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Co-evolution based machine-learning for predicting
functional interactions between human genes

Doron Stupp® ', Elad Sharon!, Idit Bloch!, Marinka Zitnik® 2, Or Zuk® 3* & Yuval Tabach® '*

Over the next decade, more than a million eukaryotic species are expected to be fully
sequenced. This has the potential to improve our understanding of genotype and phenotype
crosstalk, gene function and interactions, and answer evolutionary questions. Here, we
develop a machine-learning approach for utilizing phylogenetic profiles across 1154 eukar-
yotic species. This method integrates co-evolution across eukaryotic clades to predict
functional interactions between human genes and the context for these interactions. We
benchmark our approach showing a 14% performance increase (auROC) compared to pre-
vious methods. Using this approach, we predict functional annotations for less studied genes.
We focus on DNA repair and verify that 9 of the top 50 predicted genes have been identified
elsewhere, with others previously prioritized by high-throughput screens. Overall, our
approach enables better annotation of function and functional interactions and facilitates the
understanding of evolutionary processes underlying co-evolution. The manuscript is
accompanied by a webserver available at: https://mlpp.cs.huji.ac.il.
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ARTICLE

he genomic revolution has resulted in the sequencing of

thousands of species, with many more being sequenced

every year. This explosion of genomic data from a diverse
set of species can be readily analyzed using comparative genomics
approaches to study the crosstalk between genes, function, traits,
and the species harboring them. One such approach is phyloge-
netic profiling, an established method for identifying functionally
related genes and protein—protein interactions (PPIs) in both
prokaryotes and eukaryotes!~10. Phylogenetic profiling is based
on the hypothesis that functionally related genes are associated
with similar evolutionary pressures and thus were lost or retained
together throughout evolution. For example, genes related to cilia
were identified and classified by comparing the proteome of non-
ciliated organisms to species with either a prototypical or mod-
ified cilia®!!. Similarly, others successfully identified mitochon-
drial genes based on their evolutionary pattern of loss and
retention in different species™!2.

In recent years, following the ever-increasing number of
sequenced organisms, it has become possible to apply co-
evolutionary analysis at the clade level (e.g., animals, mammals,
fungi), comparing signals at different evolutionary scales. It was
hypothesized that functionally related genes might show different
co-evolution patterns in specific clades. This phenomenon may
stem from genes becoming functionally related later in evolution
(e.g. the function was first introduced in the last common
ancestor of some clade). Other more interesting co-evolutionary
processes may also be found when inspecting co-evolution at the
clade level. For example, a group of genes functionally interacting
in a common ancestor may lose their co-evolution in some but
not all subclades further down the tree.

With the aim to better capture co-evolution, “clade-wise”
phylogenetic profiling approaches were developed>7:10. Shin and
Lee showed how integrating phylogenetic profiles across domains
of life improved the prediction of functionally interacting genes.
Later, Sherill-Rofe and Rahat® identified DNA repair-related
genes by integrating seven clade-wise co-evolution signals,
revealing the applicability of such methods. However, these
approaches either had a low resolution—focusing on domains of
life—or were applicable only to prediction on gene sets. It was
recently demonstrated that clade-wise co-evolution can improve
functional interaction prediction between human genes at the
eukaryotic clade levell0. Furthermore, the performance of classic
phylogenetic profiling has been shown to saturate when more
species are added!3. In contrast, clade-wise phylogenetic profiling
has the potential to improve performance when more species are
sequenced.

It was previously hypothesized that different types of pathways
(e.g. metabolic, signaling) might co-evolve in different manners.
Some biological processes may be more amenable to change than
others, leading to a variety of co-evolutionary phenomena. For
example, signaling pathways may rewire more often throughout
evolution than metabolic pathways, thus generating different
patterns in the phylogenetic profiles for different pathway types!4.
This represents how the interaction context, in this case pathway
type, can be inferred directly from co-evolutionary patterns.
Accordingly, clade-wise signals can potentially be used to boost
the prediction of functionally related genes as well as the pre-
diction of the interaction context.

One particular application of phylogenetic profiling is in
assigning function to less studied genes. Many human genes are
largely uncharacterized and are thus referred to as the “Ignor-
ome”. Pandey et al.!° studied the brain Ignorome and found that
approximately 70% of studies address the top 5% most studied
genes, with 20% of genes barely mentioned in the literature.
Others have found similar patterns in other Ignoromes, focusing
on why some genes are highly researched while others are

generally overlooked. These works identified the time of first
description to be the most prominent factor (i.e. a rich get richer
phenomena)!®17. More recently, the NeXtprot consortium
identified ~2000 human genes with no known function!$. Phy-
logenetic profiling presents an unbiased approach to annotation
of gene function, allowing us to better understand the function of
Ignorome genes.

Phylogenetic profiling entails evolutionary insights into how
pathways evolved. Previous works identified evolutionary insights
from phylogenetic profiling by linking organism traits with
groups of co-evolved genes. This is based on the hypothesis that a
coordinated loss of functionally related genes in specific organ-
isms suggests that these organisms underwent a major phenotypic
change. For example, loss of heme biogenesis genes in ticks and
parasitic nematodes was associated with adaptation to an envir-
onmental source of heme?. Similarly, Li et al. analyzed mito-
chondrial genes with respect to known losses of the
mitochondrial genome® and Dey and others inspected cilia
pathways in ciliated and non-ciliated organisms*>!1, However,
these findings were either driven by manual inspection®* or were
limited by the complexity of the model>!°. At the macro level of
pathway co-evolution, Dey et al.'# identified pathway types that
were identifiable by phylogenetic profiling and characterized
pathway types by divergence and evolutionary age, identifying a
relationship between co-evolution and general function as
stated above.

Here, we present a supervised machine-learning approach to
phylogenetic profiling utilizing “clade-wise” co-evolution of
functionally related genes. This approach predicts functional
interactions between human genes and the interaction context
(i.e. the biological function) in which the functional interaction
takes place. We then extend this method to annotate genes
function, focused on the functional annotation of less-studied
genes. Based on the predictions for each pathway type, we
prioritize function and interaction partners for these genes with
specific examples of DNA repair candidate genes as validated by
existing evidence in the literature. Finally, we inspect the evolu-
tionary insights revealed by our method at the pathway level,
pathway type, and the macro all pathways level. These evolu-
tionary insights lead us to identify the importance of parasitic
species in the predictions of our approach, and potentially other
phylogenetic profiling approaches. We explore this phenomenon
and show how it manifests in the loss of multiple biological
functions in parasitic clades. The paper is accompanied by a
webserver that allows a user to explore the functional interaction
predictions for all human genes. We present three analyses cor-
responding to those found in the paper: functional interactions
for single genes and gene sets and function annotation for genes.
This webserver can be accessed at: https://mlpp.cs.huji.ac.il

Results

Clade-wise phylogenetic profiling outperforms traditional
approaches. Clade-wise phylogenetic profiling (PP) takes into
consideration the co-evolution of genes in different evolutionary
scales, from the kingdom to the species level®”-10. In addition, it
was shown that different pathway types might show different co-
evolutionary patterns, e.g. metabolic pathways being more con-
served throughout evolution while signaling pathways often
rewire!4, Accordingly, we sought to utilize clade-wise PP to
improve the predictive power of PP and enable the prediction of
the interaction context by developing a supervised machine-
learning based approach (Machine-Learning based Phylogenetic
Profiling—MLPP). This approach integrates the phylogenetic
profiling signals from 49 clades throughout 1154 species
encompassing the eukaryotic tree of life. As the tree of life is
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hierarchical by nature, the clades for the analysis were chosen to
cover the entire eukaryotes spaces, while reducing overlap and co-
linearity between input features (see “Methods”, Supplementary
Table 1, Supplementary Fig. 1).

We first computed a species-by-gene matrix representing the
sequence similarity of every gene in each species to its human
ortholog, with a given row comprising the phylogenetic profile of
a single gene (see “Methods”). Then, for each clade, we calculated
the covariance between the phylogenetic profiles for each pair of
genes as features to the machine-learning algorithm. Thus, for
each gene pair, we used 49 clade-wise covariances of the genes’
phylogenetic profiles as features. We then trained a binary
classification model to predict gene pair functional interactions
defined as co-occurrence in any Reactome pathway?’. We used
the same 49 features to train additional models to predict the
interaction contexts for each context separately. The interaction
context refers to the ways and functions in which genes are
functionally related and is hereby defined as the co-occurrence of
genes in some pathway type (12 Reactome top-level pathways,
e.g., Metabolism, Immune System and 28 high level Gene
Ontology terms) or protein complex co-occurrence in Reactome
(see “Methods”)

We compared the performance of several machine-learning
algorithms and positive-unlabeled frameworks2!-24, choosing a
random forest classification algorithm (similar to Claesen et al.2%)
on the basis of performance and robustness to unlabeled data (see
“Methods”, Supplementary Methods, Supplementary Figs. 2, 3).
To determine the added benefit of using clades in comparison to
random sets of organisms, we compared the real clades to
randomized clades. The comparison revealed that the tree
structure and clade-specific evolution are indeed important to
the performance of the method (Supplementary Text 1, Supple-
mentary Table 2). The method is also robust to the choice of blast
pre-processing (See “Methods”, Supplementary Table 3).

To test the performance of our method, we compared it to four
established PP methods: normalized Phylogenetic Profiling
(NPP)!, SVD-Phy?>, PrePhyloPro (PPP)2¢ and the Hamming
distance on a binarized phylogenetic profile (BPP)?26. These four
methods do not take clades into consideration and are based
solely on similarity metrics between genes’ phylogenetic profiles.
We showed that our method, trained on functional interactions
from Reactome, outperformed the others in terms of auROC
(Fig. 1A) as well as partial auROC (at FPR <0.1) and average
precision (Supplementary Table 4, Supplementary Fig. 5),
achieving a 14%, 3%, and 10% increase relative to the next best
methods, respectively.

As several biases may obscure this comparison, we performed
cross-validation with stratification in addition to random
allocation to train and test splits. Previous studies found that
functional interaction prediction models tend to overfit to genes
found in pairs in both the training and test set (but not in the
same pairs). Gene pairs in the test set were thus stratified to
having both, just one, or neither of the genes in the training set as
previously suggested?’ (see “Methods”, Supplementary Fig. 5,
Supplementary Table 4). In addition, genes with high sequence
similarity (for example, paralogous genes) tend to be functionally
related and co-evolved. However, this relationship is easily
captured without PP and thus produces optimistic results for
predicting functional interaction. We thus stratified gene pairs for
this phenomenon (see “Methods”). When filtering out gene pairs
with high-sequence similarity, differences in performance were
even more pronounced (Supplementary Table 4, Supplementary
Fig. 5). Another consideration is that of gene age. More recent
genes (i.e. first appeared in a common ancestor closer to humans)
may prove more difficult for co-evolutionary based methods. This
can be attributed to greater similarity between closer organisms,

leading to high phylogenetic profiling similarity between these
genes regardless of function. We thus stratified for this
phenomenon and showed that indeed the model’s performance
is reduced for the subset of genes found only in Metazoa and
Chordata (See “Methods”, Supplementary Fig. 4). However, these
gene pairs constitute only a small portion of functional
interactions in Reactome (1% for Metazoa specific and 0.5% of
Chordata specific, mutually inclusive) and a high percentage of
paralogous pairs (20% for Metazoa, 17% for Chordata, 5% for all
genes).

In addition to functional interactions, our model predicts for
each gene pair the interaction context. Previous studies showed
that interactions belonging to different interaction contexts may
show a globally different phylogenetic profile!4. The interaction
context represents additional information about the functional
interaction of a gene pair, such as the pathway type. We showed
that our approach outperformed the other PP methods in
predicting pathway types from Reactome and high-level terms
from GO and achieved high auROC, partial auROC and average
precision in cross-validation and stratifications as described above
(Fig. 1B compared to NPP, see Supplementary Information for
additional comparisons).

Further comparisons of temporal splits and external validation
databases revealed similar gains in performance. We assessed the
performance of our functional interaction model, which was trained
on Reactome (Feb. 2019), in predicting functional interactions from
a future version of Reactome (Jan. 2021). Our model was robust to
these temporal changes (Supplementary Fig. 6). Additionally, we
externally validated our functional interaction model performance,
trained on functional interactions from Reactome, in predicting
functional interactions from both datasets similar and dissimilar to
Reactome. Our model was robust for predicting PPIs from BioGrid
—the Biological General Repository for Interaction Datasets?®
(Supplementary Fig. 7A-D) and from IntAct—the EMBL-EBI
Molecular Interaction Database?® (Supplementary Fig. 7E-H);
functional interactions from the Kyoto Encyclopedia of Genes
and Genomes (KEGG) database3® (Supplementary Fig. 8); and
protein complex co-occurrence from CORUM?3! (Supplementary
Fig. 9A-D), and IntAct Complex?*® (Supplementary Fig. 9E-H)
databases. For protein complex co-occurrence, we also compared
PP approaches to the “In Complex” interaction context model
trained on complex co-occurrence in Reactome (Supplementary
Fig. 10). These external validations were robust for each dataset
both at the whole dataset and excluding functional interactions
found in Reactome, and when excluding functional interactions
between paralogous genes.

As phylogenetic profiling is commonly used to understand
functional interactions at the pathway level, we compared the
different methods at this level. For each pathway, we calculated
the pairwise score for all pairs of genes in the pathway. To enable
a comparison between the different methods, the scores of all
gene pairs for each method were normalized by conversion to
percentiles. Comparing the median percentile per pathway for all
KEGG pathways, MLPP (functional interactions model) out-
performed the NPP method in 77.5% of cases and identified
43.8% of pathways at the 95% percentile level (Fig. 2A,
Supplementary Fig. 11A). For example, for the KEGG3? pathway
Fatty Acid Metabolism, MLPP predicted its pairwise interactions
at higher percentiles (Fig. 2B, the redder, the higher the
percentile) than the BPP (Fig. 2C) and NPP (Fig. 2D) methods.
A similar comparison is shown for the KEGG Valine Leucine and
Isoleucine pathway (Fig. 2E-G). Larger gains in performance
occurred when accounting for sequence similarity (Supplemen-
tary Fig. 11C) and similarly when compared to the BPP method
(Supplementary Fig. 11B, D) and when comparing using the
CORUM database of complexes (Supplementary Fig. 11E-H).
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Fig. 1 Method comparison for prediction of functional interactions. Our model (MLPP) was compared against other phylogenetic profiling approaches in
terms of the receiver operator curve (ROC) and area under the curve (AUC) in predicting pairs of functionally interacting genes. Additionally, MLPP could
predict the interaction context - complex co-occurrence, or one of 12 top-level pathways from Reactome. The model outperformed other approaches in
predicting functional interaction (A, B) and the interaction context (B) when compared in 5-times cross-validation. Error bars denote the 95% confidence
intervals using 1000 bootstrap samples. MLPP—machine-learning phylogenetic profiling, NPP—normalized phylogenetic profiling, SVD-Phy—singular
value decomposition phylogenetic profiling, PPP—PrePhyloPro, Hamming—binarized phylogenetic profiling with Hamming distance. Source data are

provided as a Source Data file.
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We then applied our method to identify modules of
functionally interacting genes. For this, we clustered genes by
their predicted functional interactions (i.e. predicted probability
of interaction across all gene pairs) and extracted tightly
interconnected modules by hierarchical clustering (see

“Methods”). We identified many modules of known functionally
interacting genes (Fig. 3). Some of the modules, such as ciliary>!*
and heme biogenesis genes?, were described previously as highly
co-evolved (Fig. 3B, G, respectively). However, we also identified
clusters where the signal was indeed contained in only a subset of
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Fig. 3 Co-evolved gene clusters. Model predictions for functional interaction were clustered using hierarchical clustering and cut at specific heights to

produce clusters. For each of the clusters A-G, the top part is the clade imp

ortance for each clade calculated using the mean SHAP value, with species

ordered from close (left) to distant (right) from human. The bottom part is the phylogenetic profile as self-hit normalized bitscores. Subfigures correspond

to the co-evolved genes in the pathways mRNA splicing (A), cilia (B), mitoch
metabolism (E), histidine metabolism (F) and heme biogenesis (G). Red ent

the clades and thus more easily found by our method. For
example, the mitochondrial respiratory complex III and IV genes
(Fig. 3C) and NADH dehydrogenase (Fig. 3D) have a strong co-
evolutionary signal in Fungi. Other clusters, such as the B12
metabolism cluster (Fig. 3E) and the Histidine catabolism cluster
(Fig. 3F), show signals in both Fungi and Nematoda. Finally, the
cluster in Fig. 3A contains genes related to mRNA splicing as well
as some genes with no previous association to splicing (in red).
Many of the modules found contained mostly genes with high
sequence similarity (Supplementary Fig. 12) such as alcohol
dehydrogenase enzymes (A), receptor/ion channel subunits (B, D,
G), ribosome subunits (E, F), the exosome (C), collagen subunits
(H) and histones (I). As previously stated, these modules were
expected as genes with high sequence similarity are highly co-
evolved and are often functionally related.

Functional annotation of the Ignorome. Next, we applied our
method to predict biological function for less studied genes. Many
genes (termed the “Ignorome”) are less studied and rarely men-
tioned if at all in the literature!®. This makes understanding their
function challenging. Our systematic and unbiased approach does
not depend on additional data, generalizes well to genes found
only in the test set (see “Methods”) and, accordingly could help
capture the function of the Ignorome. Hence we focused on genes
lacking functional annotation in Uniprot32. These genes were
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ondrial respiratory complexes Ill and IV (€), NADH dehydrogenase (D), B12
ries in A denote genes not known to take part in mRNA splicing.

additionally required to be in the lower 20% of PubMed mentions
(less than 10 papers) or belong to ~2000 genes identified by the
neXtProt consortium as genes with an unknown function!$
(Supplementary Fig. 13).

To predict gene function, we utilized a random-walk based
prioritization of genes, which we call the “PathScore”. Using our
MLPP approach described above, we generated the full predicted
functional interaction network for each of the interaction-context
pathway type models. We then scored genes according to the
equilibrium distribution of random walks on this network (see
“Methods”). The score given for each gene signals its importance
for this pathway type according to its connectivity in the
predicted functional interaction network (see “Methods”). Shown
for DNA Repair, PathScore ranks genes known to belong to this
pathway type at the top (Fig. 4A) and is robust across train and
test splits in multiple cross-validations (Fig. 4B, similar analyses
can be found for the rest of the interaction context models in
Supplementary Figs. 14,15). By inspecting the less studied genes,
we identified tens of genes at the top 250 PathScore ranks for each
pathway type, yielding one or more annotations to 238 Ignorome
genes (Fig. 4C, Supplementary Data 3).

Specifically, for DNA-repair type pathways, we identified
several potentially functionally related genes. Out of the first 50
genes ranked for DNA repair, we identified nine genes annotated
as related in Reactome (22 for top 200). In addition, we identified
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nine genes that are known to be related to DNA repair but were
not found in Reactome. These include EXOS5 (rank 8), an
exonuclease related to DNA-repair and genome stability®3;
C170rf53 (rank 16), previously an Ignorome gene, which was
recently identified to be involved in homologous recombination
repair®%; the DNA polymerase DNTT (rank 18); the telomerase
TERT (rank 23); the SMC5-6 complex gene SMC5 (rank 47, also
EID3 in rank 55)3°; and genes previously prioritized as related to
DNA repair (ELP63°—rank 33, PIGN*’—rank 34, NUDT15%8—
rank 36, STK193°—rank 46). These serve as a strong external
validation of the PathScore prioritization approach. In addition
we identified 18 genes in the top 200 that were prioritized by

several CRISPR assays to be related to DNA repair®® (rank in
brackets)—GPATCHS (3), SCNM1 (7), OMA1 (10), AOC2 (50),
RCEI (71), ALG3 (92), THUMPDI1 (111), DPH6 (115), PIGW
(119), TYWI (131), VPSI6 (132), PPOX (143), DUSPI2 (146),
ISCA2 (158), NAALADL? (187), POLA2 (194).

This approach also highlighted hundreds of genes that may be
functionally related to several pathway types. Overall, we
identified 1554 non-Ignorome and 58 Ignorome genes at the
top 250 ranks for more than one pathway type. For example, the
Yippee-type proteins YPELI, YPEL2, and YPEL4 were ranked
high in Cell Cycle, Disease, Gene Expression, Homeostasis,
Metabolism of Proteins, Signal Transduction, Transport of Small
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Molecules and Vesicle-mediated Transport with YPELI and
YPEL2, ranking in the top 250 for these eight pathway types. The
Yippee family proteins are putative zinc-fingers known to be

related to the centromere?0.

MLPP uncovers evolutionary insights underlying pathway co-
evolution. Phylogenetic profiling can be backtracked to produce
evolutionary insights into pathway evolution. These insights
include important loss events>? and analyses on different
pathway types!%. Our method enables similar evolutionary
inference by calculating the contribution of each clade (feature) to
the prediction of functional interaction for a gene pair. Clade
contribution to the prediction is calculated using the SHAP
method for tree-based models*!*2. SHAP values are calculated by
considering the change in predictions when the clade is present or
absent from the model through all possible combinations. For
example, for the gene-pair ACOI-IDHI from the citric acid cycle
(TCA), the probability for functional interaction is 0.87. The
probability can be decomposed by SHAP to 0.117 for Fungi, 0.06
for Chromadorea, —0.01 for Ascomycota, and so forth (with a
bias term of 0.427, Fig. 5A; clades with a SHAP value less than
0.002 in absolute value are not shown). The interpretation of
these values is conceptually similar to the interpretation of the
coefficients and intercept (bias) of a linear model. The evolu-
tionary inference is made at the clade level and thus cannot point
to the timing of specific loss events such as previously described,
e.g. in ref. °. Nevertheless, it can reveal clades where loss events
may have happened, the pathway’s first introduction, or loss of
co-evolution at the common ancestor level. Moreover, our model
allows for a unified assessment of these evolutionary insights
across all gene pairs, pathways and pathway types. We thus
present insights into functional interactions and pathway evolu-
tion at these three levels.

As an example, we focus on the citric acid cycle (TCA)
pathway. The model identifies Fungi and Chromadorea as the
clades with the highest importance for predictions in this pathway
(Fig. 5B). These clades are complementary in predicting some of
the functional interactions. While Fungi is the single most
informative clade, it failed to predict the interactions of the genes
PCK1 and PCK2 with the rest of the TCA genes. However, these
interactions are well captured in Chromadorea (Fig. 5C, D). This
may relate to the function of PCK1/2 as these genes control
gluconeogenesis from TCA intermediate metabolites and are thus
peripheral in the pathway.

Overall, the phylogenetic profile of TCA in Fungi revealed that
most genes are conserved throughout the clade except for the
known loss of the pathway in the Microsporidia parasites*3
(Fig. 5E, demarcated with a box). Thus, the model links the
phenotypic change in Microsporidians to the loss event by
utilizing the importance measure provided by our method,
demonstrating its applicability in identifying evolutionary
insights. Two additional examples of pathway evolutionary
insights are provided; methylmalonic acid metabolism and
histidine metabolism (Fig. 3E, F, respectively, the top part of
each subfigure). In these pathways, the model identified specific
loss events in nematodes by clade importance. Overall we showed
that our model could capture specific loss events similar to those
found in the previous approaches®.

Next, we sought to derive insights at a higher level of pathway
co-evolution. We first assessed the general informativeness of
clades in predicting functional interactions. Overall, for func-
tional interactions the most critical clades were Fungi (mean
absolute SHAP wvalue of 0.04), Nematoda (0.022) and their
subclades Fungi Incartae sedis (0.03) and Chromadorea (0.033)
(Fig. 6A, from the top by decreasing importance as the mean

absolute SHAP values). Unexpectedly, these specific clades had a
higher importance than using all Eukaryotes (0.018), suggesting
that specific clades may prove more informative in general, both
for our approach and for phylogenetic profiling in general.

For the interaction context, different pathway types had
different clade importance (Supplementary Fig. 16). It was
initially expected that the more “ancient” pathway types would
rely more on distant organisms and vice versa. This hypothesis
was recapitulated in our analysis. For example, the Metabolism
model assigns higher importance to distant clades such as
Alveolates, Stramenopiles, Fungi, and all Eukaryotes, while the
Immune System model assigns higher importance to clades closer
to humans such as Metazoa and Ecdysozoa. However, some
pathways displayed a counterintuitive attribution of clade
importance. For example, the Signal Transduction model assigns
high importance to all Eukaryotes while expected to rewire often
and thus be more informative in organisms closer to human.

We then examined the clade importance of gene pairs and
pathways. For this, average SHAP values per pathway were
projected using UMAP#4. This analysis clusters together path-
ways with a similar clade importance attribution (Fig. 6B). For
example, many metabolic pathways (Fig. 6B, bottom right) give
high importance to Chromadorea and Fungi. Similarly, a group of
receptor types, complexes, and signaling pathways give high
importance to all Eukaryotes and Chromadorea (Fig. 6B, top left).
These differences highlight the added value of clade-wise
phylogenetic profiling, which is able to detect co-evolution in
subsets of the Eukaryotic tree. UMAP projection of gene-pair
SHAP values identified similar insights. Here, clusters of gene
pairs with similar clade importance show that the highest-scoring
pairs gave high importance to both Fungi and Nematoda
(Supplementary Fig. 17).

Overall, our method enables one to uncover specific patterns
across gene pairs, specific pathways, and all pathways level thus
shedding light on pathway evolution. These insights can be
categorized into two types. First, identifying clades with gene loss
events that translate to meaningful phenotypical effects and,
second, shedding light on the underlying evolutionary processes
behind pathways of various kinds. These include per pathway
gain, differences among clades in pathway losses and the
informativeness of various clades for phylogenetic profiling of
functional interactions in general and specific pathway types
particularly.

Analysis of parasitic organisms’ signal in phylogenetic profil-
ing. Many of the most informative clades described above, such
as Chromadorea, Stramenopiles, Alveolata, and Fungi Incertae
Sedis contain a large percentage of parasitic organisms. Parasitic
organisms are known to undergo vast gene losses and drastically
diverge from their free-living counterparts*>-48. We thus hypo-
thesized that these insights may be related, identifying parasitic
organisms across the tree of life as a key signal in phylogenetic
profiling.

Parasitic organisms (see “Methods”, Supplementary Table 5)
are generally less conserved with respect to humans than free-
living organisms (Fig. 7A, in red). The lowest percent of orthologs
are found in parasitic organisms in Alveolates, Microsporidia
(Fungi Incertae Sedis, denoted as Fungi LS) Kinetoplastids and
intestinal flagellates (Hexamitidae, denoted as other eukaryotes)
(Fig. 7A, in red). Only two organisms show similar loss levels, one
micro-algae (Nannochloropsis gaditana in Stramenopiles, marked
with a green arrow) and one endosymbiotic Kinetoplastida
(Perkinsela, marked with a red arrow). For the endosymbiont, the
same rational of gene loss related to host adaptation was
previously described*’.
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Six parasites containing clades were further compared to non-
parasitic (free-living or mutualistic) organisms in the same clades and
a reference parent clade (Fig. 7B, C, a full list of organisms considered
parasitic can be found in Supplementary Table 5, see “Methods”).
Parasitic clades showed a statistically significant reduction in
conservation level (as compared to human) from both the non-

SHAP values
0.04
0.02

0.00
—0.02
—-0.04

parasitic organisms (Nematoda, Alveolata) and the reference clade
(all but Stramenopiles, 2-sided Mann-Whitney test, Fig. 7B). More-
over, many of the lost genes in parasitic organisms were highly
conserved in non-parasitic organisms in the reference clade (Fig. 7C).

Thus, we were interested in mapping the genes lost in each
clade and how this signal translates across clades and into
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Fig. 5 Evaluating clade importance—citric acid cycle case study. SHAP values were calculated for all gene pairs in the Citric Acid Cycle from KEGG. A
specific example is provided here for the gene-pair ACOT-IDHT (A). Bars represent the SHAP values calculated for the specific clade and colored by the
value. SHAP bias term is the probability without knowing the value for any of the clades. Mean SHAP values were calculated across all gene pairs (B).
Shown are clades with a mean SHAP value above 0.002 and colored by a mean SHAP value. Species go from close to human at O degrees to more distant
counter clockwise. Clade abbreviations are found in Supplementary Material. All pairwise interactions are shown in a network for Fungi and Chromadorea,
the top two most important clades by SHAP values (C, D, respectively). Edges are colored similar to clades in A. The normalized bitscore matrix for Fungal
species for all genes in the pathway highlight their loss at the Microsporidia clade (E).
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Fig. 6 Clade importance yields evolutionary insights. Clade importance by SHAP values was calculated for the test set of a single cross-validation in the
functional interaction model, revealing the clades with the highest mean absolute importance (A). Clade importance was averaged for each Reactome

pathway and projected into two dimensions using UMAP (B). For each pathway, a marker is shown with the average SHAP value for one of four specific
clades by the color of a quarter of the marker. The average predicted probability across gene pairs is shown by the color of the circle in the middle. Source

data are provided as a Source Data file.

pathways. We analyzed genes that are highly conserved in all
Eukaryotes but have low conservation in at least one parasitic
clade (see “Methods”), ending up with 4114 genes (Fig. 7D). The
presence and absence of each gene in each clade were considered,
and all clade combinations underwent enrichment analysis for
Gene Ontology (GO) biologic processes (see “Methods”).
Parasitic clades often lack orthologs for specific metabolic,
signaling, and developmental pathways (Fig. 7D, top 10 clade
combinations by number of genes in the intersection). By
inspecting the different combinations, we found that some
pathways were enriched in certain combinations. For example,
mRNA splicing genes were lost both in Kinetoplastida and
Microsporidia, while GTP signaling genes were lost in either the
2nd, 3rd, or 8th combination (from the left), all consisting of
Microsporidia and Alveolates. Hence, some pathways can be
identified by their loss pattern in parasitic organisms.

However, a sensitivity analysis of excluding parasitic organisms
in the training of the method results in conflicting evidence. On
one hand, while many of the clades with highest importance
contain parasites (as mentioned above), excluding parasites or
these clades causes only a mild reduction in performance (see

“Methods”, Supplementary Table 6). On the other hand, clade
importance does indeed shift from these clades to others
(Supplementary Fig. 18). This suggests that while parasitic
organisms do indeed contribute to the model presented in this
work, other signals exist in phylogenetic profiling which can
reach a similar performance.

Discussion

Evolutionary approaches are one of the primary sources to
understand gene function and interactions!~%8-10, Here we pre-
sent a machine-learning approach to phylogenetic profiling and
demonstrate its utility in predicting functional interactions. By
using clade-wise phylogenetic profiling, our approach predicted
genes” functional interactions and revealed evolutionary insights
underlying the prediction. We applied our method to predict
putative functions for less studied genes and explored the evo-
lutionary signal found in parasitic organisms.

Our method extends phylogenetic profiling by using machine-
learning to recovering signals found within individual clades, in
addition to using the whole eukaryotic tree of life. This clade-wise
phylogenetic profiling approach hypothesizes that for some
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Fig. 7 Parasitic clades provide a key phylogenetic profiling signal. The proportion of human genes found in each organism is shown on the y-axis, with
parasites marked in red. Two non-parasitic organisms with lower conserved genes fraction are highlighted in green (Nannochloropsis gaditana, in
Stramenopiles) and red (Perkinsela, in Kinetoplastida) arrows (A). The fraction of conserved genes was then compared for six clades with many parasitic
organisms between parasites, non-parasitic organisms and a reference (parent) clade. Comparisons were made for each clade between parasitic organisms
and the reference and non-parasitic organisms by a two-sided Mann-Whitney test; p-values are displayed for significant comparisons (p < 0.05). The
boxplot extends from the lower to upper quartile values of the data, with an orange line at the median. Whiskers denote 1.5 times the interquartile range.
(B). In addition to the species level, comparisons were made by pairing the average conservation for each gene in the parasitic organisms (red) and
reference clade (green) with a line connecting them (C). Genes that were fully lost, or with low conservation in at least one parasitic clade but highly
conserved across all Eukaryotes, were tested for losses combinatorics across these clades. Genes in the top 10 intersections were checked for gene
ontology overrepresentation (biological process ontology). The top five terms by FDR adjusted p-value are shown for each combination (D). The upper
panel presents the number of genes in each clade or intersection, with the relevant clades marked by black circles. The lower panels show the number and
significance in the most relevant pathways. FDR—false discovery rate. Source data are provided as a Source Data file.
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functional interactions, the co-evolutionary signal is better cap-
tured in a subset of the tree. This can stem from genes first
appearing later in evolution (e.g., metazoan or mammalian spe-
cific) or, more interestingly, from genes that only function toge-
ther in a subset of the tree. Opposite cases may also exist, where a
pathway dissembles, i.e. consists of genes found in human that are
not functionally related and are thus no longer co-evolving in a
specific clade, while still co-evolving in other clades.

Our work goes beyond previous insights into the utility of
clade-wise phylogenetic profiling, which were limited in their
clade resolution or applicability to the whole interactome7-10.
We present a fully formed clade-wise phylogenetic profiling
approach that, together with a supervised machine-learning
approach, considerably improved the performance in predicting
functional interactions.

In addition, our approach provides insights into the impor-
tance of clades for specific predictions, thus identifying the
underlying evolutionary signal. These evolutionary insights are
essential for understanding how pathways may have evolved and
produce a broader perspective on predictions. This provides an
practical and scalable alternative to computationally expensive
methods for performing full inference on the phylogenetic
tree>19°0. We present here evolutionary insights on several dis-
tinct levels. At the single pathway level, our approach identifies
clades with a strong co-evolutionary signal (such as independent
loss events). This is analogous to the insights derived from full
inference on the phylogenetic tree. By inspecting clade impor-
tance for interaction context models, we recapitulate hypotheses
stated in the literature such as having more recently evolved
pathway types (e.g., immune pathways) assign more importance
to metazoan clades. Finally, at the macro level, we consider which
clades are the most important for prediction and, by proxy, the
most evolutionary informative. Our analyses extend the variety of
evolutionary insights available from phylogenetic profiling, going
all the way from pairwise functional interactions to mapping
evolutionary insights for all pathways together.

Several of the most important pathways identified by our
method contain parasitic organisms. However, a different
hypothesis may be considered in which clades with high varia-
bility yield the strongest signal, while parasitic species provide
only one such example. This is further corroborated by our
analysis of the exclusion of parasitic organisms from model
training. As an illustration, we found that nematodes are one of
the most important clades for the model, where nematodes have
been previously identified to be highly divergent concerning their
evolutionary distances regardless of parasitic status®!->2

Many human genes are still mostly uncharacterized. In recent
years this problem garnered attention and solutions were rigor-
ously discussed!>~17. One such solution is characterizing these
genes by utilizing unbiased (or minimally biased) information
from mRNA-sequencing and other high-throughput experi-
mental approaches!>17. Phylogenetic profiling provides one such
unbiased approach to understand gene function through func-
tional interactions captured by co-evolution. Although not
completely unbiased, our approach predicts many promising
functional annotations for less studied genes that can be further
explored through computational and experimental techniques.
Particularly, for DNA repair, external validation reveals that
many prioritized genes are indeed related, paving the way for
research on other top ranked genes in that list.

However, some limitations of our method remain. First, the
low performance of our method for young genes inhibits the
utilization of our approach for such genes. This is possibly caused
by the high reliance of our method on more distant clades and
not on the lack of a co-evolutionary signal. Second, the supervised
nature of our approach suggests that it may be less suitable for

less studied genes. While our analyses on stratifications revealed
that our method is indeed robust both in cross-validation and
external validation on unseen genes, some performance loss is
noted. This may be alleviated in future work by using unsu-
pervised machine-learning approaches, such as autoencoders
building on the work of SVD-Phy?>. Finally, our approach for
functional annotation, PathScore, was intentionally limited to
large pathway types and is unsuited to small pathways due to the
supervised nature. Modifying PathScore to utilize other network
propagation algorithms, such as methods allowing for multiple
specific seeds, may enable it to be utilized for smaller pathways,
similar to other approaches in the literature®3.

As many more species are sequenced, we believe that looking at
evolution systematically and across different evolutionary scales
using machine-learning based approaches will result in further
improvements in performance and reveal predictions and evo-
lutionary insights. This work emphasizes the major potential of
massive genomic analysis in understating genotype-phenotype
interaction and the crosstalk between gene, function and evolu-
tion. This work is accompanied by a webserver that enables
exploration of the predictions in this paper, for both functional
interactions and functional annotation prediction and is available
at: https://mlpp.cs.huji.ac.il.

Methods

Phylogenetic profile construction. To model gene co-evolution, we generated
gene phylogenetic profiles similar to those described previously! =34, First, we
downloaded the proteomes of 1154 species (see Source Data) from UniProt as
FASTA files using the programmatic API3? (accessed at 28.12.2018, https://
www.uniprot.org/uniprot/?query=proteome:Proteome_ID&format=fasta). To
further enrich these proteomes, we extended each species FASTA with its proteome
from the NCBI’s RefSeq non-redundant protein database®® (accessed 25.12.2018,
ftp://ftp.ncbi.nlm.nih.gov/blast/db/). We then constructed a reference set of human
proteins such that each human gene had a single representative protein. We
retrieved the human proteome from UniProt (accessed at 25.12.2018) and selected
the corresponding longest protein for each human gene as a reference.

We used BLAST?® to align each human protein with its one-directional best hit
in each of the 1154 species. For this, blastp was executed on the command-line®®
(version 2.7.1) with the arguments “-max_target_seqs 1” to retain only the top hit
per gene per species. The output of this step is a matrix B such that each element
B;;j contains the blast bitscore between a human gene (as a reference protein) i and
the blast best hit at species j. Bitscores lower than a set threshold of 60 were set to
zero. An analysis of several bitscore (40, 60, 100) and E-value (1e—3) thresholds is
presented in Supplementary Table 3, showing robustness to the chosen threshold.
We then normalized each row (gene) by dividing by the bitscore of the human
protein self-hit to account for protein length and evolutionary distance from the
reference organism®’.

Taxonomic annotation of species was retrieved from UniProt taxonomy>?
(accessed 01.09.2019, https://www.uniprot.org/taxonomy/). Taxonomic lineage
information was split into clades, clades with less than 10 species were filtered out.
Next, clades were sorted by decreasing size and were filtered based on Jaccard
similarity such that clades with a Jaccard similarity greater than 0.8 with a larger
clade were deemed as redundant and filtered out. Both the redundant and non-
redundant set of clades can be found in Supplementary Table 1 (non-redundant
marked in blue).

Pathway and interaction data gathering and pre-processing. Pathways and
gene sets were obtained from Reactome (Croft et al. 2011), Kyoto Encyclopedia of
Genes and Genomes (KEGG)3°, CORUM3! and UniProt GOA58. Reactome
pathways were downloaded as a GMT file (reactome.org/download/current/Reac-
tomePathways.gmt.zip, accessed 25.01.2019) with gene symbols, and pathway
descriptions (reactome.org/download/current/ReactomePathways.txt, accessed
05.02.2019). For temporal splits, Reactome data was re-acquired 12.01.2021.
Pathway hierarchy was downloaded as an adjacency list (reactome.org/download/
current/ReactomePathwaysRelation.txt, accessed 05.02.2019). Reactome complexes
were retrieved using the REST API and filtered to keep only protein components
(queried at 12.02.2019). KEGG pathways were retrieved from MSigDB v6.2 as a
GMT file with gene symbols (http://software.broadinstitute.org/gsea/
downloads.jsp, accessed 28.11.2018). CORUM complexes were downloaded from
the website and converted to a GMT file with gene symbols (https://mips.helmho
Itz-muenchen.de/corum/download/allComplexes.txt.zip, accessed 12.02.2019).
UniProt GOA was downloaded as GAF (ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/
HUMAN/goa_human.gaf.gz, accessed 04.02.2019) and matched with the gene
ontology term description to generate a GMT file>*¢0 (as OBO, http://geneontol
ogy.org/docs/download-ontology/, accessed 04.02.2019).
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A standardized pre-processing pipeline was applied to each of the pathways and
gene sets sources. Each GMT was filtered for a gene set with at least three genes and
at most 50 genes. Next, an adjacency list was generated for each gene set assuming
the gene set is fully connected (i.e. all pairwise connections were considered). These
adjacency lists were joined to produce the list of all gene-pair pathway co-
occurrences for each source. For Reactome, an additional step was taken by
partitioning the pathways by top-level pathways. Top-level pathways were filtered
keeping those with at least 5000 gene pairs, thus ending up with 12 top-level
pathways remaining. A similar attribution of top-level pathways was produced for
GO terms ending up with 28 pathway types — 17 GO BP (biological process), 6 GO
CC (cellular compartment), and 5 GO MF (molecular function) terms.

Interaction data was obtained from IntAct?® and BioGrid?3. IntAct complexes
and BioGrid pairwise interactions (as SIF files) were retrieved from PathwayComm
ons®! (version 10, https://www.pathwaycommons.org/archives/PC2/v10/, accessed
at 04.08.2018).

Model training and prediction. Machine-learning models were trained in a multi-
label one vs. all fashion using scikit-learn®? and lightGBM®. We compared a
decision tree, logistic regression, naive Bayes and random forest (using lightGBM),
and chose lightGBM, which achieved the highest performance (Supplementary
Fig. 3). The lightGBM model was further tested on a different positive-unlabeled
framework for predicting hidden positive links (Supplementary “Methods”). For
each label (functional interaction, i.e. any pathway co-occurrence, or interaction
context, i.e. specific pathway type co-occurrence or protein complex co-occur-
rence), a model was trained to predict the label using the covariance measured
between the gene-pair profiles in each of the 49 clades (as described in Section 8.1).
The model was trained in a five-fold repeated cross-validation (CV) fashion to
assess performance. Each CV fold consisted of a random sample of known
(positive) gene pairs matched with random negative pairs. Random negative pairs
were chosen such that the number of genes in the negative pairs set approximately
matched those in the positive pairs set to preserve the topology. For each cross-
validation fold, a stratification was performed on the gene content in the train and
test splits. Park and Marcotte?” have shown the influence of the individual genes in
the interacting pair when performing a pairwise interaction prediction. Therefore,
we performed a similar stratification to that suggested in their original paper by
taking 30% of the genes in the positive and negative pairs as a designated test set
only genes. We then split the test set into three: C1 — where both genes were
present in some pair in the training set, C2—where only one of the genes in the
pair was present in the training set, and C3—where neither were used in training.
In addition, as paralogous genes have similar phylogenetic profiles and may act as
“data leakage”, each gene chosen to be a test set exclusive was grouped with all
genes with a high sequence similarity to it (bitscore > 60) from the genes in the CV
fold, which were designated as test-set exclusive as well. The final lightGBM ran-
dom forest model was used to predict probabilities for all ~200 million possible
gene pairs in each of the labels both as the average across CV folds and for each CV
fold by itself.

Positive-unlabeled learning. Functional interaction prediction is a classic pro-
blem of positive-unlabeled learning. Annotations of functional interactions include
only confirmed true interactions and lack confirmed non-interacting pairs.
Supervised learning can be used in such cases, treating unlabeled pairs as negative;
however, several approaches have been developed to treat the unlabeled data more
appropriately?! =24, Thus, we simulated a situation in which known positives are
hidden (as unlabeled) and checked how well different methods recover these
positives. We compared four methods (a) a vanilla light gradient boosting machine
(LGBM), a standard LGBM classifier with unlabeled as negatives, (b) PUBag, a
positive-unlabeled bagging of LGBM trees in which the positive are constant and
the unlabeled are sampled for each model in the bagging procedure, inspired by
Mordet and Vert et al. bagging SVM?2, (c) AdaSample, an adaptive sampling
approach in which negatives and positives are selected for each classifier in the
ensemble by the probability of belonging to the class from the previous iteration?4,
and (d) a random forest model, LGBM RF, capturing similar characteristics to the
SVM ensemble described by Claesen et al.?3. The base classifier for PUBag and
AdaSample was a default LGBM classifier with 10 trees. For the vanilla LGBM, the
default LGBM classifier had 200 trees and for LGBM RF we used the random forest
mode (“boosting_type =rf”), 200 trees, subsampling of 0.5, feature sampling of
0.5, and a deeper tree with 128 “max leaves”. Performance was measured by area
under the receiver operator characteristics curve (auROC) and by inspecting the
probability distribution of positive, random negatives and hidden positives gene
pairs. PUBag was run using a github implementation by R. Wright®* with sub-
sampling of 0.5 and feature sampling of 0.5. AdaSample was implemented in
Python by the authors based on the R implementation®>¢® and ran for two
iterations with a subsampling of 0.3 and a resulting ensemble of 20 models. We
performed cross-validation and compared the models with four different hidden
proportions: 0.1, 0.3, 0.5, and 0.7. For 0.3, 30% of positive pairs in the training set
were considered as negatives (Supplementary Fig. 2).

Phylogenetic profiling comparison. We compared our method (described in
Section 8.3) to four established phylogenetic profiling methods: Normalized

Phylogenetic Profiling!2, Singular Value Decomposition of Phylogenetic Profiling
(SVD-Phy)?5, the Hamming distance on a binary phylogenetic profile (BPP)*2°,
and PrePhyloPro26. For NPP, the matrix was prepared as described above (Section
8.1) and then further normalized by first taking the log, of the matrix and per-
forming standard scaling on the columns (species) by subtracting the column mean
and dividing by the column standard deviation. Similarity between genes was
calculated using Pearson correlation. For SVD-Phy, the matrix was prepared as
described above and a truncated-SVD was calculated taking the first 35% of
components as described in the original paper?®. Similarity between genes was
calculated by taking the Pearson correlation between the components. For the
Hamming and PrePhyloPro matrices, blast output was taken as an E-value instead
of a bitscore and was binarized by assigning 1 (ortholog present) to E-values less
than 1073 and 0 (ortholog lost) otherwise. For the Hamming distance binary
profiles, the similarity between genes was calculated using the Hamming distance.
For PrePhyloPro, the similarity between genes was calculated using the rank of the
Jaccard index for a single gene against all other genes. As described in Niu et al.25,
wherever the Pearson correlation between the profiles was less than 0, the rank was
considered to be last.

Comparisons between our approach and other PP approaches are presented for
functional interactions in Reactome (Fig. 1A, Supplementary Fig. 5, Supplementary
Table 4), Interaction context models — Reactome complexes (Fig. 1B,
Supplementary Fig. 5, Supplementary Table 4), pathway types from Reactome
(Supplementary Data 2), pathway types from GO (Supplementary Data 2).
Comparisons are also shown for “young genes” (Supplementary Fig. 4), Reactome
temporal splits (Supplementary Fig. 6), external validations on various databases
(Supplementary Figs. 7-10) and comparisons on the pathway level analyses (Fig. 2,
Supplementary Fig.11).

PathScore—random-walk based prioritization. To identify the centrality of
genes in an interaction context-specific network, a pathway score (PathScore) was
devised. The PathScore is the stationary distribution of random walks on the
predicted interaction network for each label. Specifically, the predicted probabilities
for a specific label are first sparsified by turning all values below the 75% percentile
to 0. Then each row is divided by its sum (i.e. node degree) to create a stochastic
matrix. Next, the stationary distribution is calculated using the power method and
then scaled to the range [0-1] to generate the PathScore. In addition to the
PathScore value, its decreasing order rank is used, e.g. see Fig. 4C. For each
pathway type, the precision of PathScore at rank 100 was calculated with pathway
types with precision less than 10% discarded, yielding 30 pathway types (Supple-
mentary Data 3, Supplementary Fig. 15).

The ignorome—Iless studied genes. Less studied genes were defined as unchar-
acterized proteins in neXtProt (Duek et al. 2018, Accessed 03/04/2019, https://
www.nextprot.org/about/human-proteome page bottom, or query ID NXQ_00022)
and genes with low PubMed mentions from gene2pubmed (Accessed 03.04.2019,
ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2pubmed.gz). Both were filtered by
genes present in the phylogenetic profiling matrix by a gene symbol and having no
functional annotation in UniProt. Gene2pubmed was further filtered to keep only
the bottom 20% of PubMed mentions, resulting in genes with 10 publication
mentions or less.

Clade importance. As the model of choice was lightGBM, feature importance
could be calculated using Shapley values as implemented in the SHAP method for
decision-tree-based models*!#2, The SHAP method uses the Shapley value, a
game-theory based method of credit attribution in a multi-agent collaborative
process. In the case of feature importance, each feature (in this case covariance in a
specific clade) is considered as an agent and each individual prediction a colla-
borative process involving these features. SHAP values can be positive or negative
and can be thought of as “does this particular feature increase or decrease the
likelihood of the prediction?”. To calculate SHAP values, the method “pre-
dict_proba(X, pred_contrib = True)” of the lightGBM classifier object was used. As
the model was a random forest model, the SHAP values are given as the sum of
probability contributions for each of the trees in the ensemble. Accordingly, the
SHAP value was averaged across the trees to obtain the predicted probability
contribution for the ensemble prediction.

Clade-importance projections were made using the UMAP** python package.
The parameters used were n_neighbors = 10, min_dist = 1, spread = 3. A UMAP
projection into two dimensions was applied to the mean SHAP values
corresponding to the 49 clades for each gene pair in each pathway in Reactome. It
was then plotted with a custom matplotlib script to create Fig. 6B. For
Supplementary Fig. 17, clade SHAP values were used for all gene pairs in the test
set of the first cross-validation fold.

p44

Young genes. For analysis of model performance by gene “age”, genes were
categorized into genes first appearing in Chordates, Metazoa or all genes. This
categorization uses a BPP matrix as presented above (Section 8.5) i.e. phylogenetic
matrix binarized by a threshold of BLAST E-value. Thus, genes were categorized as
Metazoa-specific if no species distant to Metazoa had any gene orthologs based on
the BLAST E-value criteria, and similarly for Chordata.
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Parasite analysis. A list of parasitic organisms and clades was manually prepared
using annotations from The Encyclopedia of Life®” and GloBI®®. Some species’
parasitism was further manually disambiguated. The list is available in Supple-
mentary Table 5. Six major clades containing parasites were selected based on clade
size and the number of parasites—Alveolata, Nematoda, Stramenopiles, Micro-
sporidia, Platyhelminthes and Kinetoplastida. These clades contain both parasites
and non-parasites (symbiotic or free-living organisms). For the gene enrichment
analysis, genes were first filtered to genes conserved in eukaryotes (found in more
than 75% of all eukaryotes in the data) and non-conserved in at least one parasitic
clade (found in less than 25% of the parasitic organisms in a clade). Then for each
gene in each of the selected clades, it was considered found if it occurred in at least
50% of the clade, and otherwise non-found. This yielded a binary occurrence
matrix. Intersections and UpSet plots® were produced by the UpSetPlot Python
package”?. GO term enrichment was conducted using the ClusterProfiler package
in R7L.

For parasite exclusion analysis, models were retrained as described above using
all clades, excluding clades with any parasites and excluding all parasitic species as
described above. Species were excluded by setting values to NA. The models were
trained to predict functional interactions in Reactome and were stratified similar to
other analyses in the paper. These stratifications are on gene presence in the test set
(i.e. Park-Marcotte inspired splits) and for paralogous pairs exclusion. Results are
shown in Supplementary Table 6. Clade importance analysis was performed as
described above (Section 8.7) and shown in Supplementary Fig. 18. As models are
retrained, some differences were noted between these models and the main ones,
for example, in slight variations in performance metrics and clade importance
attribution.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Data are available for exploration through the accompanying webserver found at: https://
mlpp.cs.huji.ac.il. This webserver allows the user to explore predictions for a single gene,
a gene set and functional annotations for a specific gene using the PathScore annotations.
Usability is further described in Supplementary Note 2. Gene-pair and gene sets
predictions are available exclusively through the webserver described above. PathScore
predictions are available through the webserver and are additionally attached as
Supplementary Data 3. Phylogenetic profiles, models and other raw data used to produce
the analyses presented in this work can be found on Zenodo at: https://doi.org/10.5281/
zenodo.5111607. Source data are provided with this paper.

Code availability

Code is available via a Github repository at: https://github.com/dst1/MLPP. This includes
the pipeline to train the models and produce predictions as well as an example
benchmark that reproduces Fig. 1A and Supplementary Fig. 3.
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