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Abstract

Data integration procedures combine heterogeneous data sets into predictive models, but
they are limited to data explicitly related to the target object type, such as genes. Collage is
a new data fusion approach to gene prioritization. It considers data sets of various associa-
tion levels with the prediction task, utilizes collective matrix factorization to compress the
data, and chaining to relate different object types contained in a data compendium. Collage
prioritizes genes based on their similarity to several seed genes. We tested Collage by prior-
itizing bacterial response genes in Dictyostelium as a novel model system for prokaryote-
eukaryote interactions. Using 4 seed genes and 14 data sets, only one of which was directly
related to the bacterial response, Collage proposed 8 candidate genes that were readily val-
idated as necessary for the response of Dictyostelium to Gram-negative bacteria. These
findings establish Collage as a method for inferring biological knowledge from the integra-
tion of heterogeneous and coarsely related data sets.

Author Summary

In everyday life, we make decisions by considering all the available information, and often
find that inclusion of even seemingly circumstantial evidence provides an advantage. Our
new computational method Collage prioritizes genes from a large collection of heteroge-
neous data. In a case study on social amoeba Dictyostelium, we started from four bacterial
response genes and 14 different data sets ranging from gene expression to pathway and lit-
erature information. Collage proposed eight candidate genes that were tested in the wet
laboratory. Mutations in all eight candidates reduced the ability of the amoebae to grow on
Gram-negative bacteria. Furthermore, five out of the eight candidate genes were required
for growth on Gram-negative bacteria but had no discernible effect on growth on Gram-
positive bacteria. This is a remarkably accurate result since only about a hundred of the
12,000 Dictyostelium genes are estimated to be responsible for bacterial response.
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Introduction

In the natural sciences, incorporating all the data, especially circumstantial information, can be
conceptually and computationally challenging. The difficulty stems from the heterogeneity and
abundance of data sets. Consider a typical data analysis task in molecular biology: besides
experimental data, such as levels of gene expression, there are plenty of other data sets at our
disposal, such as protein-protein binding sites, genetic and metabolic pathways, functional
annotations, genetic interactions, phenotype ontologies, diseases, drugs and their side effects.
Intuitively, collective mining of all available information sources should improve accuracy of
predictive modeling. However, the challenges are to integrate seemingly unrelated concepts
from heterogeneous data sets [1] and fuse various data sets into a single predictive model.

Here we present a method called Collage that can consider a large number of potentially
indirectly related data sets and use them for gene prioritization. Computational prediction of
gene function is a formidable challenge. Given a small set of seed genes that are known to be
responsible for a particular function, gene prioritization [2] aims to identify the most promis-
ing candidates for further studies. Present data integration approaches for gene prioritization
can be divided into four groups: methods that consecutively filter one data set at a time [3];
methods that stitch together gene profiles from different data sources and then treat the
stitched parts equally [4]; methods that use each data set separately to estimate the similarity of
candidates to the seed genes and then fuse similarity scores through weighting [5-8, 8-12]; and
methods that construct gene correlation networks independently from each data set and find
genes that are similar to the seed genes in the composite network [13-17].

These approaches are limited to data that explicitly refer to genes. They cannot readily treat
data that are relevant for gene prioritization but are provided in a non-gene data space, such as
disease ontologies, phenotype classifications, drug interactions and annotations of small chem-
icals. A labor-intensive approach to consider data from non-gene space is feature engineering,
which transforms circumstantial data into gene profiles. However, feature engineering is nei-
ther standardized nor effortless and is a bottleneck that prevents the implementation of truly
large-scale data fusion for gene prioritization. As an alternative to gene-centric approaches,
Collage represents a major advancement in (i) the breadth of data it can incorporate, (ii) the
ease of data integration without complex feature engineering, (iii) the high prediction accuracy,
(iv) the ability to retain the relational structure both within and between data sets during
model inference and (v) the capacity to incorporate knowledge of data structure in model
design.

We used Collage to solve a problem in an exciting and relatively new field of interest — the
use of Dictyostelium as a model system to explore the interaction between eukaryotes and pro-
karyotes. D. discoideum is a free-living soil amoeba that feeds on bacteria. The amoebae eat
both Gram-negative and Gram-positive bacteria, but they respond differently to bacteria from
these two groups. Early studies have shown that mutations can impair the ability of the amoe-
bae to grow on either Gram-positive or on Gram-negative bacteria [18]. Other studies have
shown that the amoebae can serve as a model for the interaction between eukaryotes and pro-
karyotes, including pathogenesis [19-21]. This system is an important addition to the field
because Dictyostelium is a very convenient model organism that offers a variety of experimental
tools, including classical genetics and modern genomic approaches.

The interaction between D. discoideum and several Gram-positive and Gram-negative bac-
teria has recently been explored with genetic and genomic methods [22]. These studies revealed
transcriptome-level responses to the two bacterial groups and discovered a handful of genes
that are essential for growth of amoebae on bacteria. The genetic analysis suggested that one in
a hundred of the 12,000 genes in the D. discoideum genome is required for bacterial

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004552 October 14,2015 2/18



©PLOS

COMPUTATIONAL

BIOLOGY

Gene Prioritization by Compressive Data Fusion and Chaining

discrimination [22]. Identifying and characterizing these genes is a laborious task that requires
several months of work per gene. We hypothesized that Collage could simplify this task by pri-
oritizing genes and suggesting which ones should be tested by direct experiments.

Results
Compressive data fusion

Collage starts with a collection of data sets and can consider any kind of information (data
tables, ontologies, associations, networks) that can be encoded in a matrix (S2 Fig). Each data
set is viewed as a relation between two object types. For example, gene expression data relate
gene names (columns) to experimental conditions (rows), where the entries represent tran-
script abundance. Literature annotation data relate research papers and their contents to anno-
tation terms, where the entries are Boolean. Such data sets are abundant in the field of
molecular biology and they report on dyadic relations that can be encoded in matrices. Matrix
data representation is suitable for a wide range of data types, including tables, associations,
ontologies and networks (S1 Fig). Whenever data sets share object types, we can connect them
in a data fusion graph with object types as nodes and data matrices as edges. In the simplest
data fusion graph shown in Fig la (top), node A may represent known genes in a certain
genome and node B may denote various experimental conditions. A gene from A could be
related to an experimental condition in B through a level of its mRNA abundance. Relation-
ships between all genes and experimental conditions are represented in a data matrix that is
placed on the edge A-B.

We model the system of data sets (Fig 1b) through data fusion by collective matrix factoriza-
tion [23] (see also the tutorial provided in the S1 Text). Matrix factorization compresses the
data matrices to a latent space and infers recipes to convert the latent representation back to
the original data domain. Each data matrix is decomposed into a product of three low-dimen-
sional latent matrices (S1 Fig): a “backbone matrix” encodes the relations between the latent
components, and two “recipe matrices” transform the backbone matrix to the original space of
the object types (Fig 1a). Data sets that are directly related and share a node in the fusion graph
report on a common object type and hence use a common recipe matrix in their decomposi-
tion. Importantly, decomposition of any data set in the system depends on all other data sets
according to a design of the fusion graph (Fig 1c). Sharing of recipe matrices ensures data
fusion and allows Collage to incorporate knowledge about the relations between data sets.

Chaining of latent matrices

Collage profiles objects in the latent space of any other object type based on the connectivity in
the data fusion graph. In the simplest scenario, where object types are adjacent, such as A and
D in Fig 1c, Collage profiles objects of type A in the latent space of D by multiplying the recipe
matrix of A by the backbone matrix A-D. The resulting profile matrix has objects of type A in
rows and the latent components of type D in columns. The advantage of Collage over other
gene prioritization tools is its ability to profile objects whose types are not direct neighbors in
the fusion graph, such as A and C in Fig 1c. To profile objects of A in the latent space of C Col-
lage starts with the recipe matrix of A and multiplies it by backbone matrices A-D, D-F and
F-C on the path from A to C (Fig 1d). If A represented genes, D literature, F literature annota-
tions and C chemical compounds, this procedure would yield profiles of genes in the latent
space of chemical compounds. We refer to this technique as latent matrix chaining. It con-
structs dense profiles that include the most informative features obtained by collectively com-
pressing data via matrix factorization. Intuitively, chaining is able to establish links between
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Fig 1. Overview of the Collage prioritization algorithm. (a) A data matrix in Collage relates two object types. We graphically represent this relation such
that nodes A and B represent object types, and the directed edge A-B connects the two nodes with an associated data matrix. The matrix has objects of type
A (e.g., genes) in the rows and objects of type B (e.g., experimental conditions) in the columns, as indicated by the edge directionality. Grey cells in the matrix
represent quantitative measurements (e.g., mRNA transcript abundance), or binary memberships that relate objects in rows to objects in columns. Empty
cells denote missing values. (a, bottom). To model this relation, tri-factorization decomposes the data matrix into three smaller, low-dimensional latent
matrices, whose product should well reconstruct the original matrix. Two latent “recipe matrices” map objects A and B into the latent space, and the remaining
“backbone matrix” describes the relations in the latent space. In essence, the backbone matrix is a compressed version of the original data matrix. (b)
Collage collectively models many data matrices that share object types. We organize the matrices in a data fusion graph. Object types are denoted as nodes
(A to G), which may correspond to genes, ontology terms, diseases and patients, etc. (c) Instead of separately tri-factorizing each data matrix, Collage
collectively factorizes all the matrices to a set of backbone matrices (edges, matrices in blue, one for each original data matrix) and recipe matrices (nodes,
one for each object type), where the recipe matrices are shared across data sets that report on a common object type. (d) Collage chains latent matrices of
the resulting factorized model to profile target objects (e.g., genes) in the latent space of any other object type. For example, the profiling of objects A in the
latent space C is constructed by chaining that starts at node A and traverses the graph to node C through D and F. (d, bottom) Chaining multiplies the recipe
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matrix A by the backbone matrices along the traversed path. (e) The A-to-C path in (d) is one of nine chains through which we can profile objects A in our
exemplar data fusion graph. (f) The number of profile vectors for each object of type A corresponds to the number of chains. Collage compares the profiles of
candidate genes to the profiles of the seed genes. Given a candidate gene, Collage records its rank correlation-based similarities in a similarity score matrix
with seed genes in the columns and chained profiles in the rows. The final score estimates the similarity of a candidate to a set of seed genes and is obtained
by summarizing the similarity score matrix with a single value (green circle) computed by a median-based L-estimator. (g) The similarity score of a gene is a
proxy for its degree of involvement in the phenotype characterized by the set of seed genes. Hence the prioritization is defined by ranking the candidates
according to their seed-similarity scores.

doi:10.1371/journal.pcbi.1004552.9001

genes and chemical compounds even though relationships between these object types are not
available in input data in Fig 1b.

Gene prioritization

Collage prioritizes objects of the target object type (e.g., genes, node A in Fig 1) based on a
small set of seed objects (previously characterized genes). For each target object, it constructs a
set of profile matrices by considering all possible chains of latent matrices that start in the tar-
get node and end in any node that is reachable in data fusion graph (Fig le). A profile matrix
corresponds to a particular latent matrix chain and encodes the latent space of the chain’s last
node. Each profile matrix is used to estimate the similarity between any two targets (genes) by
comparing their respective profiles. Collages estimates the overall similarity between a candi-
date gene and the seed genes by aggregating similarity scores of the candidate gene across all
profile matrices (Fig 1f). As a final step, Collage ranks all the genes based on their overall simi-
larity with the seed genes (Fig 1g).

Bacterial response gene prioritization in Dictyostelium

Collage is agnostic to data types it can consider and can be applied to any collection of data sets
and any phenotype of interest. We used Collage to find genes that affect D. discoideum growth
on the Gram-negative bacteria Klebsiella pneumoniae. We started with four seed genes that
have been previously identified in a genetic screen for D. discoideum mutants that fail to grow
on Gram-negative bacteria (Table 1). We fused 14 publicly available data sets that were consid-
ered relevant to the problem. Collectively, these data sets describe relations between 10 object
types (see data fusion graph in Fig 2). Our prioritization task was particularly challenging since
there is not a lot of information about Dictyostelium in the literature and in public databases

Table 1. Seed D. discoideum genes used for Gram-negative bacterial response gene prioritization.
Seed genes used for prioritization by Collage were selected based on the experiments published in [22].

Gene DictyBaseID Description

nip7  DDBG0295477 Ortholog of the conserved NIP7 nucleolar protein that is required for 60S
ribosome subunit biogenesis; contains a PUA domain.

clkB  DDBGO0278487 Similar to the cell division cycle 2-related protein kinase 7 (CRK7) and other cell
division cycle 2-like protein kinases; belongs to the CMGC group of protein
kinases.

spc3 DDBG0290851 Ortholog of the conserved microsomal signal peptidase 23 kDa subunit; the
signal peptidase complex is a membrane-bound endoproteinase that removes
signal peptides from nascent proteins as they are translocated into the lumen of
the endoplasmic reticulum; contains a putative signal peptide.

alyL DDBG0286229 Amoeba lysozyme family protein (aly), but divergent compared to alyA-D.
doi:10.1371/journal.pcbi.1004552.1001
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Fig 2. Data fusion graph for bacterial response gene prioritization in Dictyostelium. The graph shows
the configuration of data sets, wherein nodes correspond to object types and edges denote data sets, each
describing a relation between objects of two types. Collage considered 14 data sets (edges, represented by
arrows) in this study describing the relations between 10 object types (nodes, represented by circles). The
data sets included three whole-genome D. discoideum RNA-seq experiments [22, 24, 25] (R4 7, R1 s, R1.9),
protein-protein interactions from the STRING database [26] (©4), gene mentions in research articles (R4 )
and their Medical Subject Headings (MeSH) annotations (R2 3), pathway memberships from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) [27] and Reactome [28] databases (R1 6, R1 5, Rs 5),
associations of genes to phenotypes from Phenotype Ontology [29] (R+,10), gene functions in Gene Ontology
[30] (R1,4) and interrelatedness of Reactome and KEGG pathways and research literature with Gene
Ontology terms (Rs 4, Rs 4, R 4). See S4 Table for a detailed overview of considered data sets.

doi:10.1371/journal.pcbi.1004552.g002

and only one of the data sets (Fig 2, Bacterial RNA-seq, node 9) was directly related to bacterial
response in Dictyostelium. Furthermore, the four seed genes, which were available to us at the
beginning of this study, differ substantially in their data representation across data sets (S7
Fig). Collage ranked ~ 12,000 genes from the Dictyostelium genome (S1 Table). The priori-
tized gene list was then filtered by the reported availability of D. discoideum gene knockout
strains in the Dicty Stock Center (http://dictybase.org/StockCenter/StockCenter.html). We
selected eight genes listed in Table 2 from the 30 top-ranked candidates (S2 and S3 Tables) for
direct testing.
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Table 2. Top-ranked candidate D. discoideum genes tested for Gram-negative bacterial response. The name of the candidate gene, its identifier and
description from DictyBase are shown, together with the rank (out of all D. discoideum gene knockout strains available in the Dicty Stock Center) at which the
candidate was prioritized. Collage prioritized genes by fusing data sets from the fusion graph shown in Fig 2.

Gene DictyBase ID Description Rank
position
cf50-1 DDBG0273175 Component of the counting factor complex, which includes CF60, CF50, CF45-1, and CtnA (countin). 1
smiA DDBG0287587 Cytosolic protein present in vegetative and developing cells. 2
acbA DDBG0270658 Precursor of SDF-2; similar to diazepam binding inhibitor; enriched in prespore cells. 3
abpC DDBG0269100 120 kDa F-actin binding protein also often called filamin; involved in actin cytoskeleton organization, motility, 6
sand development; enriched in prestalk cells.

pikB DDBG0283081 Phosphatidylinositol kinase. 9
PpikA DDBG0278727 Phosphatidylinositol kinase. 11
pten DDBG0286557 Phosphatase and tensin homolog. 15
modA DDBG0269154 Protein post-translational modification mutant. 23

doi:10.1371/journal.pcbi.1004552.t002

Validation of top ranked candidate genes

To validate the selected candidate genes, we assessed growth of the D. discoideum knockout
strains by making serial dilutions of the amoebae and co-culturing the cells with K. pneumo-
niae bacteria on nutrient agar. We observed a significant difference in the growth of all the
mutants compared to the wild type AX4 (Fig 3). In this system, the bacteria grow faster than
the amoebae so the first observation is the appearance of a thick opaque lawn of bacteria on the
surface of the agar plate within 24 hours (not shown). Later on, as the amoebae eat the bacteria,
they clear parts or all of the bacterial lawn, depending on their density and growth rate. When
there are numerous, fast growing amoebae, we observe a cleared lawn (e.g. Fig 3, AX4, 10* cells,
Day 2). When there are very few amoebae, we observe distinct plaques that appear as darker
spots in the bacterial lawn (e.g. Fig 3, AX4 Day 3, 10” cells). When the bacteria are consumed,
the amoebae starve, aggregate, and form developmental structures (Fig 3, AX4 Day 3, 10*
cells). Cells that carry an inactivating mutation in the tirA gene (tirA™ cells) exhibit impaired
growth on K. pneumoniae [31]. We used these cells as a control in our assay and indeed they
exhibited no clearing of the bacterial lawn when plated at the same initial density as the wild
type cells (Fig 3, AX4 vs. tirA~, Day 2, 10" cells). We note that tirA~ cells can grow to some
extent on K. pneumoniae bacteria under certain conditions, indicating that the growth pheno-
type is continuous even though many researchers tend to describe it as Boolean.

We tested the predictions made by Collage on eight genes—acbA, smlA, pikA, pikB, pten,
abpC, modA and ¢f50-1 (Table 2). In the case of pikA and pikB we used a double knockout
strain because of previously reported overlap in the functions of these two genes [32]. Strik-
ingly, when we assessed the ability of the mutant cells to grow on bacteria, they all exhibited
varying degrees of growth defects compared to the equivalent wild type (AX4) control (Fig 3).
Comparing only one condition, disruption of acbA, abpC and modA resulted in small individ-
ual plaques in the bacterial lawn but not complete clearing as observed in AX4 (Fig 3, black
box, Day 2, 10* cells). In contrast, mutations in smlA, pikA/pikB, pten, and cf50-1 caused phe-
notypes as severe as the loss of tirA with no clearing on Day 2 (Fig 3, black box, Day 2, 10*
cells). Further distinction in the ability to grow on bacteria was revealed when the mutant cells
were observed for an additional day. For example on Day 2, pikA™/pikB™ and pten™ cells
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Fig 3. Experimental validation of top ranked candidate genes. Co-cultures of D. discoideum (D.d.) and
bacteria were generated by serial dilutions of axenically grown D. discoideum amoebae with a large excess
of K. pneumoniae bacteria such that the number of amoebae plated in each spot was between 10 and 10* as
indicated above each column. The relevant genotypes of the amoebae strains are indicated on the left of
each row. The co-cultures were plated on SM agar plates and incubated in a humid chamber at 22°C. Images
were taken at 2 and 3 days after plating to show the progression of amoebae growth in time. The larger white
opaque spots are lawns of the K. pneumoniae bacteria. Growth of the D. discoideum amoebae results in the
formation of plaques within the opaque spots in cases of low amoebae cell density or clearing of much or all
of the opaque spots in cases of high amoebae cell density. Upon complete clearing of the bacteria, the
amoebae starve and begin to develop, producing white protruding multicellular structures within the lawn
(e.g. AX4, 10* cells, day 3), which have no significance in this assay. Growth of the Collage-predicted
knockout strains was compared to the wild type (AX4, top row) and to the most severe mutant available (tirA-,
bottom row). Each experiment was performed in duplicate. Representative images of three independent
experiments are shown.

doi:10.1371/journal.pcbi.1004552.9003

exhibited similar growth defects, but by Day 3, the loss of pten did not hinder growth on bacte-
ria as much as the loss of pikA and pikB (Fig 3).

The seed genes we selected are required for growth on Gram-negative bacteria but dispens-
able for growth on Gram-positive bacteria [22]. This information was not included explicitly in
our Collage analysis, but it was interesting to test the effect of the eight validated genes on
growth on Gram-positive bacteria as well. We therefore plated the mutant strains on Bacillus
subtilis bacteria and tested their growth. The wild type (AX4) control grew well, as did the tirA
mutant, thus validating the assay. Disruption of acbA, smlA, pten, abpC and modA had no dis-
cernible effect on growth on Bacillus subtilis but mutations in pikA/pikB and in ¢f50-1 caused
severe growth defects that were comparable to those seen on K. pneumoniae.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004552 October 14,2015 8/18
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Discussion

The results indicate that Collage is capable of prioritizing genes in a reliable manner and identi-
fying genes with various effects on the tested phenotype. This allows the analysis of a broad
spectrum of genes in a given biological pathway. Application of the method to this specific
question required only a few days of computational work and the validation step required a
few more days of work. Considering the low yield of standard genetic screens, it would have
taken about a year to identify eight new genes in the bacterial response pathway.

Three out of the five validated bacterial growth genes—-abpC, smlA and pten, are involved in
actin polymerization and cell motility [33-36]. One explanation for the enrichment of these
genes is that the availability of preexisting knockout strains may be enriched with cell motility
genes. This is because D. discoideum has been used extensively as a model system for chemo-
taxis, and many genes involved in cell motility have been disrupted and made available to the
community. Nonetheless, the importance of actin in the consumption of bacteria may have
been previously oversimplified, and the enrichment of these genes could be due to an essential
role for actin in bacterial consumption. Proper regulation of actin is required for cell motility,
phagocytosis and intracellular trafficking of phagosomes to lysosomes [33-36]. Each of these
processes could be important in hunting, consuming and digesting bacteria.

We identified the sugar modifying alpha-glucosidase II enzyme, ModA [37]. Complex sugar
modifications are important for biogenesis and intracellular trafficking of proteins. Others have
shown that disruption of modA results in a lack of anionic N-glycan, which is associated with
lysosomal enzymes [38]. While it may not be surprising to identify genes that regulate actin and
lysosomes in a direct genetic screen, it is important to see that Collage did so too (S8 Fig).

We also identified one gene, acbA, with a less salient relationship to bacterial consumption.
Gene acbA encodes an Acyl-CoA Binding protein, which is similar to the mammalian diaze-
pam binding inhibitor. Acyl-CoA Binding protein is secreted during D. discoideum develop-
ment and cleaved to form the SDF-2 peptide (Spore Differentiation Factor-2) [39, 40]. The role
of Acyl-CoA Binding protein and SDF-2 in growth on bacteria is unclear. It is unlikely to be
due to disruption of a general cellular growth pathway, since achA™ cells grow normally in axe-
nic medium and it is unclear whether the SDF-2 peptide is secreted during growth because the
system that produces it is developmentally-regulated. The identification of acbA suggests that
novel gene functions can be discovered with our gene prioritization method.

The ranking of candidate genes depends on a particular collection of data sets we consider
for gene prioritization. Removal of data sets from the data fusion graph (S3 Fig) changes the
prioritization. When fewer data sets are considered, the validated genes from our study become
ranked lower, below the top 30 (S3 Table). This is an intuitive dependence, less information
should result in reduced prioritization accuracy, which we validated by simulations (S9 Fig).
For every considered data compendium, Collage achieved a higher area under the ROC (AUC)
statistic for known bacterial response genes than for randomly selected genes. However, not
surprisingly, the suitability of a data compendium to rank genes depended on the number of
data points in the compendium as well as on the usefulness of individual data sets. Our previ-
ous computational studies in data fusion with collective matrix factorization bear additional
evidence that exclusion of data sets gradually reduces the quality of the predictions [41, 42].
We can attribute our success in identification of genes that participate in Gram-negative
response pathways to the proposed approach and the appropriate choice of 14 relevant data
sets. In the absence of a much larger set of known genes for this pathway, we cannot claim that
this particular selection of data sets is optimal.

Collage builds upon our recently developed data fusion method by collective matrix factori-
zation [23], and extends it with post-processing by latent matrix chaining and gene profiling.
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Collective matrix factorization has already provided accurate predictions of gene functions in
Dictyostelium and yeast [43] and drug toxicity in mouse and human [42], where the accuracy
was higher than that of other methods including random forests and approaches based on mul-
tiple kernel learning. Another utility of collective matrix factorization was also found in the
study of disease interactions [41]. In these studies, collective learning enabled excellent accu-
racy and effortless integration of a range of very diverse data sets. Collective learning hence
provides means for Collage to constitute a useful complement to large-scale ranking of genes in
various organisms and to ranking of other objects contained in the fusion graph, such as drugs,
diseases and pathways.

Our previous experiments with collective matrix factorization demonstrate that collective
matrix factorization applies to diverse range of data sets, learning tasks and organisms.
Through latent matrix chaining, Collage adapts collective factorization to prioritization, and
thus Collage inherits the general applicability and robustness of collective factorization. Rather
than in part extending our previous in silico studies we here report on the ability of Collage to
make novel and highly accurate predictions.

Materials and Methods
Data sets

A total of 14 data sets and 10 object types were considered for Gram-negative bacterial
response gene prioritization. Data sets were organized in a data fusion graph (Fig 2). We used
RPKM-normalized RNA-seq transcriptional profiles of 35 abc-transporter mutant strains and
wild-type AX4 strain in two biological replicates and at four different time points during devel-
opment [24] (R, g), normalized gene expression profiles analyzed by RNA-seq and measured
at 4-hour intervals during the 24-hour development of D. discoideum in two biological repli-
cates [25] (R, 7), and normalized abundances of gene transcripts in two replicates and four dif-
ferent bacterial growth conditions analyzed with RNA-seq [22] (R, 9). We also included the
following publicly available data sets: Phenotype Ontology [29] annotations (R, ;o) down-
loaded from the DictyBase data portal in March 2014, protein-protein interactions from the
STRING v.9 database [26] (@;), membership of D. discoideum genes in pathways from the
Reactome database [28] (R; ) downloaded in August 2013, Kyoto Encyclopedia of genes and
genomes (KEGG) pathway memberships [27] (R, 5), and annotations of genes in Gene Ontol-
ogy [30] (Ry,4). Additionally, we cross-referenced Reactome and KEGG pathways (R 5), Gene
Ontology terms and Reactome pathways (R 4), and KEGG orthology groups and Gene Ontol-
ogy terms (Rs 4). Literature data included associations of genes to research articles from
PubMed (R; ,) accessed in August 2013 through DictyBase, mapping of research articles to
Gene Ontology terms (R, 4) and their Medical Subject Headings (MeSH) (R, 3). As a final step
before data analysis, we normalized all relation data matrices such that the Frobenius norm of
every row profile was equal to one. S4 Table summarizes the number of objects of each type
and the data sets considered in our analysis.

Data fusion by collective matrix factorization

A total of 14 data sets and 10 object types were considered for Gram-negative bacterial
response gene prioritization (Fig 2). Data sets are viewed as dyadic relations and are encoded
in relation and constraint matrices. A relation matrix R;; is a #; x #; real-valued matrix, in
which rows correspond to objects of type i, columns to objects of type j and the element R; j(k,
I) represents the relationship between objects k and I. A constraint matrix 0; is a #; X n; matrix
that relates objects of type i to themselves. It contains pairwise constraints indicating the dis-
similarity/similarity between objects. Larger positive elements in ©; direct data fusion
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algorithm to infer a latent model in which the corresponding objects have fewer similar latent
profiles (i.e., positive elements in the constraint matrices specify cannot-link constraints).
Larger negative elements indicate greater similarity of latent profiles (i.e., negative elements in
the constraint matrices specify must-link constraints). Constraint matrices are used for regular-
ization and are not factorized (54 Fig). Given a collection of relation matrices R (R;; for differ-
ent choices of i and j) and a collection of constraint matrices C (@ " for different choices of i,
where ] enumerates constraint matrices available for object type i), collective matrix factoriza-
tion simultaneously decomposes all the relation matrices in R while regularizing the inferred
latent model with the constraints in C. This is accomplished by minimizing our previously pro-
posed loss function [23]:

I
min Z H Rl,j - GlSIJG]T ||;2:ro +Z Ztr(GJTG)SI)GI)'

G;>0,8
TV R ER 0,eC =1

The objective function aims at good reconstruction of the observed elements in the data matri-
ces and penalizes violated constraints. The inferred low-dimensional matrix factors G; and S;;
form decompositions of the relation matrices such that R;; ~ G;S; ].GjT for all i and j. Here, G;
is a n; X ¢; nonnegative latent matrix (a “recipe matrix”) containing latent profiles of objects of
type i in the rows, Gjis a n; X ¢; nonnegative latent matrix with profiles of objects of type j in
the rows, and S, is a ¢; X ¢; latent matrix (a “backbone matrix”) that models interactions
between latent components in the (4, j)-th data set. Latent profile of an object of type i is given
by its corresponding row vector in G; and encodes membership of the object to c; latent
components.

The key principle of data fusion is sharing of latent matrices among decompositions of
related matrices. Latent matrix G is utilized for decomposition of any relation matrix that
describes objects of type i, that is, G; is used in factorizations of matrices R;; and R;; for any
object type j. While latent matrix G; is shared, latent matrix S; is specific to the relation R; .
The inferred latent model thus consists of object type-specific latent matrices (G;) and latent
matrices specific to individual data sets (S; ).

The algorithm for inference of fused latent models is accompanied by previously reported
proofs of correctness and convergence [23]. Briefly, it is an iterative algorithm that starts by
randomly initializing latent matrices G; and then alternates between updating matrices G; and
S, until convergence. To ensure robust prioritization, the algorithm was run 20 times with dif-
ferent initializations of latent matrices. The algorithm was run for a maximum of 200 iterations
or was terminated early if the total reconstruction error between consecutive iterations changed
by less than 0.01. Parameters of the algorithm are factorization ranks, c;, for every object type i
in the data fusion system. Our prioritization of D. discoideum genes included 10 types of
objects; we have selected latent dimensionality of object types through a single parameter rep-
resenting the fraction of the original data dimensionality such that (cy, ca, . . ., ¢19) = (kny, kny,
..., knyp). The value of k was obtained by observing kinks in a diagram of total reconstruction
error when varying k from 0.05 to 0.5. We selected k = 0.1 where a maximum kink was
attained. S5 Fig summarizes the procedure and the resulting latent data dimensionality of each
object type used in our analysis.

Gene profiling by chaining of latent data matrices

We assembled gene profiles by relying on the latent data matrices inferred by collective matrix
factorization. Each gene was characterized through a collection of profiles determined by the
topology of data fusion graph. Collage constructed gene profiles by starting at the gene node
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and its corresponding recipe matrix (G;). The method traversed along edges of data fusion
graph and multiplied the edge-associated backbone matrices. In the bacterial response gene
prioritization study there were 15 chains of latent matrices (Fig 2), and consequently 15 distinct
profile matrices containing gene profiles of every considered gene: G, G;S; 7, G181, G1S1 0,
G1S1,10 G181.2, G1S1.6: G185 G181, G181,52.3, G1S1,656,5 G151,686,.4 G151,282,4» G1S1,585,4 and
G151 ,656,555.4. It should be noted that latent matrix chains may vary in length and that precise
number of chains including a particular backbone matrix is decided by the structure of data
fusion graph. For example, in our study, the backbone matrix S; 4 was contained in four chains
whereas matrix S, ; participated in a single chain. Since each resulting profile matrix is deter-
mined by a path through object types, adding further away object types increases the weight of
intermediate backbone matrices. It therefore can occur that matrices (i.e., data sets), which are
present in many chains, have greater influence on prioritization than matrices (i.e., data sets),
which appear in fewer chains. However, we would like to note that an intermediate backbone
matrix with large latent dimensionality does not necessarily dominate construction of the pro-
file matrix as can be seen from similarity score matrices in S6 Fig. Because Collage operates on
matrix chains, it gives a natural approach for incorporating relevance of data sets. Collage
assumes that a more relevant object type is the object type that is closer to target type (e.g.,
genes) in terms of the number of links needed to connect it with the target node. Consequently,
in gene prioritization, this means that data sets, which are closely related to genes might have a
stronger effect on prioritization than distant non-gene related data sets.

Gene prioritization

The inputs to gene prioritization were candidate genes, seed genes and the set of profile matri-
ces. Collage aims to find genes whose profiles are similar to the profiles of seed genes. The
approach estimates the similarities independently for each profile matrix, and then aggregates
the resulting scores to obtain the final prioritization. Each row in a profile matrix corresponds
to a profile of a gene. Collage assesses similarity between a candidate gene and a seed gene by
computing Spearman rank correlation of two respective row vectors. In this study, this proce-
dure yielded a 15 x |seed genes| similarity score matrix of rank correlations for each candidate
gene (56 Fig). Similarity score matrices are aggregated in a two-step median value computation
along score matrix dimensions to produce a single rank value per gene. Collage reports on
empirical P-values obtained by randomizing seed set of genes. Randomization of seed genes
was repeated 500 times. A nominal P-value of a candidate rank was estimated as (h+1)/(n+1),
where # is the number of replicate seed sets that have been simulated and 4 is the number of
these replicates that produced aggregated score greater than or equal to that calculated for the
actual seed set.

As a gene profile similarity measure, Collage uses Spearman rank correlation due to the cor-
respondence of rank correlation with assignments of genes to the latent components of inferred
matrices. A promising candidate gene should have a latent profile similar to the profile of a
seed gene. Given a profile matrix X, candidate gene g and seed gene s, gene g is considered
promising if its latent component with the largest membership is the same as that of seed gene
s. We formalize this intuition by measuring whether arg max; X(g, j) = arg max; X(s, j). The
same should hold for the latent component of the second largest, third largest, and all remain-
ing value-ordered gene memberships. Quantitatively, the described procedure corresponds to
rank correlations between candidate and seed genes.

The implementation of Collage for bacterial response gene prioritization in Dictyostelium is
available online (http://github.com/marinkaz/collage). Readers are invited to browse, use and
contribute to the software.
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Generalization performance of Collage on data subcompendia

To study the sensitivity of gene prioritization to the number of data sets in the data fusion
graph, we observed how the rankings of the validated candidate genes changed when the over-
all prioritization was obtained by fusing different subsets of data sets from our initial collection.
In addition to the original model that contained 14 data sets we applied Collage to four inde-
pendent gene prioritization data scenarios (S3 Table). The scenarios considered seven, four,
three and two data sets, where each model was applied to a different subset of entire data col-
lection (S3 Fig). The selection of data sets was in part determined by the data fusion graph. In
particular, for data fusion to take place, the associated graph has to be connected such that
information can be shared between data matrices. To evaluate the usefulness of Collage to fuse
data matrices in a non-gene data space we performed leave-one-out cross-validation. In each
validation run, one seed gene was excluded from a set of seed genes and added to test set con-
sisting of D. discoideum genes whose knockout strains were available in the Dicty Stock Center.
Collage then determined the ranking of this gene for each data scenario separately. From the
overall prioritization on a given data compendium, we calculated sensitivity and specificity val-
ues of Collage and reported the receiver operating characteristic (ROC) curve and the AUC sta-
tistic based on ranks of left-out genes (S9 Fig). As a negative control for prioritization, we
applied Collage to randomly selected seed sets of genes using all considered data sets.

Experimental analysis of Dictyostelium mutants

D. discoideum strains were obtained from the Dicty Stock Center and grown axenically in HL-
5at 22°C [22]. K. pneumoniae was maintained in SM broth at 22°C. To assess the ability of D.
discoideum to grow on bacteria, D. discoideum cells were collected from axenic cultures during
logarithmic growth and washed once with Sorensen’s buffer [22]. D. discoideum cells were seri-
ally diluted with bacteria (ODgqo = 1.0) and spotted onto SM agar plates. The plates were incu-
bated in a humid chamber at 22°C, and images of plates were taken every 24 hours.

Supporting Information

S1 Text. A friendly tutorial to Collage. The tutorial provides a step-by-step explanation of the
mathematical and computational concepts considered by Collage.
(PDF)

S1 Fig. A schematic overview of matrix tri-factorization. The figure illustrates the decompo-
sition of the m X n gene-to-phenotype data matrix R into a product of three low-rank latent
matrices, F, S and G. The goal of tri-factorization is to approximate the large-scale gene-to-
phenotype matrix with a product of much smaller latent matrices such that the approximation
is as good as possible. The original m x n gene-to-phenotype data matrix R is compressed by
factorization into a much smaller ¢; x ¢, matrix S of latent (meta) genes in rows and latent
(meta) phenotypes in columns. Matrix S is asymmetric and models the interactions between
the latent components. To map this compressed representation back to the original domain
space, we need two additional matrices, F and G. The m x ¢; nonnegative matrix F maps the
space of the meta genes to the space of genes. In each of the m rows, matrix F contains the
memberships of a respective gene in each of the ¢; latent components (meta genes). Similarly,
each column of the ¢, x n nonnegative matrix G contains the memberships of a respective phe-
notype in each of the ¢, latent components (meta phenotypes).

(PDF)

S2 Fig. Representation of information sources with data matrices. Matrices in Collage
describe relationships between objects of two types. Matrix rows correspond to objects of one
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type, columns correspond to objects of the other type and matrix elements express the degree
of a relationship between the corresponding objects. The figure illustrates matrix representa-
tion of six distinct data sets. (a) Degrees of protein-protein interactions from the STRING data-
base are represented in a gene-to-gene matrix. (b) Membership of genes in pathways are
represented in binary matrices, one column for each pathway. Binary matrices are also used to
associate (c) pathways with gene ontology terms and (d) research articles with Medical Subject
Headings. (e) The structure of Gene Ontology can be represented with a real- valued matrix,
whose elements report on distance or semantic similarity between the corresponding ontologi-
cal terms. (f) Levels of gene expression, an experimental data set, are represented by a matrix of
stacked gene expression profile vectors.

(PDF)

S3 Fig. Data fusion graphs for the study of model sensitivity to data set selection. Besides
the full collection of data sets (data fusion graph in Fig 2), we have considered data collections
with a smaller number of data matrices and studied the impact of this reduction on gene priori-
tization (S3 Table). We ran gene prioritization analyses by considering subsets of (a) seven, (b)
four, (c) three and (d) two data sets that were included in our original study.

(PDF)

S4 Fig. A schematic overview of penalized matrix tri-factorization. A prominent approach
to approximate a matrix with a system of latent matrices is singular value decomposition
(SVD). Factorized models inferred by SVD are prone to overfitting, they cannot guarantee con-
servation of the desired structural properties of the latent matrices, such as nonnegativity, and
they are hard to interpret. These shortcomings of SVD and its variants have spurred the devel-
opment of regularized learning approaches to matrix factorization. Penalized matrix tri-factor-
ization introduces regularization to tri-factorized latent model. In the figure, the input data
matrix is accompanied by two constraint matrices that express degrees of similarity between
genes (matrix in yellow and orange) or phenotypes (matrix in blue and green). Constraint
matrices guide the inference of latent matrices. In our implementation, elements of constraint
matrices that have greater negative values represent must-link constraints, i.e., the correspond-
ing genes (or phenotypes) should have more similar latent profiles. Elements with positive val-
ues have the opposite effect—they represent cannot-link constraints by penalizing the latent
data model if the corresponding genes (or phenotypes) have similar latent profiles. The matrix
factorization algorithm balances between good approximation and adherence to the con-
straints.

(PDF)

S5 Fig. Reconstruction error as a function of factorization rank. Collective matrix factoriza-
tion requires specification of latent data dimensionality, that is, a factorization rank for each
modeled object type. Factorization rank determines the degree of compression of relation
matrices: compression is higher with latent matrices of lower dimensionality. The study of bac-
terial response gene prioritization in D. discoideum considered data sets describing relation-
ships between objects of 10 different types. Factorization ranks were set through a single
parameter k, where the factorization rank was set to kn; for each object type i with #; objects.
The value of k was selected by observing the change of the “total reconstruction error” (black

line), ZR:'./ IR — R, jll o> When varying k between 0.05 and 0.5 (x-axis, “fraction of original
data dimensionality”). The reconstruction error was estimated by 50 repetitions of collective
matrix factorization, where each repetition was run with a different random initialization of

latent matrices. The bars show reconstruction errors of individual data matrices, ||R;; — R, il
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(“relation reconstruction error”). See Fig 2 in the main text for description of the data matrices.
We selected k = 0.1 where the maximum kink was attained. This choice resulted in latent data
dimensionality (ci, ¢2, €3, €45 Cs Ce> €7 Css Co> €10 = (1287, 342, 280, 308, 9, 9, 5, 28, 5, 50) with a
limitation on minimum factorization rank set to 5.

(PDF)

S6 Fig. Visualization of similarity score matrices for candidate genes validated in the wet
laboratory. Collage profiles genes through chaining of latent matrices. For a given candidate
gene, the profiling procedure yields as many gene profiles (i.e., data vectors corresponding the
gene) as there are different chains of latent matrices. Collage then assesses similarity between
the candidate gene and a particular seed gene by computing Spearman rank correlation
between the respective gene profiles. The figure shows the resulting 15 x 4 (i.e., there were 15
chains and 4 seed genes in our study) similarity score matrix containing rank correlations for
each candidate Dictyostelium gene that was validated in the wet laboratory.

(PDF)

S7 Fig. Heterogeneity of seed genes. We assessed whether and to what degree the data on seed
genes spc3, clkB, nip7 and alyL that were considered for bacterial response prioritization in Dic-
tyostelium vary across individual seed gene. To determine how a given seed gene is different
from other seeds, we randomized seed set 400 times and in each randomization used Collage to
calculate the similarity score between the given gene and the random set of seed genes (shown
in light green). For a given gene we also show its true score as estimated by Collage (e.g., see the
vertical line corresponding to the value for spc3 in top left panel) when only the remaining
three seed genes (e.g., clkB, nip7 and alyL in top left panel) were considered for scoring. One
possible explanation for the substantial amount of variation across seed genes is that these
genes were previously identified to be involved in bacterial response pathways using various
genetic and genomic methods [22]. They might therefore participate in different aspects of bac-
terial recognition. Large heterogeneity of seed genes also indicates the difficulty of prioritiza-
tion task considered here and suggests that consideration of all four seed genes for
prioritization is important.

(PDF)

S8 Fig. Homogeneity of candidate genes validated in wet laboratory. We assessed how alike
are candidate genes that were validated in wet laboratory on the basis of their latent data repre-
sentation estimated by Collage. To determine how a given candidate gene is different from
other candidates, we randomized set of candidates considered for experimental validation 400
times and in each randomization used Collage to calculate the similarity score between the
given gene and the random set of genes (shown in light green). For a given gene we also show
its true score as estimated by Collage (e.g., see the vertical line corresponding to the value for
¢f50-1 in top left panel) when the remaining seven genes (e.g., abpC, pikA, pten, modA, acbA,
pikB and smlaA in top left panel) were considered for scoring.

(PDF)

S9 Fig. Generalization performance of Collage. To estimate generalization performance of
Collage for bacterial response prioritization in Dictyostelium, we performed cross-validation
on seed genes in order to obtain sensitivity and specificity of our model. For this task, the
leave-one-out cross-validation fitted well. (Left; a, b) We applied Collage once for each seed
gene using all other seed genes as training genes and the left-out gene as a test gene (positive
control). For the negative controls, we considered genes, whose mutants are available in the
Dicty Stock Center (727 genes from S2 Table). Shown are the (a) ROC curves with the area
under the ROC curve statistics, and (b) precision-recall curves with the area under the
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precision-recall curve statistics based on ranks of left-out genes. The removal of non-gene
related data matrices decreased sensitivity and specificity of Collage, suggesting the important
ability of Collage to link non-gene related data matrices. The data sources used to construct
every performance curve are indicated in S3 Fig. (Right; a, b) (a) Rank ROC curves and (b)
precision-recall curves obtained for the leave-one-out cross-validation performed on eight top
ranked candidate genes, which were used for testing Collage and proven to be involved in bac-
terial response pathways. Notice that higher accuracy of results shown in the right panel rela-
tive to results in the left panel was expected as the eight top ranked candidate genes have all
been predicted using the same seed set (S8 Fig). We would hence like to warn readers about
possible confounding effects present in the experiment whose results are shown in the right
panel. In both figures, the control ROC curve (black dashed line) was obtained after prioritiza-
tion with randomly constructed seed sets and by using all data sources.

(PDF)

S1 Table. Whole-genome prioritization list. Prioritized list of D. Dictyostelium genes with the
associated empirical P-values and the aggregated prioritization scores as estimated by Collage.
(XLSX)

S2 Table. Gene prioritization list for a subset of genes from the DictyBase available in the
Dicty Stock Center. Prioritized list of D. Dictyostelium genes with the associated empirical P-
values and the aggregated prioritization scores as estimated by Collage. This is the sublist of S1
Table, where only genes that were available in the Dicty Stock Center for direct testing are
included.

(XLSX)

§3 Table. The impact of modeling circumstantial data on the overall D. discoideum bacte-
rial response gene prioritization. The table lists the top-30 candidate genes obtained by prior-
itization by data fusion of 14, 7, 4, 3 and 2 data sets from the data fusion graphs in S3 Fig.
Genes in bold are the ones selected for the experimental study.

(PDF)

$4 Table. Summary of data sets considered for bacterial response gene prioritization in D.
discoideum. The notation of the data sets (“Data matrix” column) is the same as in the data
fusion graph (Fig 2). All relation data matrices were normalized before data analysis such that
the Frobenius norm of every row profile was equal to 1. This type of data normalization was
also considered in our previous studies with collective matrix factorization. Preprocessed data
sets are provided with the project related code and are available from GitHub repository
(http://github.com/marinkaz/collage).

(PDF)
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