||Wl
2||2 ||Wl

1||2. Now, for explaining the prediction for node u, we can repeat this process
for all edges (u, v) ∈ E in the neighborhood Nu of node u and generate the matrix Zl. It is to be noted, that the
values of the zlu,v elements represent whether a given edge can be dropped or not—an explanation. Further, the
composition of multiple Lipschitz continuous functions with Lipschitz constants {L1, . . . ,LL} is a new Lipschitz
continuous function with L1 × · · · × LL as the Lipschitz constant (Gouk et al., 2021). Using the formulation for
a single layer l (Eqn. 33), we can generate a bound for all L layers of the model f , where the Lipschitz constant
will be:

∏L
l=1 γ

l
4.
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B.2.3 GraphLIME

Setup. We use Gaussian kernel for both input and the predictions of all neighbors of node u.

K(x(k)
i , x

(k)
j ) = exp

(
−

(x(k)
i − x

(k)
j )2

2σ2
x

)
;L(y(k)

i , y
(k)
j ) = exp

(
−
||y(k)
i − y

(k)
j ||22

2σ2
y

)
, (34)

The HSIC Lasso objective can be regarded as a minimum redundancy maximum relevancy (mRMR) based
feature selection method (Peng and Ding, 2005). Eqn. 12 can be rewritten as:

||L−
M∑
k=1

βkK(k)||2F = HSIC(y,y) +
M∑
i=1

βiHSIC(xi,y) +
M∑

i,j=1
βiβjHSIC(xi,xj), (35)

where HSIC(xi,y) = tr(K(k),L) is a kernel-based independence measure called the (empirical) Hilbert-Schmidt
independence criterion (HSIC) (Gretton et al., 2005). Further, the HSIC lasso is a convex optimization problem
(Yamada et al., 2014) and hence given a set of features it will learn feature importance that fit to the predicted
labels. We now derive the upper bound for the explanation generated by GraphLIME (or simply GLIME) for the
k-th node feature. We exclude the sparsity regularizer in our analysis as GLIME enforces sparsity by selecting
the top-P features after the optimization.

Theorem 4 (GraphLIME). Given the centered Gram matrices for the original and perturbed node features,
the instability (Sec. 3.2, Eqn. 2) of explanation Eu returned by GraphLIME method can be bounded as:

||β
′

k − βk||F ≤ γ2 · tr((
1

eTW−1e )−1 − I), (36)

where β′

k and βk are attribute importance generated by GraphLIME for the perturbed and original node features,
γ2 is a noise-independent constant, e is an all-one vector, and W is a matrix of the noise terms.

Proof. Note, ||Q||2F = tr(QQT ) = tr(QQ), where Q is a symmetric matrix and tr(·) is the trace of the matrix.
Using this, the objective function can be simplified as:

1
2 ||L−

M∑
i=1

βiK(i)||2F

= 1
2 tr
(
(L−

M∑
i=1

βiK(i)) · (LT −
M∑
i=1

βiK(i)T

)
)

= 1
2 tr
(
(L−

M∑
i=1

βiK(i)) · (LT −
M∑
i=1

βiK(i))
)

= 1
2 tr
(
LLT − 2

M∑
i=1

βiLK(i) +
M∑

i,j=1
βiβjK(i)K(j))

We want to minimize the above objective function O. We take the partial derivative of O w.r.t. βk:

∂O

∂βk
= −LK(k) +

M∑
j=1

βjK(j)K(k) = 0

=⇒ −LK(k) +
M∑
j=1

βjK(j)K(k) = 0

=⇒ (−L +
M∑
j=1

βjK(j))K(k) = 0

=⇒ (−L +
M∑

j=1;j 6=k
βjK(j) + βkK(k))K(k) = 0
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We finally get,

βkK(k) = L−
M∑

j=1;j 6=k
βjK(j) (37)

The gram matrix is invertible as it is a full rank symmetric matrix with all the diagonal elements as 1 (since
K(xi, xi) = 1) and so:

βk = L̄(K(k))−1, (38)

where L̄ = L−
∑M
j=1;j 6=k βjK(j).

On adding infinitesimal noise η to the k-th feature, we obtain a new gram matrix given by: K(k)
′

= K(k) ◦W,
where W ∈ RM×M is a function of η and xi. For instance, adding noise η to x(k)

i , we get K ′(x(k)
i , x

(k)
j ) as:

K
′
(x(k)
i , x

(k)
j ) = exp

(
−

(x(k)
i + η − x(k)

j )2

2σ2
x

)
= exp

(
−

(x(k)
i − x

(k)
j )2 + η2 + 2η(x(k)

i − x
(k)
j )

2σ2
x

)
= exp

(
−

(x(k)
i − x

(k)
j )2 + 2η(x(k)

i − x
(k)
j )

2σ2
x

)
(η2 = 0 as η is infinitesimal noise)

= exp
(
−

(x(k)
i − x

(k)
j )2

2σ2
x

)
· exp

(
−

2η(x(k)
i − x

(k)
j )

2σ2
x

)
The importance for the k-th node feature is generated by GraphLIME as βk. We can now represent the Frobenius
norm of the difference between the explanations from GLIME for the original and noisy graph as:

||β
′

k − βk||F = ||L̄(K(k)
′

)−1 − L̄(K(k))−1||F

= ||L̄
(
(K(k)

′

)−1 − (K(k))−1)||F
≤ ||L̄||F ||(K(k)

′

)−1 − (K(k))−1||F (Using Cauchy-Schwartz inequality)
≤ ||L̄||F ||(K(k) ◦W)−1 − (K(k))−1||F

≤ ||L̄||F ||(
1

eTW−1eK(k))−1 − (K(k))−1||F , (Using Theorem 3.1 from (Reams, 1999))

where e is a m × 1 vector of all ones. Note that for using Theorem 3.1 from (Reams, 1999) we need: (1) K(k)

is positive semidefinite; and (2) W is positive definite or is almost positive definite and invertible. (1) is true
by definition as K(k) is a gram matrix and it is positive semidefinite. For (2), let us consider a case where
W ∈ R2×2. Using the Gaussian kernel K(k), the perturbed gram matrix is:

K(k)
′

=

 1 exp
(
− (x(k)

1 −x
(k)
2 )2

2σ2
x

)
· exp

(
− 2η(x(k)

1 −x
(k)
2 )

2σ2
x

)
exp

(
− (x(k)

1 −x
(k)
2 )2

2σ2
x

)
· exp

(
− 2η(x(k)

1 −x
(k)
2 )

2σ2
x

)
1


=

 1 exp
(
− (x(k)

1 −x
(k)
2 )2

2σ2
x

)
exp

(
− (x(k)

1 −x
(k)
2 )2

2σ2
x

)
1

 ◦
 1 exp

(
− 2η(x(k)

1 −x
(k)
2 )

2σ2
x

)
exp

(
− 2η(x(k)

1 −x
(k)
2 )

2σ2
x

)
1


Hence, W is:

W =

 1 exp
(
− 2η(x(k)

1 −x
(k)
2 )

2σ2
x

)
exp

(
− 2η(x(k)

1 −x
(k)
2 )

2σ2
x

)
1

 (39)

For positive definite, we need to show bTWb > 0 for any non-zero vector b. All the elements of W are positive
and using a b vector with all ones will result in bTWb > 0. Hence, W is positive definite. Now, both W and
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K(k) are invertible matrix so we can use the property (AB)−1 = B−1A−1. Putting everything together we get:

||β
′

k − βk||F ≤ ||L̄||F ||(K(k))−1( 1
eTW−1e )−1 − (K(k))−1||F

≤ ||L̄||F ||(K(k))−1(( 1
eTW−1e )−1 − I

)
||F

≤ ||L̄||F ||(K(k))−1||F ||(
1

eTW−1e )−1 − I||F (Using Cauchy-Schwartz inequality)

≤ tr(L̄) tr((K(k))−1) tr(( 1
eTW−1e )−1 − I)

≤ γ2 · tr((
1

eTW−1e )−1 − I),

where γ2 = tr(L̄) tr((K(k))−1) is a constant independent of the added noise.

B.3 Analyzing Fairness of GNN Explanation Methods

Theorem 8. Given a node u, a sensitive feature s, and a set K comprising of u and its perturbations, the group
fairness mismatch (Sec. 3.3, Eqn. 10) of an explanation Eu can be bounded as follows:

| SP(ŷK)−SP(ŷEu

K ) | ≤
∑

s∈{0,1}

|ErrDs(f(t(Eu,Gu′))−f(Gu′))|,

where SP(ŷK) and SP(ŷEu

K ) are statistical parity estimates, D is the joint distribution over node features xu′ in
Gu′ and their respective labels yu′ for ∀u′ ∈ K, Ds is D conditioned on the value of the sensitive feature s, and
ErrDs

(·) is the model error under Ds.

Proof. For group fairness, we define the total variation divergence dTV to measure the difference between
two probability distributions, i.e., ŷK and ŷEu

K . For a given binary sensitive attribute s ∈ {0, 1}, we can
write: dTV(Ds(yu′), Ds(ŷK)) ≤ EDs

[|yu′ − f(Gu′)|] (Zhao and Gordon, 2019). The total variation divergence is
symmetrical and satisfies triangle inequality. Hence, we have:

dTV(D0(yu′), D1(yu′)) ≤ dTV(D0(yu′), D0(ŷK))+dTV(D0(ŷK), D1(ŷK))+
dTV(D1(yu′), D1(ŷK))

Now, the middle term in the right side of the inequality is the statistical parity (SP) for the binary sensitive
attribute and therefore we can simplify the equation as:

dTV(D0(yu′), D1(yu′)) ≤ dTV(D0(yu′), D0(ŷK))+SP(ŷK)+dTV(D1(yu′), D1(ŷK)) (40)

Similarly, using the explanation E, we can write a similar inequality of the group predictions ŷEu

K and equate
the left hand side terms to get:

dTV(D0(yu′), D0(ŷK))+SP(ŷK)+dTV(D1(yu′), D1(ŷK)) =
dTV(D0(yu′), D0(ŷEu

K ))+SP(ŷEu

K )+dTV(D1(yu′), D1(ŷEu

K ))
(41)

Using Lemma 3.1 of Zhao and Gordon (2019), we can write dTV(Ds(yu′), Ds(ŷK)) ≤ ErrDs
(f(Gu′)). Further

simplification of Eqn. 41 and plugging the lemma, we get:

SP(ŷEu

K )−SP(ŷK)=dTV(D0(yu′), D0(ŷEu

K ))−dTV(D0(yu′), D0(ŷK))
+dTV(D1(yu′), D1(ŷEu

K ))−dTV(D1(yu′), D1(ŷK))
(42)

SP(ŷEu

K )−SP(ŷK) ≤ ErrD0(f(t(Eu,Gu′)))−ErrD0(f(Gu′))+ErrD1(f(t(Eu,Gu′)))−
ErrD1(f(Gu′))

(43)

SP(ŷEu

K )−SP(ŷK) ≤ ErrD0(f(t(Eu,Gu′))−f(Gu′))+ErrD1(f(t(Eu,Gu′))−f(Gu′)) (44)
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Figure 2: The empirically calculated group fairness mismatch measure (in red) and our theoretical upper bounds for
group fairness mismatch (in blue) for nine explanation methods. Results show that no explanation method violate the
group fairness bounds for the German credit graph dataset.

Taking the absolute value as norms on both sides, we get:

|SP(ŷEu

K )−SP(ŷK)| ≤ |ErrD0(f(t(Eu,Gu′))−f(Gu′))+ErrD1(f(t(Eu,Gu′))−f(Gu′))|
|SP(ŷEu

K )−SP(ŷK)| ≤ |ErrD0(f(t(Eu,Gu′))−f(Gu′))|+ |ErrD1(f(t(Eu,Gu′))−f(Gu′))|
(Using triangle inequality)

|SP(ŷK)−SP(ŷEu

K )| ≤
∑

s∈{0,1}

|ErrDs(f(t(Eu,Gu′))−f(Gu′))|

C Experiments

Datasets. We experiment with nine datasets in this work:

1) German credit graph (Agarwal et al., 2021a) has 1,000 nodes representing customers in a German bank,
connected based on similarity of their credit applications. The task is to classify clients into good vs. bad credit
risks considering clients’ gender as the sensitive attribute.

2) Recidivism graph (Agarwal et al., 2021a) has 18,876 nodes representing defendants released on bail that are
connected based on similarity of their past criminal records and demographics. The task is to classify defendants
into bail (i.e., unlikely to commit a violent crime if released) vs. no bail (i.e., likely to commit a violent crime)
considering race information as the protected attribute.

3) Credit defaulter graph (Agarwal et al., 2021a) has 30,000 nodes representing individuals connected based on
payment behaviors and demographics. The task is to classify individuals into credit card payment vs. no payment
on time considering age as the sensitive attribute.

4) Cora dataset (McCallum et al., 2000) comprises of 2708 nodes representing scientific publications classified
into one of seven classes. The data contains bibliographic records of machine learning papers that have been
manually clustered into classes that refer to the same publication. The citation network consists of 5429 links.
Each publication in the dataset is described by a 0/1-valued word vector indicating the absence/presence of the
corresponding word from the dictionary. The dictionary consists of 1433 unique words.

5) PubMed dataset (Sen et al., 2008) consists of 19717 nodes representing scientific publications from PubMed
database pertaining to diabetes classified into one of three classes. The citation network consists of 44338 links.
Each publication in the dataset is described by a TF/IDF weighted word vector from a dictionary which consists
of 500 unique words.

6) Citeseer dataset (Giles et al., 1998) consists of 3312 nodes representing scientific publications classified into
one of six classes. The citation network consists of 4732 links. Each publication in the dataset is described by
a 0/1-valued word vector indicating the absence/presence of the corresponding word from the dictionary. The
dictionary consists of 3703 unique words.

7) Ogbn-mag dataset (Hu et al., 2020) is a heterogeneous graph composed of a subset of the Microsoft Academic
Graph (MAG) (Wang et al., 2020). It contains four types of entities—papers (736,389 nodes), authors (1,134,649
nodes), institutions (8,740 nodes), and fields of study (59,965 nodes)—as well as four types of directed relations
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connecting two types of entities—an author is “affiliated with” an institution, an author “writes” a paper, a
paper “cites” a paper, and a paper “has a topic of” a field of study. The task is to classify papers into 349 venues
(conference or journal), given its content, references, authors, and authors’ affiliations.

8) Ogbn-arxiv citation graph (Hu et al., 2020) has 169,343 nodes representing CS arXiv papers linked based on
who cites whom patterns. The task is to classify papers into 40 thematic categories, e.g., cs.AI, cs.LG, and cs.OS.

9) MUTAG dataset (Debnath et al., 1991) contains 4,337 graphs representing chemical compounds where nodes
represent different atoms and edges represent chemical bonds. The graphs are labeled into two different classes
according to their mutagenic effect on the Gram-negative bacterium S. typhimuriuma.

The training and testing splits for the German credit graph, Recidivism graph, and Credit defaulter graph dataset
is setup following the codes released by (Agarwal et al., 2021a). For the Cora, PubMed, Citeseer, Ogbn-mag,
and Ogbn-arxiv, we use the training and testing data loader1 provided by Hu et al. (2020). Finally, for MUTAG
dataset we used the training and testing splits following (Fey and Lenssen, 2019). All datasets used in this work
are publicly available and are accordingly cited.

Implementation details. All codes and datasets are available at https://anonymous.4open.science/r/
GNNExEval-CC00/. We use a mutli-layer GraphSAGE model as our GNN predictor f for all node classification
tasks. For the German credit graph, Recidivism graph, and Credit defaulter graph datasets, we follow (Agarwal
et al., 2021a) and design a model comprising of two GraphSAGE convolution layers with ReLU non-linear activa-
tion function and a fully-connected linear classification layer with Softmax activations. The hidden dimensionality
of the layers is set to 16. The same configuration was also used for Cora, PubMed and Citeseer datasets.

For the Ogbn-arxiv dataset, we follow Hu et al. (2020) and design a model comprising of three GraphSAGE
convolution layers with ReLU non-linear activation function and a fully-connected linear classification layer with
Softmax activations. The hidden dimensionality of the layers is set to 256. Similarly, for Ogbn-mag dataset, we
design a model comprising of three GraphSAGE convolution layers with ReLU non-linear activation function for
first two layers and Softmax for the final layer. The hidden dimensionality of the layers is set to 192.

For MUTAG dataset, we follow Fey and Lenssen (2019) and design a model comprising of three GCN convo-
lution layers with ReLU non-linear activation function, global mean pooling layer and a fully-connected linear
classification layer with Softmax activations. The hidden dimensionality of the layers is set to 16.

Finally, for the link prediction task using Cora dataset, we use a Graph AutoEncoder model with two GraphSAGE
convolution layers with ReLU activation as the encoder model and an InnerProduct layer (TorchGeometric) as
the decoder. The hidden dimensionality of the layers is set to 16. Table 2 details the performance of the above
models on their respective tasks.

Table 2: Statistics of all nine graph datasets used for node, link, and graph prediction with the GNN’s testing accuracy
measured using all nodes in the test split. For the MUTAG graph classification dataset, we detail the mean nodes, edges,
and degrees across all the molecules in the test split, and for the Cora-link dataset we report the AUROC for the link
prediction task on the test split.

Datasets Nodes Edges Node features Sensitive Attribute Classes Accuracy
German credit 1,000 22,242 27 Gender 2 70.43%
Recidivism 18,876 321,308 18 Race 2 92.68%
Credit defaulter 30,000 1,436,858 13 Age 2 70.69%
Cora 2,708 5,429 1,433 N/A 7 85.78%
PubMed 19,717 44,338 500 N/A 3 93.77%
Citeseer 3,327 4,732 3,703 N/A 6 82.69%
Ogbn-mag 1,939,743 21,111,007 128 N/A 349 37.03%
Ogbn-arxiv 169,343 1,166,243 128 N/A 40 66.13%
MUTAG 19.79 17.93 7 N/A 2 76.32%
Cora-link 2,708 5,429 1,433 N/A 7 97.00%

Compute details. We use a Intel(R) Xeon(R) CPU E5-2680 with 250Gb RAM and a single NVIDIA Tesla
M40 GPU for all our experiments.

Hyperparameters. For all experiments, we use normal Gaussian noise N (0, 1) for perturbing node attributes
1https://ogb.stanford.edu/docs/home/

https://anonymous.4open.science/r/GNNExEval-CC00/
https://anonymous.4open.science/r/GNNExEval-CC00/
https://ogb.stanford.edu/docs/home/
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Figure 3: The theoretical upper bounds (in blue) for the instability and counterfactual fairness mismatch metric for (a)
VanillaGrad, (b) GraphLIME, and (c) GraphMASK explanation method. Results across both properties show that the
empirically calculated explanation differences ∆EXP (in red) do not violate our theoretical bounds when evaluated on the
German credit graph dataset.

and set the probability of perturbing an attribute dimension to 0.1. For training GraphSAGE, we use an Adam
optimizer with a learning rate of 1× 10−3, weight decay of 1× 10−5, and the number of epochs to 1000. For the
GNN explanation methods, all hyperparameters are set following the authors’ guidelines.

C.1 Results

Empirically verifying our theoretical bounds. We compare the reliability of explanation methods by com-
puting the faithfulness, stability, counterfactual, and group fairness metrics as described in Sec. 4. The empirical
and theoretical bounds for group fairness (Fig. 2) shows that no bounds were violated in our experiments. We
observe consistent trend between empirically computed group fairness mismatch and theoretical bounds for all
nine explanation methods, with the empirical values always lower than our theoretical upper bounds. Further,
we compare the empirical and theoretical bounds for stability and counterfactual fairness for the three represen-
tative explanation methods: VanillaGrads (Fig. 3a), GraphLIME (Fig. 3b), and GraphMASK (Fig. 3c). Across
all explanation methods, the theoretical bounds are well below the worst case upper bound with only some
outlier points for stability in GraphLIME. Despite that, the median (horizontal line inside each box in Fig. 3) of
the theoretical bounds are an order of magnitude smaller than that provided by the worst case upper bound.
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Figure 4: Shown are bar plots with mean values and standard errors of computed metrics for explanation methods
generating node- (VanillaGrad, Integrated Gradients, GraphLIME, GNNExplainer) and graph-level (PGMExplainer,
GraphMASK, PGExplainer) explanations across all datasets. We observe that graph structure-based explanations are
more stable than node feature explanations, but performs on par in terms of other properties.
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Table 3: Systematic evaluation of GNN explanation methods (random strategies (in grey), gradient-based methods (in yel-
low), surrogate-based methods (in purple), and perturbation-based methods (in red)) for node classification tasks. Shown
are average values of metrics and standard errors across all nodes in the test set. Arrows (↓) indicate the direction of better
performance. Note that fairness does not apply to some datasets (i.e., N/A) as they do not contain sensitive attributes.

Evaluation metrics
Dataset Method Unfaithfulness (↓) Instability (↓) Fairness Mismatch (↓)

Counterfactual Group

German
credit graph

Random Node Features
Random Edges
VanillaGrad
Integrated Gradients
GraphLIME
PGMExplainer
GraphMASK
GNNExplainer
PGExplainer

0.208±0.011
0.049±0.004
0.185±0.010
0.199±0.011
0.158±0.009
0.131±0.007
0.034±0.003
0.046±0.004
0.074±0.006

0.386±0.006
0.375±0.001
0.222±0.010
0.254±0.019
0.096±0.013
0.183±0.006
0.270±0.008
0.377±0.001
0.367±0.004

0.387±0.006
0.375±0.001
0.137±0.007
0.210±0.018
0.063±0.008
0.185±0.006
0.006±0.001
0.359±0.002
0.360±0.009

0.165±0.015
0.061±0.009
0.154±0.012
0.150±0.012
0.114±0.010
0.129±0.010
0.046±0.006
0.060±0.009
0.079±0.001

Recidivism
graph

Random Node Features
Random Edges
VanillaGrad
Integrated Gradients
GraphLIME
PGMExplainer
GraphMASK
GNNExplainer
PGExplainer

0.312±0.004
0.040±0.001
0.233±0.004
0.308±0.005
0.191±0.004
0.128±0.001
0.053±0.002
0.042±0.001
0.056±0.001

0.403±0.002
0.376±0.000
0.285±0.003
0.226±0.003
0.264±0.004
0.226±0.002
0.251±0.003
0.374±0.000
0.371±0.001

0.403±0.002
0.376±0.000
0.173±0.002
0.104±0.003
0.072±0.003
0.223±0.002
0.013±0.000
0.364±0.001
0.355±0.002

0.144±0.003
0.046±0.001
0.114±0.002
0.139±0.003
0.107±0.003
0.130±0.002
0.060±0.002
0.051±0.002
0.064±0.002

Credit
defaulter
graph

Random Node Features
Random Edges
VanillaGrad
Integrated Gradients
GraphLIME
PGMExplainer
GraphMASK
GNNExplainer
PGExplainer

0.098±0.002
0.020±0.001
0.092±0.002
0.147±0.003
0.038±0.002
0.283±0.002
0.012±0.001
0.021±0.001
0.028±0.001

0.426±0.002
0.376±0.000
0.333±0.002
0.140±0.002
0.225±0.004
0.156±0.002
0.036±0.002
0.375±0.000
0.364±0.001

0.424±0.002
0.376±0.000
0.171±0.002
0.069±0.001
0.063±0.003
0.154±0.002
0.004±0.000
0.366±0.000
0.348±0.002

0.045±0.002
0.017±0.001
0.042±0.002
0.053±0.002
0.018±0.001
0.161±0.003
0.010±0.001
0.019±0.001
0.022±0.001
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Figure 5: Shown are bar plots with mean values and standard errors of computed metrics for four categories of explanation
methods (random strategies (in grey), gradient-based methods (in yellow), surrogate-based methods (in purple), and
perturbation-based methods (in red)) across all datasets. We observe that surrogate-based explanation methods are more
stable and better preserves counterfactual fairness, whereas perturbation-based explanation methods outperform others
on unfaithfulness and group fairness mismatch scores.
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Table 4: Systematic evaluation of GNN explanation methods (random strategies (in grey), gradient-based methods (in yel-
low), surrogate-based methods (in purple), and perturbation-based methods (in red)) for node classification tasks. Shown
are average values of metrics and standard errors across all nodes in the test set. Arrows (↓) indicate the direction of better
performance. Note that fairness does not apply to some datasets (i.e., N/A) as they do not contain sensitive attributes.

Evaluation metrics
Dataset Method Unfaithfulness (↓) Instability (↓) Fairness Mismatch (↓)

Counterfactual Group

Cora

Random Node Features
Random Edges
VanillaGrad
Integrated Gradients
GraphLIME
PGMExplainer
GraphMASK
GNNExplainer
PGExplainer

0.002±0.000
0.004±0.000
0.002±0.000
0.002±0.000
0.001±0.001
0.016±0.001
0.023±0.005
0.003±0.000
0.112±0.005

0.181±0.000
0.196±0.006
0.154±0.002
0.894±0.002
0.052±0.015
0.224±0.011
0.600±0.027
0.377±0.009
0.372±0.008

N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A

N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A

PubMed

Random Node Features
Random Edges
VanillaGrad
Integrated Gradients
GraphLIME
PGMExplainer
GraphMASK
GNNExplainer
PGExplainer

0.002±0.000
0.002±0.000
0.003±0.000
0.004±0.000
0.001±0.001
0.045±0.003
0.010±0.002
0.002±0.000
0.094±0.004

0.180±0.000
0.195±0.002
0.139±0.002
0.855±0.003
0.440±0.023
0.142±0.008
0.742±0.018
0.192±0.002
0.367±0.006

N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A

N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A

Citeseer

Random Node Features
Random Edges
VanillaGrad
Integrated Gradients
GraphLIME
PGMExplainer
GraphMASK
GNNExplainer
PGExplainer

0.003±0.000
0.005±0.000
0.003±0.000
0.004±0.000
0.001±0.000
0.009±0.001
0.170±0.007
0.003±0.000
0.129±0.010

0.180±0.000
0.263±0.019
0.142±0.002
0.896±0.000
0.048±0.015
0.262±0.015
0.200±0.028
0.212±0.015
0.400±0.017

N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A

N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A

Ogbn-mag

Random Node Features
Random Edges
VanillaGrad
Integrated Gradients
GraphLIME
PGMExplainer
GraphMASK
GNNExplainer
PGExplainer

0.002±0.000
0.002±0.000
0.002±0.000
0.002±0.000
0.001±0.000
0.002±0.000
0.002±0.000
0.002±0.000
0.002±0.000

0.373±0.002
0.376±0.002
0.312±0.005
0.368±0.002
0.354±0.023
0.222±0.006
0.323±0.003
0.375±0.002
0.375±0.006

N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A

N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A

Ogbn-arxiv

Random Node Features
Random Edges
VanillaGrad
Integrated Gradients
GraphLIME
PGMExplainer
GraphMASK
GNNExplainer
PGExplainer

0.529±0.002
0.431±0.002
0.528±0.002
0.528±0.002
0.260±0.003
0.413±0.002
0.586±0.001
0.430±0.002
0.338±0.002

0.375±0.000
0.378±0.001
0.359±0.001
0.372±0.000
0.374±0.004
0.270±0.002
0.125±0.002
0.376±0.001
0.381±0.001

N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A

N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
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Table 5: Systematic evaluation of GNN explanation methods (random strategies (in grey), gradient- (in yellow),
perturbation- (in red), and surrogate-based (in purple) method) for link prediction on Cora-link and graph classifica-
tion on MUTAG dataset. For both tasks, VanillaGrad method perform on par or better than other explanation methods
on instability, and random strategies outperform other GNN explanation methods on unfaithfulness.

Task Method Unfaithfulness (↓) Instability (↓)

Link prediction
Random Node Features
VanillaGrad
Integrated Gradients
GNNExplainer

0.037±0.013
0.046±0.017
0.069±0.028
0.040±0.017

0.375±0.003
0.310±0.062
0.747±0.002
0.376±0.000

Graph
classification

Random Node Features
Random Edges
VanillaGrad
Integrated Gradients
PGMExplainer
GNNExplainer

0.105±0.056
0.022±0.029
0.295±0.078
0.086±0.046
0.154±0.083
0.094±0.052

0.492±0.046
0.366±0.064
0.363±0.129
0.473±0.087
0.385±0.118
0.490±0.046
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Figure 6: Shown are bar plots with mean values and standard errors of computed metrics for nine GNN explanation
methods (random strategies (in grey), gradient-based methods (in yellow), surrogate-based methods (in purple), and
perturbation-based methods (in red)) across all datasets. We observe that Random Edge baseline outperforms all expla-
nation methods in terms of unfaithfulness, GraphMASK outperforms all explanation methods in preserving counterfactual
and group fairness, and no explanation method satisfies all four properties.
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Figure 7: Shown are bar plots with mean values and standard errors of computed metrics of random node feature
explanations, random edge explanations, and explanation methods generating node- (VanillaGrad, Integrated Gradi-
ents, GraphLIME, GNNExplainer) and graph-level (PGMExplainer, GraphMASK, PGExplainer) explanations across
all datasets. We observe that Random Edge explanations achieves better unfaithfulness and group fairness mismatch,
whereas graph structure-based explanations perform better on stability and preserving counterfactual fairness.
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