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Leveraging the Cell Ontology to classify unseen cell
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Single cell technologies are rapidly generating large amounts of data that enables us to
understand biological systems at single-cell resolution. However, joint analysis of datasets
generated by independent labs remains challenging due to a lack of consistent terminology to
describe cell types. Here, we present OnClass, an algorithm and accompanying software for
automatically classifying cells into cell types that are part of the controlled vocabulary that
forms the Cell Ontology. A key advantage of OnClass is its capability to classify cells into cell
types not present in the training data because it uses the Cell Ontology graph to infer cell
type relationships. Furthermore, OnClass can be used to identify marker genes for all the cell
ontology categories, regardless of whether the cell types are present or absent in the training
data, suggesting that OnClass goes beyond a simple annotation tool for single cell datasets,
being the first algorithm capable to identify marker genes specific to all terms of the Cell
Ontology and offering the possibility of refining the Cell Ontology using a data-centric
approach.
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ingle-cell RNA sequencing (scRNA-seq) has emerged as a

powerful tool to generate comprehensive organismal atlases

encompassing a wide range of organs and tissues!~10. One
of the most important tasks in single-cell analysis is cell type
annotation because all downstream analyses heavily rely on such
information!1-18. This process that aims at characterizing and
labeling groups of cells according to their gene expression is
currently very inefficient due to the intense need for manual
curation by a panel of tissue experts for each tissue and organ.
Recent efforts in scRNA-seq have produced an unprecedented
large compendium of expert-curated cell type annotations, paving
the way for scientists to better understand cellular diversity>19-22.
However, utilizing these cell type annotations is challenging due
to the inconsistent terminology used to describe cell types col-
lected by independent groups>%19. This inconsistency will likely
increase as more groups generate new datasets and more cell
types and states are characterized, thus substantially preventing
reproducible annotations and joint analysis of multiple datasets.

A natural approach to addressing the inconsistent vocabulary
challenge is to build computational methods that automatically
assign cells from different datasets to categories in a controlled
vocabulary. Ideally, these methods should be fully automated
such that the results can be quickly updated as the ontology
evolves. The Cell Ontology offers a controlled vocabulary for cell
types and has been proposed as a basis for consistently annotating
large-scale single-cell atlases!423-28, However, computationally
assigning cells to terms (i.e., cell types) in the Cell Ontology has at
least two challenges. First, although the Cell Ontology contains
valuable hierarchical relationships among cell types, most of these
cell type terms are not associated with marker genes, which are
used by experts in manual annotation and could help automate
cell type annotation. Second, even though supervised learning
approaches can be used to predict Cell Ontology terms that have
curated annotations, they are unable to classify cells to unseen
terms (i.e., terms which do not have any annotated cells in the
training data). This issue is dramatically slowing research by
hampering our ability to automatically annotate new datasets that
pave the way to fully understanding cellular diversity as more
than 95% of cell types in the Cell Ontology are unseen even in the
largest datasets!®2929. Collectively, these two challenges hinder
progress toward comprehensive cell type annotation and cellular
diversity understanding.

We developed Ontology-based single cell Classification
(OnClass) to address these challenges. OnClass is able to auto-
matically classify cells to any cell type as long as its corresponding
term is captured in the Cell Ontology, even if this cell type does
not have annotated cells in the training data. Throughout this
paper, we refer to “unseen Cell Ontology terms” to describe cell
types from the Cell Ontology that do not have any annotated cells
in the training data. In contrast, we use “seen Cell Ontology
terms” to denote cell types with some annotated cells in the
training data. OnClass is the first method that can classify cells
into specific cell types for which there are no annotated cells,
rather than into a generic unassigned category as its common in
previous work!112. In addition, by projecting single-cell tran-
scriptomes and the Cell Ontology into the same low-dimensional
space, OnClass advances other important applications, such as
robust computation of marker genes.

Here, we evaluated OnClass on nine comprehensive datasets
representative of the existing biggest efforts of cell type char-
acterization. Through careful benchmarking, we found that our
method outperformed existing methods at annotating unseen Cell
Ontology terms and we further demonstrated the robustness of
OnClass prediction by performing cross-dataset prediction, where
a substantial proportion of cell types was not part of the training
set. Finally, we showed that OnClass was able to accurately

identify marker genes for seen Cell Ontology terms as well as
unseen Cell Ontology terms. These OnClass-computed marker
genes achieved comparable performance to curated marker genes
on cell type annotation, leading the way for creating an organism-
wide molecular representation of cellular diversity.

Results

Overview of OnClass. The Cell Ontology is a controlled voca-
bulary that organizes 2331 cell types anatomically derived into a
hierarchy based on the “is_a” relation?>. Each cell type is asso-
ciated with a text description in the Cell Ontology. OnClass uses
both the Cell Ontology graph and the cell type description to
classify single cells (see “Methods”). OnClass has three steps. In
the first step, we map the user terminology to Cell Ontology
terms based on the text embedding similarity using natural lan-
guage processing (NLP)30, Then, in the second step, we embed
cell types into a low-dimensional space using the Cell Ontology
graph31:32 (Supplementary Note 1). Single-cell transcriptomes are
then projected into the same low-dimensional space by finding a
nonlinear transformation that projects each annotated cell to the
region of its cell type. Lastly, in the third step, we refine the
annotation of each cell by first overlaying confidence scores on
the Cell Ontology graph and then propagating these scores using
random walk with restart. Such a framework enables us to classify
cells to unseen Cell Ontology terms based on their distances to
other seen terms on the Cell Ontology graph (Fig. 1). OnClass is a
Python-based open source package able to compute cell type
similarities between the hierarchical structure of existing cell
ontologies, such as the Cell Ontology?® and the Allen
Ontology?%33. Moreover, we provide a pre-trained model, which
given an input gene expression matrix can predict cell types for
millions of cells in a few minutes on a modern server. The fully
tunable version is also available to the users and our imple-
mentation can take the input gene expression matrix in a wide
range of formats.

Cell Ontology reflects cell similarity. We first verified the merit
of our approach by comparing three types of cell type similarities:
Cell Ontology graph-based similarity (cosine similarity between
the random walk with restart distributions), cell type text
description-based similarity (cosine similarity between low-
dimensional text representations of cell type description), and
gene expression-based similarity (“Methods”). We observed that
Cell Ontology graph-based similarity was strongly correlated with
cell type text description-based similarity. For example, the
average text description-based similarity of direct neighbors on
the Cell Ontology graph was 0.67, which was far higher than for
cell types that are four-hop away (similarity equals to 0.49;
Supplementary Fig. 1a). We further found that sibling terms (i.e.,
terms that have the same parent node) are more similar to each
other in terms of text-based cell type similarity with the increase
of depth on the Cell Ontology graph, reflecting OnClass’ ability to
model the similarity among cell types at different granularity
(Supplementary Fig. 1b). We also observed that cell types with
similar text description tend to have similar gene expression
profiles (Supplementary Fig. 1c). We, therefore, used the text
description-based similarity to augment edges on the Cell
Ontology graph. The text description-based similarity was also
used to help users map curated free text annotation to the Cell
Ontology (Fig. 1, Supplementary Data 1).

Next, we examined whether cell types that were deemed similar
by the Cell Ontology would have similar gene expression profiles.
Using a collection of annotated cells as the benchmark, we
observed strong correlations between these two types of
similarities. For instance, the correlation between the gene

2 | (2021)12:5556 | https://doi.org/10.1038/s41467-021-25725-x | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

expression-based similarity and the Cell Ontology graph-based
similarity was 0.65 (p-value<le—7) in lung and 0.93 (p-
value < le—15) in pancreas (Supplementary Figs. 2, 3). The
strong correlation between these two types of similarities
suggested that the Cell Ontology graph follows the guilt-by-
association principle3*. In particular, the guilt-by-association
principle states that nearby nodes (Cell Ontology graph-based
similarity) have similar features (gene expression-based similar-
ity). According to this principle, one might be able to use the Cell
Ontology graph to transfer annotations from seen cell types to
any unseen cell types, which serves as the basis of OnClass.
OnClass’ ability to annotate cells with any cell type in the Cell
Ontology motivates us to examine whether we could improve cell
type annotation on large and diverse collections of scRNA-seq
datasets.

Improved unseen cell type annotations within the same
dataset. To investigate how well OnClass could annotate unseen
Cell Ontology terms, we used datasets 1-6 (“Methods”) and split
the cells from each dataset into test and training in a controlled
fashion accounting for different proportions of unseen Cell
Ontology terms in the test set. All the reported unseen scores are
calculated by averaging scores from individual unseen cell types.
Overall, we observed that OnClass outperformed existing
approaches (Fig. 2, Supplementary Figs. 4-10). We first compared
OnClass with existing single cell classification methods that could
not reject a cell to all seen cell types, including ACTINN, SVM,
and LR. We found that OnClass substantially outperformed these
approaches on all metrics across different datasets. For instance,
when 70% of cell types were not seen in the training set, all the
other approaches yielded an AUROC less than 0.67 in Muris

User terminology Step 1. Unifying terminology

droplet, which was substantially lower than 0.87 for OnClass. We
achieved similar conclusions based on the binary classification
metrics Accuracy@3 and Accuracy@5. Alltogether, we found that
the OnClass capability of accurately annotating cell types, even
when the dataset has increasing proportions of unseen cell types,
opens a new avenue for automated cell type annotations. Existing
top-performing methods!> cannot annotate cell types not present
in the training dataset, inevitably limiting their usability to aid the
cell biology community identifying novel cell types across single-
cell transcriptomic datasets. Notably, even though Tabula Muris
Senis is one of the most diverse collections of annotated single-
cell transcriptomics profiles, it still only covers less than 5% of all
cell types described in the Cell Ontology.

We next compared OnClass with methods that can reject cells
to all seen cell types, including sCN(reject), LR(reject), SVM(re-
ject), Cell BLAST(reject), and DOC(reject). However, these
methods can only group the rejected cells into a generic
“unknown” type. To the best of our knowledge, OnClass is
actually the first method that can classify cells into specific unseen
cell types. To enable better comparisons between OnClass and
these algorithms, we decided to extend such approaches by
classifying “unknown” cells to the nearest cell type in the Cell
Ontology (see “Methods”). We observed significant improvement
of OnClass in comparison to these methods (Fig. 2, Supplemen-
tary Figs. 4-10). For example, when 30% of Cell Ontology terms
were unseen in the training data, OnClass obtained 0.56
Accuracy@3 and 0.60 Accuracy@5 in Muris droplet, which was
at least 50% better than any existing approaches (Fig. 2¢, d). On a
randomly selected set of 8 unseen terms in Muris FACS, OnClass
was able to accurately classify 97% of cells (Fig. 3a-c). When
challenging the method on larger sets of 12 and 21 unseen terms,
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Fig. 1 OnClass overview. OnClass first maps user terminology to Cell Ontology terms based on the text embedding similarity. It then embeds cell ontology
terms into a low-dimensional space using the Cell Ontology graph. Single-cell transcriptomes are then projected into the same low-dimensional space
using a nonlinear transformation. Finally, OnClass refines the annotation of each cell by first overlaying confidence scores on the Cell Ontology graph and
then propagating these scores using random walk with restart.
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OnClass still accurately classified 89 and 54% of cells, respectively
(Fig. 3d-i). In contrast, all existing methods could only make
random predictions in this challenging setting.

Next we investigated how the performance on unseen cell types
was related to the number of seen cell types within the 2-hop
region (shortest distance smaller than 3 on the Cell Ontology
graph) (Supplementary Fig. 11a, b), their distance to the nearest
seen cell type and number of annotated cells (Supplementary
Fig. 11c, d), and sample sizes (Supplementary Fig. 12). By
combining diverse datasets into a single training set for OnClass,
we observed that the performance of OnClass was better for
unseen cell types who are surrounded by more seen cell types
(Supplementary Fig. 11a, b) and have smaller distances to the
nearest seen cell type (Supplementary Fig. 11c, d). Moreover, we
also observed the desirable performance of OnClass when
evaluating the overall accuracy for cell types belonging to a
certain tissue (Supplementary Figs. 13-18).

Cross-dataset unseen cell type annotation. We next examined
the robustness and applicability of OnClass by using it to annotate
diverse datasets across species, animals, technologies, and organs. In
particular, we trained OnClass on cells from one dataset (training
set) and then used it to classify cells from another dataset (test set).
Interestingly, we observed a large proportion of unseen cell types
across the different datasets we have collected, even when they are
from the same species (e.g., 72% of cell types in Lemur 1 are not in

Lemur 4) (Fig. 4a). Even in the presence of such disparate sets of cell
types, OnClass was still able to achieve good prediction performance
across the datasets in comparison to comparison approaches
(Fig. 4b-d, Supplementary Fig. 19, Supplementary Data 2). As an
example, OnClass obtained 0.79 AUPRC when trained on Lemur 4
and tested on Lemur 1. On a more challenging setting of 67%
unseen cell types between two different species (Muris FACS and
Lemur 2), OnClass still obtained 0.94 AUROC on unseen cell types.
The cross-dataset evaluation supports OnClass as a robust method
for automated cell type classification in datasets with large numbers
of unseen cell types.

Building on this, we build a training model using all these 6
datasets. We then evaluated the ability of this training set to
predict cell types in the 26-dataset?®, a dataset independently
generated and annotated which contains a diverse set of 105,476
cells collected from 26 single-cell datasets (26-dataset) represent-
ing 9 technologies and 11 studies (see “Methods”). We observed
an average AUROC of 0.90 for seen cell types and 0.87 for unseen
cell types (Fig. 4e). Notably, the performance of OnClass trained
on all 6 diverse datasets was substantially better than trained on
each individual dataset (Fig. 4f). This improvement indicates that
OnClass performance can be easily improved by adding newly
annotated datasets to the training, even if they are from different
tissues, technologies or even species.

Furthermore, the predicted cell type annotations can be used as
features to cluster and integrate cells from different datasets. We
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ratio of unseen cell types (a), Accuracy@3 (b), unseen AUROC (¢), and unseen AUPRC (d) in cross-dataset prediction. The x-axis is the test set and the y-
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used the predicted cell type annotations to integrate these 26 ~AUROCs ranging from 0.87 to 0.97 on these six diverse datasets.
datasets following the same procedure as the previous work®>. We ~ More importantly, since OnClass does not rely on the tran-
observed good performance by using OnClass, where cells were scriptome profiles to identify marker genes, it was able to find
clustered based on cell types rather than artifacts related to marker genes for unseen Cell Ontology terms as well. For
platforms (Fig. 5a). We further quantified the integration example, OnClass obtained an AUROC 0.87 for unseen Cell
performance using the silhouette coefficient® and observed a  Ontology terms in Muris FACS and an AUROC 0.82 for unseen
significant improvement in comparison to expression-based Cell Ontology terms in Muris droplet. We incorporated these
integration using Scanorama3® (P-value < 7e—293 using a two- OnClass-computed marker genes into our provisional Cell
sided test) (Fig. 5b), indicating once again OnClass’s robustness  Ontology (Supplementary Data 3), in the hope of facilitating
to annotating cells from different batches and across datasets. future expert curation. This data is easily accessible through our
portal (http://onclass.ds.czbiohub.org) and although these marker
Identifying marker genes for unseen Cell Ontology terms. 8enes are by no means a completely accurate representation of
Given the accurate annotation of both seen and unseen Cell ~cell type features, they are the first attempt at creating a com-
Ontology terms, we were then interested in using OnClass to ~Prehensive knowledge base of marker genes representative of the
identify marker genes for all the existing Cell Ontology terms. ~entire cellular diversity. ]
Marker genes are the key to expert curation but the existing Finally, we sought to examine whether OnClass-computed
knowledge is incomplete and limited to extensively studied cell ~marker genes could be used to accurately annotate cells. We
types. We started by using OnClass to identify marker genes for performed a cross-dataset validation, Where cells in one dataset
both seen and unseen Cell Ontology terms across the six datasets ~Were used to find marker genes (training set) and cells from
we used for the training set (Fig. 5c). OnClass was able to identify ~another data were then classified using these marker genes (test
the correct marker genes for seen Cell Ontology terms with set). We found that the performance of using OnClass-computed
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using OnClass-computed marker genes and curated marker genes to classify cells in different datasets using marker genes obtained from Lemur 2 (d) and
Lemur 4 (e). Error bar represents standard errors of n=17, 21, 13, 22, 13, 22 for Muris FACS, Muris droplet, Lemur 1, Lemur 2, Lemur 3, Lemur 4,

respectively. Mean is used to measure the centre for the error bar. f Heatmap showing the AUROC of using marker genes to classify cells in the cross-
dataset setting. The x-axis is the test set and the y-axis is the training set.
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marker genes was comparable to curated marker genes (Fig. 5d, e,
Supplementary Fig. 20). More importantly, for those Cell
Ontology terms that have no curated marker genes, OnClass-
computed marker genes also achieved accurate cell type
annotation performance, especially for datasets from the same
species (Fig. 5f). Of note, because the performance of OnClass
depends on the existence of good quality cell annotations
associated with single-cell transcriptomics profiles (Fig. 4f), as
more data becomes available, we anticipate substantial improve-
ment on the identification of robust and accurate marker
gene sets.

Discussion

Cell type annotation is a key step of the single-cell tran-
scriptomics workflows because all the subsequent analysis
depends on the assigned labels. It is also a bottleneck and
therefore an active area of research, with most computational
methods focusing on classifying cells into either existing labels or
as a generic unseen cell type!l:12. Despite encouraging results
based on these approaches, these methods fail to provide mean-
ingful information on cell types that have not yet been molecu-
larly characterized. As more cell types are discovered, there is an
increased need to go beyond what is available in the different
training sets of previously characterized cell types. Our method
takes an important step forward by expanding the set of possible
cell types to the whole Cell Ontology and paving the way toward
automating the process of cell type annotation with accuracy even
for previously unseen Cell Ontology terms. In contrast to existing
efforts that utilize the Cell Ontology!42837:38 or other ontologies,
such as the Disease Ontology>?, to improve the classification task,
our method is able to classify cells into any cell type within the
Cell Ontology, even if such cell type does not have annotated cells
in the training set.

To make OnClass even more applicable to single cell datasets, a
natural follow up is to automate the process of mapping free text
annotations from different datasets to the Cell Ontology. Here we
already offer an NLP model that is able to map free text anno-
tations to Cell Ontology terms and we plan to further improve the
NLP models to consider not only text data but also the Cell
Ontology graph structure. There are also other exciting efforts
toward unifying the taxonomy of neural cell types*? and the goal
is to extend the NLP models in such a way that we will integrate
with such efforts and provide accurate mapping from free text
annotation to the Cell Ontology. We would also like to develop
methods to correct the batch effects with the existence of a large
number of unseen cell types. Existing batch correction methods
exploit the idea of finding mutual nearest neighbors between two
datasets*!, which could be substantially challenging when most of
the cell types are only seen in one dataset. Batch correction
between these datasets might further improve the performance of
OnClass.

The proposed three-step framework enables OnClass to be
integrated with any existing cell type classification method and/or
batch correction. In particular, users can skip the second step and
provide OnClass the predicted probability scores of seen Cell
Ontology terms as the input to the third step. Such probability
scores can be obtained by any off-the-shelf cell type annotation
approach and OnClass will then perform the third step to extend
these scores to unseen cell types based on the Cell Ontology
graph. Since the user-selected approach does not need the ability
to classify cells into unseen cell types nor reject cells to all seen
cell types, users can thus select their preferred approach based on
computational time, memory usage and model calibration ability.
For example, using logistic regression as the base classifier enables
users to also obtain well-calibrated OnClass predictions*2.

OnClass is also able to incorporate advanced single cell repre-
sentations, such as MARS#3, by using them instead of the gene
expression profile as the input.

One current limitation of using the Cell Ontology is that it was
not developed specifically for scRNA-seq and, therefore, likely
misses cell types and cell states. Although this problem is beyond
the scope of OnClass, an interesting avenue of research is to
pursue such populations by investigating the probability scores
predicted by OnClass. In particular, we found that OnClass’
uncertainty in classifying cell types was higher for cell type
neighbors that have very close probability scores across all cells.
To address this, we propose to extend the current ontology by
“inserting” a new node between the two cell types and define it as
a new cell population, which was neither seen in the training set
nor documented in the Cell Ontology. Some preliminary results
are shown in Supplementary Table 1 and we plan to thoroughly
investigate these with the goal of building a data-driven Ontology
for individual species. Another limitation of OnClass is that it
cannot distinguish topologically identical unseen cell types, such
as siblings with the same parents in the Cell Ontology graph.
Although the above text-based approach enables us to avoid
random guesses, OnClass might always assign the cell to the most
weighted neighbors when there are multiple topologically iden-
tical neighbors. We found that 10.6% of cell type sibling pairs are
indistinguishable in Cell Ontology. However, with the growing
annotation of new cell types, more cell types will be seen in the
training set and we hope this limitation will be circumvented by
the presence of more annotated datasets. As a proof-of-concept,
we compared the performance by using 6 datasets to only using
individual dataset as the training set and observed that by using
all 6 datasets, OnClass obtained substantially improved perfor-
mance on cell type classification (Fig. 4f).

In sum, OnClass is a robust, accurate, efficient and repro-
ducible solution to the problem of cell type classification in single
cell RNA sequencing experiments. The algorithm is implemented
in Python (https://github.com/wangshenguiuc/OnClass) and it
has been included in PyPy to facilitate its integration with current
workflows. The marker genes database for mouse is available as
an online web server (http://onclass.ds.czbiohub.org/) and as part
of the package we provided a pre-trained model that can output
cell type annotations for millions of cells in a few minutes on a
modern server. By leveraging the structure of the cell ontology,
OnClass pushes the boundaries of automated cell classification,
enabling cell annotation into categories never seen in the training
dataset, letting researchers take advantage of large references such
as Tabula Muris Senis, the Allen Brain Atlas and the upcoming
Human Cell Atlas*4.

Methods
scRNA-seq datasets. We used the following datasets:

Datasets 1 ¢ 2: Tabula Muris Senis!® FACS (smartseq2) and droplet (10x);

Datasets 3-6: Tabula Microcebus Lemur 1-4 (10x). The data is available on
Figshare (https://figshare.com/projects/Tabula_Microcebus/112227).

Dataset 7: The Allen Brain Atlas®.

Dataset 8: Krasnow Lung Atlas (10X)%2.

Dataset 9: A collection of 26 datasets from Scanorama3.

A summary description of all these datasets is shown in Supplementary Table 2.
Cell type annotations present in Tabula Muris Senis and Tabula Microcebus were
manually mapped to the Cell Ontology vocabulary. Cell type annotations present
in the Allen Brain Atlas were manually mapped to the Allen Ontology. We
manually mapped cell types in the 26-dataset to Cell Ontology terms
(Supplementary Table 3), since these datasets did not provide cell type annotations
that were mapped to the Cell Ontology vocabulary. In the 26-dataset, PBMC was
annotated as peripheral blood mononuclear cell (CL:2000001). This cell type is not
part of Tabula Muris Senis (because blood is not on the tissues in the atlas), but
many of its descendants were in TMS. As a result, we excluded this cell type in our
analysis. After the mapping, there were 9 different Cell Ontology terms in these 26
datasets. We denoted these datasets as 26-dataset in this paper. The nearest seen
Cell Ontology terms and the nearby cell types for each of these 9 cell types are
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shown in Supplementary Table 4 and Supplementary Figs. 21-22. We also
performed a leave-one-cell-type-out evaluation using all cell types from Tabula
Muris FACS. We used one cell type as the unseen cell type and the remaining cell
types as the seen cell types in each leave-one-cell-type-out set. To create the
training and test set, we first randomly split the cells of the seen cell types into 95%
training cells and 5% test cells. We then combined the 5% test cells of these seen
cell types with all cells of the unseen cell type as the test set. The 95% training cells
were used as the training set.

The Cell Ontology. We downloaded the Cell Ontology from The OBO Foundry
(http://www.obofoundry.org/ontology/cLhtml)?4. We used the “is_a” relation in
the Cell Ontology to construct an undirected graph of cell types. There were in total
2331 nodes in the constructed graph, corresponding to 2331 different cell types.
The 2331 cell types in the Cell Ontology were not species-specific and cell states
were not included.

The Allen Ontology. We downloaded a Cell Type Taxonomy from the Allen Brain
Atlas project, which included 289 cell types (https://transcriptomic-viewer-
downloads.s3-us-west-2.amazonaws.com/mouse/dendrogram.zip)*®. There were in
total 289 cell types and all edges in this graph had the same weight. This Cell Type
Taxonomy is referred to as the Allen Ontology in this paper.

Cell type text description similarity. The text description of each cell type was
obtained from the Cell Ontology?” using the field “def:”. Each cell type was asso-
ciated with a sentence describing this cell type. For example, the description of T
cell is “A type of lymphocyte whose defining characteristic is the expression of a T cell
receptor complex.” If the sentence was missing for a given cell type, we used the cell
type name as the description. We then used NLP techniques to calculate text-based
cell type similarity between two text descriptions. In particular, we jointly
embedded sentences of all cell types using an off-the-shelf text embedding
method3’. We then obtained the text-based cell type similarity using cosine
similarity between these embeddings. This text-based cell type similarity was used
as the edge weight of the Cell Ontology. Because the Cell Ontology might contain
missing edges, we further complete this Cell Ontology using text-based cell type
similarity. We added a link between two cell types on the Cell Ontology graph if
there distance is smaller than d_ and their text-based similarity is larger than 0.8.
To generate more robust cell type graph, we created three such graphs by setting d,
to 2, 3, and 4, respectively (d. = 2 means no new edge is added). We then train one
model based on each graph and integrate all models through averaging their
predicted scores. Since the Allen Ontology does not contain cell type text defini-
tion, we still kept weights of all edges in the Allen Ontology as 1.

Although the Cell Ontology provides controlled vocabulary for cell type
annotation, there could be datasets that were annotated to cell types using other
vocabulary by experts. We referred to cell types annotated with other vocabulary as
user terminology (Fig. 1a). For example, T cell in the Cell Ontology could have
synonyms such as T-cell and T lymphocyte. Asking users to manually map their
vocabulary to the Cell Ontology vocabulary is extremely time-consuming, error-
prone and requires domain expertise. We used natural language processing (NLP)
techniques to automate this process. In order to map free text annotations to the
controlled vocabulary in the Cell Ontology, we first used the same text embedding
method?” to embed free text annotations and cell ontology terms into the same
low-dimensional space and then found the nearest cell ontology term for each free
text annotation. Although the nearest Cell Ontology term will be deemed as the
corresponding terminology in the Cell Ontology, we still provided users a shortlist
of top ranked terms to prevent potential noise in text description.

We further refined the NLP-based mapping using a maximum weighted
bipartite graph matching algorithm. We first constructed a bipartite graph, where
source nodes are user-provided free annotation and target nodes are Cell Ontology
terminologies. The weight of an edge between a source node and a target node was
determined by the NLP-based similarity. We then found the maximum weighted
matching between source nodes and target nodes using python package
networkx?”. This matching guarantees that each user-provided free annotation is
matched to at most one Cell Ontology terminology and each Cell Ontology
terminology is also matched to at most one user-provided free annotation.

Embedding the Cell Ontology into the low-dimensional space. OnClass com-
puted a compressed, low-dimensional representation of each cell type based on the
constructed cell type graph. We used clusDCA31:32, which had been proposed to
embed the Gene Ontology, to embed the Cell Ontology. clusDCA first computes a
propagated cell type graph by applying the random walk with restart*349 to the cell
type graph. It then obtains the low-dimensional representation of each cell type by
using the singular value decomposition (SVD)*? to reduce the dimensionality of
this propagated cell type graph. To make our method more robust, we set the
restart probability of the random walk with restart to 0.5, 0.6, 0.7, and 0.8 to obtain
four different diffusion graphs respectively. We trained one model based on each
diffusion graph and then averaged predictions of four different models to obtain
the final prediction. Moreover, we only embedded seen cell types into the low-
dimensional space by exclusively selecting rows and columns of seen cell types in
the diffusion graph. This could substantially reduce running time and produce

more compact representation. A detailed description of embedding cell types can
be found in Supplement (Supplementary Fig. 1, Supplementary Note).

Cell type annotation. OnClass used a bilinear neural network model to predict the
Cell Ontology term for a novel cell. Let M be an m by n matrix of input gene
expression data, where m was the number of cells and n was the number of genes.
Let Y be an m by c label matrix, where ¢ is the total number of Cell Ontology terms
in the Cell Ontology. Y;;= 1 if cell i is annotated to Cell Ontology term j, otherwise
Y;;= 0. Note that ¢ is often much larger than the number of seen Cell Ontology
terms in the training data, as the majority of Cell Ontology terms are unseen in the
training data. The corresponding columns of unseen Cell Ontology terms are all
zeros in the label matrix. Let E be a ¢ by g matrix of the low-dimensional repre-
sentations of cell types, where q is the dimension of cell type embedding dimen-
sionality. E is the output of clusDCA and it is fixed during optimization. We
further concatenated a diagonal matrix to E, resulting in a ¢ by ¢ + ¢ matrix X,
where the first g columns are the embedding of the Cell Ontology graph and the
last ¢ columns are a diagonal matrix. This diagonal matrix has the same effect as
bias terms in conventional machine learning models to ease the optimization
process. OnClass optimized the following cross-entropy loss:

L= Exmzl:'][:l

Y ;log(exp(Relu(Relu(M; W)W, )XJT)/Ei:l exp(Relu(Relu(M;W ) W,)XT))
1)

where W, € R"™" and W, € R"*@+9 were the parameters that needed to be
estimated. Relu was the rectifier function for nonlinear transformation®!. h was the
number of hidden dimensions and set to 5 with the consideration of potentially
small numbers of seen cell types in the real world dataset. OnClass used ADAM>2
to optimize this objective function.

After the optimization, the Cell Ontology term of a new cell with expression
vector z could then be predicted as:

p; = exp(exp(Relu(Relu(zW ) W,)X])/Z5_, exp (exp(Relu(Relu(z W )W ,)X])
(2

where p; was the probability that this cell belonged to Cell Ontology term j.
P={p,, p,,...,p.} was the probability distribution that this cell belonged to each
Cell Ontology term, including both seen Cell Ontology terms and unseen Cell
Ontology terms. As a result, OnClass could automatically assign cells to any term
in the Cell Ontology, even if it does not have any annotated cells in the
training data.

OnClass allows users to input overlapping cell types. For example, when users
input two cell types T cells and CD4+ T Cells, OnClass could annotate a test cell to
either a T cell or a CD4+ T cell. OnClass software also lets users decide whether to
include only the most fine-grained terms or not through using the
exclude_non_leaf_ontology hyperparameter in OnClass software.

Calculating cell type similarity. We calculated three types of cell type similarities:
the Cell Ontology graph-based similarity (Ontology-based similarity), the text
description-based similarity (text-based similarity) and the gene expression-based
similarity. The Ontology-based similarity is the cosine similarity between the
random walk with restart equilibrium distribution of two cell types. The text
description-based similarity is the cosine similarity between low-dimensional text
representations of cell type description. We also used the text description-based
similarity to map free text annotations to Cell Ontology controlled vocabulary. To
calculate gene expression-based similarity, we first followed McImpute®3, a low-
rank matrix completion based imputation method, to impute missing values before
calculating the cell type similarity. The similarity of cells are calculated using the
low-dimensional vector instead of the original gene expression vector. We used the
gene expression of all FACS cells in TMS to calculate the gene expression-based
similarity. The calculation was performed per organ.

Evaluation of cell type annotation. We evaluated across different proportions of
seen Cell Ontology terms in the test set ranging from 10 to 90%, where 10%
indicates that 10% of Cell Ontology terms in the test set have no annotated cells in
the training data. For a proportion k percentage, we first randomly selected k
percentage of Cell Ontology terms as seen Cell Ontology terms and remaining Cell
Ontology terms as unseen Cell Ontology terms. All cells belonging to these unseen
Cell Ontology terms were used as the test set. For the seen cell types, we randomly
split their cells into five equal size folds, where one-fold was used as the training set
and the remaining four-folds were used as the test set. We created a five-fold of test
and training here according to the initial annotation process in Tabula Muris Senis,
where about 20% of cells (3-month mice) were annotated first and then extended to
the remaining 80%. The test data thus contained all cells in each of the unseen Cell
Ontology terms and 80% of cells in each seen Cell Ontology terms. We performed
cross-validation by repeating this procedure 5 times for each proportion.

To reflect the biological input we got from the tissue experts of the Tabula
Muris consortium, we purposely decided to only consider a cell type if none of its
descendants was in the training set or the test set. For example, for the case when
lymphocyte cells and T cells are both in the dataset, we are going to exclude
lymphocyte cells but include T cells in our dataset. Such a selection process enables
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all cell types to be mutually exclusive, thus avoiding information leakage, while at
the same time provides the biology community with a set of labels more
representative of the current knowledge in the field. We evaluated our method and
comparison approaches on four metrics, including the area under the receiver
operating characteristic curve (AUROC), Accuracy@3, Accuracy@5, and the area
under the precision recall curve (AUPRC). As we were evaluating a large number
of classes (i.e., more than 80 cell types), it was important to address the bias from
class imbalance during evaluation. Therefore, we used the macro-average AUROC
rather than the micro-average AUROC to summarize results across different Cell
Ontology terms. Macro-average AUROC calculates the areas under the curves for
each class independently and then takes the average. Likewise, we also used the
macro-average AUPRC. To better understand the performance of OnClass, we
randomly sampled 3 times as many negative samples as positive samples, making
the random AURPC 0.25 for all comparison. AUROC(useen) and AUPRC(unseen)
are such scores only averaged across unseen cell types. Accuracy@3 and
Accuracy@5 are widely used ranking metrics, which assesses the correctness of the
top 3 or 5 predicted Cell Ontology terms, respectively. A prediction would be
deemed as correct if any of the top 3 (5 for Accuracy@5) predicted Cell Ontology
terms is the correct Cell Ontology term. When calculating these six metrics, we
only considered cell types that appeared in either the training set or the test set. To
evaluate the performance per organ, we used a fixed proportion of 50% of unseen
cell types in the test set.

Comparison approaches. We compared our method with eight existing methods:
ACTINN, singleCellNet (sCN(reject)), one-vs-rest logistic regression (LR), one-vs-
rest logistic regression with rejection (LR(reject)), multi-class SVM, multi-class
SVM with rejection (SVM(reject)), Cell BLAST (reject) and DOC(reject). These
approaches represent prevalent classification methods based on random forest
(singleCellNet), neural network (ACTINN), logistic regression, and support vector
machine. Our choice of methods was based on a recent benchmarking
publication!®. These seven methods were divided into two groups based on whe-
ther this method can reject a test cell to all seen cell types.

ACTINN, SVM, and LR cannot reject a cell to all seen cell types. ACTINN used
a three-layer neural network to predict the cell type!3. We used the implementation
of ACTINN from the authors (https://github.com/mafeiyang/ACTINN) and ran it
on TMS. We used the default parameters for ACTINN since these parameters were
used in their paper to annotate cells in the Tabula Muris?, an earlier version and
subset of our dataset. LR and SVM was the standard machine learning classifier for
multi-class classification on large-scale datasets. We used the one-vs-rest logistic
regression instead of the multinomial logistic regression. For these three methods
that cannot reject a cell into a new cell type, the probability of assigning a cell to
any unseen cell type will be zero.

sCN(reject), LR(reject), DOC(reject), SVM(reject), Cell BLAST (reject) can
reject a cell to all seen cell types. sSCN(reject) used gene pairs as features and
random forest as the classifier to predict the cell type!!. Notably, sSCN was able to
classify cells into an unknown cell type. We obtained the implementation of
singleCellNet from (https://github.com/pcahanl/singleCellNet). Recent work
reported that sSCN was not scaled to large datasets!>. We further noted that sCN
was not able to cross-validate rare cell types with less than 50 cells. We
reimplemented part of sSCN to enable its annotation for rare cell types and made
the code available as part of our package. To make it scalable to TMS, we ran it on
the dimensionality reduced gene expression matrix instead of the original gene
expression matrix and reduced the number of trees in SCN to 20. DOC(reject) is an
advanced machine learning method for classifying unseen text documents, which
was a natural solution to our problem and could be directly applied here>*. The key
idea of DOC(reject) was to find a data-driven probability cutoff for the unknown
class rather than using a fixed probability cutoff of 0.7 as LR did. However,
DOC(reject) was also not able to classify cells into the specific cell type. As the
original DOC(reject) codebase was developed for word sequences classification and
could not directly take gene expression as input, we reimplemented and replaced its
underlying convolutional neural network classifier with a multinomial logistic
regression. LR(reject) and SVM(reject) were based on the standard classification
methods logistic regression and support vector machine. The key difference here is
that a cell will be rejected to all seen cell types if its probability to the most likely
cell type is less than 0.7. The probability cutoff 0.7 was used in a previous large-
scale single cell annotation pipeline!®. We also calibrated the output score of SVM
as previous work did!”. Cell BLAST(reject)” was a recently published work that
used the Cell Ontology graph to propagate predicted scores. However, since Cell
BLAST only propagates the scores from a children node to its parents, it is not able
to annotate unseen cell types that none of its children has been seen in the training
data. In contrast, our method is able to do it by using the Cell Ontology graph.
Despite the conceptual difference between Cell BLAST and OnClass, we still used
Cell BLAST as a comparison approach. Due to the large number of genes that
cannot be handled by Cell BLAST using 128 GB RAM, we only considered 10,000
genes that have the largest gene expression variance as features for datasets that
have more than 20,000 genes. Although these five methods were able to classify
cells into a “unknown” cell type, they were not able to classify these cells into the
specific cell type. To enable a fair comparison, we further proposed to extend these
three approaches by classifying cells belonging to the unknown cell type to a
specific cell type. In particular, when a cell was annotated as the unknown cell type,

we first found the seen cell type that had the largest confidence score for this cell.
We then annotated the cell to the nearest unseen cell type of this seen cell type on
the Cell Ontology graph.

Cross-dataset prediction. We performed cross-dataset evaluation on 6 datasets,
including Muris FACS, Muris droplet, Lemur 1, Lemur 2, Lemur 3, and Lemur 4.
We trained on all cells from one dataset and tested on all cells from another
dataset. We used the same data preprocessing procedure as ACTINN did!3. In
particular, we only considered genes that were in both the training set and the
test set. We then calculated the log count values for the gene expression. Finally,
genes with highest 1% expression values and genes with the lowest 1% expres-
sion values were then removed. Raw data were used as the input for both the
training and the test set. Only genes that appear in both training and test sets
were kept during training and prediction. We mapped genes across different
species using the homologous gene symbols available from the Ensembl
database®>.

Pre-trained model. We trained a pre-trained model using Datasets 1-6. In par-
ticular, OnClass was run on these 6 dataset separately and then predicted the cell
type for a test cell respectively. Each test cell will then have six probability vectors
across all cell types. OnClass then averaged these six cell types to obtain the final
prediction of the test cell. The expression of the test cell was not used when training
the pre-trained model.

To classify cells in the 26-dataset using this pre-trained model, we first used
Scanorama to correct batch effects among 26 datasets. For genes that were only
included in the training set but not in the test set, we set the expression values of
these genes to zero during prediction. Genes that were only included in the test set
but not in the training set (i.e., Tabula Muris Senis and Tabula Microcebus) were
excluded during prediction.

Data integration using OnClass. To integrate the 26 datasets, we used OnClass to
generate a probability vector for each cell over all cell types in the Cell Ontology.
These vectors were first reduced into a low-dimensional space using principal
component analysis. The low-dimensional vectors are then used as the input fea-
tures for UMAP visualization®®. We used the silhouette coefficient?® to evaluate the
clustering accuracy for both our method and expression-based integration. We
only considered cell types that can be mapped to the Cell Ontology term in the
classification evaluation (Fig. 4e). We considered all cell types in the unsupervised
evaluation which does not require the cell type to be included in the Cell Ontology
(Fig. 5a, b). These 9 cell types are grouped into 6 groups following Scanorama®.
We have now further explained it in the “Methods” section.

Marker genes identification. We used Spearman correlation to find marker genes
so that all cells could be taken into consideration. We calculated a correlation
coefficient between each cell type, including seen cell types and unseen cell types,
and each gene. For each cell type, we obtained a vector where each dimension was
the probability of a cell being classified to this cell type. For each gene, we obtained
a vector where each dimension was the expression of this gene in a cell. The
correlation coefficient was then calculated based on these two vectors. We used a
correlation coefficient threshold of 0.4 to determine marker genes. The accuracy of
the marker genes identified was evaluated using the rank-based metric AUROC
without setting a cutoff. The ground truth vector is a binarized vector for each cell
type, where 1 means this gene is a known marker and otherwise 0. Curated marker
genes of 69 Cell Ontology terms were collected from literature by experts (Sup-
plementary Data 4). 28 cell types in Tabula Muris Senis are in these 69 Cell
Ontology terms and thus had curated marker genes that we could use for eva-
luation purposes. To classify a new cell according to marker genes, we used the
mean of the expression of marker genes of each Cell Ontology term as the pre-
dicted score for that Cell Ontology term. A larger score indicated that the cell more
likely belonged to that Cell Ontology term.

Statistical analysis. We used the scipy.stats®” Python package implementation of
the one-sided independent t-test, two-sided t-test, Spearman correlation statistics,
and associated P-values used in this study. We used the scikit-learn Python package
implementation of one-vs-rest logistic regression, SVM, silhouette coefficients,
AUROC, and AUPRC used in this study>®.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

All datasets used in this study are available at: https://onclass.readthedocs.io/en/latest/
datasets.html. Tabula Muris Senis data is available on GEO (https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE149590). Lemur data is available on Figshare (https://figshare.com/
projects/Tabula_Microcebus/112227). HLCA data is available on Synapse (https://
www.synapse.org/#!Synapse:syn21041850). Allen Brain data is available on Allen Brain Atlases
data portal (https://portal.brain-map.org/).

| (2021)12:5556 | https://doi.org/10.1038/s41467-021-25725-x | www.nature.com/naturecommunications 9


https://github.com/mafeiyang/ACTINN
https://github.com/pcahan1/singleCellNet
https://onclass.readthedocs.io/en/latest/datasets.html
https://onclass.readthedocs.io/en/latest/datasets.html
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE149590
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE149590
https://figshare.com/projects/Tabula_Microcebus/112227
https://figshare.com/projects/Tabula_Microcebus/112227
https://www.synapse.org/#!Synapse:syn21041850
https://www.synapse.org/#!Synapse:syn21041850
https://portal.brain-map.org/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

Code availability
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