Open Graph Benchmark:
Datasets for Machine Learning on Graphs

Weihua Hu!, Matthias Fey?, Marinka Zitnik®, Yuxiao Dong*,
Hongyu Ren', Bowen Liu®, Michele Catasta’, Jure Leskovec!
1Depeu’tment of Computer Science, 5Chemistry, Stanford University
2Department of Computer Science, TU Dortmund University
3Depaurtment of Biomedical Informatics, Harvard University
4Microsoft Research, Redmond
ogb@cs.stanford.edu

Steering Committee
Regina Barzilay, Peter Battaglia, Yoshua Bengio, Michael Bronstein,
Stephan Giinnemann, Will Hamilton, Tommi Jaakkola, Stefanie Jegelka,
Maximilian Nickel, Chris Re, Le Song, Jian Tang, Max Welling, Rich Zemel

Abstract

We present the OPEN GRAPH BENCHMARK (OGB), a diverse set of challenging
and realistic benchmark datasets to facilitate scalable, robust, and reproducible
graph machine learning (ML) research. OGB datasets are large-scale, encompass
multiple important graph ML tasks, and cover a diverse range of domains, ranging
from social and information networks to biological networks, molecular graphs,
source code ASTs, and knowledge graphs. For each dataset, we provide a unified
evaluation protocol using meaningful application-specific data splits and evaluation
metrics. In addition to building the datasets, we also perform extensive benchmark
experiments for each dataset. Our experiments suggest that OGB datasets present
significant challenges of scalability to large-scale graphs and out-of-distribution
generalization under realistic data splits, indicating fruitful opportunities for future
research. Finally, OGB provides an automated end-to-end graph ML pipeline that
simplifies and standardizes the process of graph data loading, experimental setup,
and model evaluation. OGB will be regularly updated and welcomes inputs from the
community. OGB datasets as well as data loaders, evaluation scripts, baseline code,
and leaderboards are publicly available at https://ogb.stanford.edu.

1 Introduction

Graphs are widely used for abstracting complex systems of interacting objects, such as social
networks [30], knowledge graphs [63], molecular graphs [92], and biological networks [9], as well as
for modeling 3D objects [75], manifolds [15], and source code [4]. Machine learning, especially deep
learning, on graphs is an emerging field [15, 38]. Recently, significant methodological advances have
been made in graph ML [35, 49, 84, 94, 100], which have produced promising results in applications
from diverse domains [77, 99, 107].

How can we further advance research in graph ML? Historically, high-quality and large-scale datasets
have played significant roles in advancing research, as exemplified by IMAGENET [23] and MS
COCO [58] in computer vision, GLUE BENCHMARK [86] and SQUAD [69] in natural language
processing, and LIBRISPEECH [64] and CHIME [10] in speech processing. However, in graph

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

ML research, commonly-used datasets and evaluation procedures present issues that may negatively
impact future progress.

Issues with current benchmarks. Most of the frequently-used graph datasets are extremely small
compared to graphs found in real applications (with more than 1 million nodes or 100 thousand
graphs) [12, 43, 85, 87, 92, 99]. For example, the widely-used node classification datasets, CORA,
CITESEER, and PUBMED [98], only have 2,700 to 20,000 nodes, the popular graph classification
datasets from the TU collection [47, 95] only contain 200 to 5,000 graphs, and the commonly-used
knowledge graph completion datasets, FB15K and WN18 [14], only have 15,000 to 40,000 entities.
As models are extensively developed on these small datasets, the majority of them turn out to be
not scalable to larger graphs [14, 49, 81, 83]. The small datasets also make it hard to rigorously
evaluate data-hungry models, such as Graph Neural Networks (GNNs) [28, 34, 56, 94]. In fact, the
performance of GNNs on these datasets is often unstable and nearly statistically identical to each
other, due to the small number of samples the models are trained and evaluated on [29, 40].

Furthermore, there is no unified and commonly-followed exper-
imental protocol. Different studies adopt their own dataset splits,
evaluation metrics, and cross-validation protocols, making it chal-
lenging to compare performance reported across various stud-
ies [29, 31, 74]. In addition, many studies follow the convention
of using random splits to generate training/test sets [14, 49, 94],
which is not realistic or useful for real-world applications and
generally leads to overly optimistic performance results [S9]. An
extensive discussion on the shortcomings of the current bench-
marks is further provided in Appendix A.

As aresult, there is an urgent need for a comprehensive suite of

real-world benchmarks that combine a diverse set of datasets of

various sizes coming from different domains. Fixed data splits Figure 1: OGB provides
as well as evaluation metrics are important so that progress can datasets that are diverse in
be measured in a consistent and reproducible way. Last but not scale, domains, and task
least, benchmarks need to provide different types of tasks, such ~categories.

as node classification, link prediction, and graph classification.

Present work: OGB. Here, we present the OPEN GRAPH BENCHMARK (OGB) with the goal
of facilitating scalable, robust, and reproducible graph ML research. The premise of OGB is to
develop a diverse set of challenging and realistic benchmark datasets that can empower the rigorous
advancements in graph ML. As illustrated in Figure 1, the OGB datasets are designed to have the
following three characteristics:

1. Large scale. The OGB datasets are orders-of-magnitude larger than existing benchmarks and
can be categorized into three different scales (small, medium, and large). Even the “small” OGB
graphs have more than 100 thousand nodes or more than 1 million edges, but are small enough to
fit into the memory of a single GPU, making them suitable for testing computationally intensive
algorithms. Additionally, OGB introduces “medium” (more than 1 million nodes or more than 10
million edges) and “large” (on the order of 100 million nodes or 1 billion edges) datasets, which
can facilitate the development of scalable models based on mini-batching and distributed training.

2. Diverse domains. The OGB datasets aim to include graphs that are representative of a wide variety
of domains, ranging from social and information networks to biological networks, molecular
graphs, source code ASTs, and knowledge graphs. The broad coverage of domains in OGB
empowers the development and demonstration of general-purpose models, and can be used to
distinguish them from domain-specific techniques. Furthermore, for each dataset, OGB adopts
domain-specific data splits (e.g., based on time, species, molecular structure, GITHUB project,
etc.) that are more realistic and meaningful than conventional random splits.

3. Multiple task categories. Besides data diversity, OGB supports three categories of fundamental
graph ML tasks, i.e., node, link, and graph property predictions, each of which requires the models
to make predictions at different levels of graphs, i.e., at the level of a node, link, and entire graph,
respectively.

The currently-available OGB datasets are summarized in Table 1, and their graph statistics are
provided in Table 2. Currently, OGB includes 15 diverse graph datasets, with at least 4 datasets

Table 1: Summary of currently-available OGB datasets. An OGB dataset, e.g., ogbg-molhiv,
is identified by its prefix (ogbg-) and its name (mo1hiv). The prefix specifies the category of the
graph ML task, i.e., node (ogbn-), link (ogb1-), or graph (ogbg—) property prediction. Datasets
come from diverse domains: Nature domain includes biological networks and molecular graphs,
Society domain includes academic graphs and e-commerce networks, and Information domain
includes knowledge graphs. A realistic data split scheme is provided for each dataset, whose detail
can be found in Appendices B, C, and D, for each dataset.

Category Name Domain 1;:::];‘gag: Directed Hetero #Tasks Scslllg:le s:i::) :f;sp]: Metric
products Society v - - - 1 Salesrank 8/2/90 Multi-cls class. Accuracy
Node proteins Nature - 4 - - 112 Species 65/16/19 Binary class. ROC-AUC
ogbn- arxiv Society v - v - 1 Time 54/18/28 Multi-cls class. Accuracy
papers100M Society v - v - 1 Time 78/8/14 Multi-cls class. Accuracy
mag Infomation ¢ 4 v 4 1 Time 85/9/6 Multi-cls class. Accuracy
ppa Nature v - - - 1 Throughput 70/20/10 Link prediction Hits@100
collab Society v - - - 1 Time 92/4/4 Link prediction Hits@50
Link ddi Nature - - - - 1 Protein target 80/10/10 Link prediction Hits@20
ogbl= itation Society v - v 1 Time 99/1/1 Link prediction MRR
wikikg Information - ¢ v - 1 Time 94/3/3 KG completion MRR
biokg Information - ¢ v 4 1 Random 94/3/3 KG completion MRR
molhiv Nature v v - - 1 Scaffold 80/10/10 Binary class. ROC-AUC
Graph nolpcba Nature v v - - 128 Scaffold 80/10/10 Binary class. AP
°9bg= ppa Nature - v - - 1 Species 49/29/22 Multi-class class. Accuracy
code Information ¢ 4 v - 1 Project 90/5/5 Sub-token prediction F1 score

Table 2: Statistics of currently-available OGB datasets. The first 3 statistics are calculated over
raw training/validation/test graphs. The last 4 graph statistics are calculated over the ‘standardized’
training graphs, where the graphs are first converted into undirected and unlabeled homogeneous
graphs with duplicated edges removed. The SNAP library [53] is then used to compute the graph
statistics, where the graph diameter is approximated by performing BFS from 1,000 randomly-
sampled nodes. The MaxSCC ratio represents the fraction of nodes in the largest strongly connected
component of the graph.

Average Average Average Average MaxSCC Graph

Category Name Scale #Graphs #Nodes #Edges Node Deg. Clust. Coeff. Ratio Diameter
products medium 1 2,449,029 61,859,140 50.5 0.411 0.974 27

proteins medium 1 132,534 39,561,252 597.0 0.280 1.000 9

lgggi_ arxiv small 1 169,343 1,166,243 13.7 0.226 1.000 23
papersl00M large 1 111,059,956 1,615,685,872 29.1 0.085 1.000 25

mag medium 1 1,939,743 25,582,108 21.7 0.098 1.000 6

ppa medium 1 576,289 30,326,273 73.7 0.223 0.999 14

collab small 1 235,868 1,285,465 8.2 0.729 0.987 22

Link ddi small 1 4,267 1,334,889 500.5 0.514 1.000 5
ogbl- citation medium 1 2,927,963 30,561,187 20.7 0.178 0.996 21
wikikg medium 1 2,500,604 17,137,181 12.2 0.168 1.000 26

biokg small 1 93,773 5,088,434 475 0.409 0.999 8

molhiv small 41,127 25.5 27.5 22 0.002 0.993 12.0

Graph molpcba medium 437,929 26.0 28.1 22 0.002 0.999 13.6
ogbg- ppa medium 158,100 2434 2,266.1 18.3 0.513 1.000 4.8
code medium 452,741 125.2 1242 2.0 0.0 1.000 13.5

for each task category. All the datasets are constructed by ourselves, except for ogbn-products,
ogbg-molpcba, and ogbg-molhiv, whose graphs and target labels are adopted from Chiang
et al. [17] and Wu et al. [92]. For these datasets, we resolve critical issues of the existing data
splits by presenting more meaningful and standardized splits. OGB is a community-driven, open-
source initiative. Over time, we plan to release new datasets and tasks, based on the input from the
community.

In addition to building the graph datasets, we also perform extensive benchmark experiments for
each dataset. Through the experiments and ablation studies, we highlight research challenges and
opportunities provided by each dataset, especially on (1) scaling models to large graphs, and (2)
improving out-of-distribution generalization performance under the realistic data split scenarios.

OGB Graph
Datasets

OGB Data Your ML OGB
Loader Model Evaluator Leaderboards

(a) (b)

Figure 2: Overview of the OGB pipeline: (a) OGB provides realistic graph benchmark datasets
that cover different prediction tasks (node, link, graph), are from diverse application domains, and
are at different scales. (b) OGB fully automates dataset processing and splitting. That is, the OGB
data loaders automatically download and process graphs, provide graph objects (compatible with
PYTORCH [65] and its associated graph libraries, PYTORCH GEOMETRIC [33] and DEEP GRAPH
LIBRARY [88]), and further split the datasets in a standardized manner. (c¢) After an ML model
is developed, (d) OGB evaluates the model in a dataset-dependent manner, and outputs the model
performance appropriate for the task at hand. Finally, (e) OGB provides public leaderboards to keep
track of recent advances. Steps (b) and (d) are supported by our OGB Python package, whose usage
is explained in Appendix E.

Finally, as illustrated in Figure 2, OGB presents an automated end-to-end graph ML pipeline
that simplifies and standardizes the process of graph data loading, experimental setup, and model
evaluation, in the same spirit as OpenML [32, 82]. Specifically, given the OGB datasets (a), the
end-users can focus on developing their graph ML models (c) by using the OGB data loaders (b)
and evaluators (d), both of which are provided by our OGB Python package (https://github.
com/snap-stanford/ogb). OGB also hosts a public leaderboard (e) for publicizing state-
of-the-art, reproducible graph ML research (https://ogb.stanford.edu/docs/leader_
overview).

2 OGB Datasets and Benchmark Analyses: Overview

The goal of OGB is to catalyze graph ML research by providing realistic, diverse, and large-scale
graph datasets with unified evaluation protocols. Table 1 summarizes the OGB datasets along with
their graph types, prediction tasks, as well as evaluation protocols (data splits and evaluation metrics).

In the subsequent sections (Sections 3, 4, and 5), we detail currently-available datasets for each
task category. Along with this, we provide an extensive benchmark analysis for each dataset,
using representative node embedding models, GNNs, as well as recently-introduced mini-batch-
based GNNs. We discuss our initial findings, and highlight research challenges and opportunities
in: (1) scaling models to large graphs, and (2) improving out-of-distribution generalization under
the realistic data splits. We repeat each experiment 10 times using different random seeds and
report the mean and unbiased standard deviation of all training and test results corresponding to
the best validation results. All code to reproduce our baseline experiments is publicly available at
https://github.com/snap-stanford/ogb/tree/master/examples and is meant
as a starting point to accelerate further research on our proposed datasets. We refer the interested
reader to our code base for the details of model architectures and hyper-parameter settings.

Finally, we highlight the diversity of our graph datasets by comparing their basic graph statistics in
Table 2. Importantly, we observe the diversity in graph structure, beyond the diversity in the dataset
scales. For example, comparing the average node degrees, we see that biology-related graphs (e.g.,
ogbn-proteins, ogbl-ddi, ogbl-ppa, ogbg-ppa) are much denser than the social and
information networks. The other statistics (average clustering coefficient and graph diameter) also
vary significantly across different datasets. These differences in graph structure result in the inherent
difference in how information propagates in the graphs, which can significantly affect the behavior of
many graph ML models such as GNNs and random-walk-based node embeddings [93]. For the graph
property prediction datasets, it is worth highlighting the diversity of graph sizes (the number of nodes
and edges per graph), ranging from small molecular graphs (ogbg-molhiv and ogbg-molpcba),
to medium-sized source code ASTs (ogbg—code), up to large and dense protein-protein association
subgraphs (ogbg-ppa). Overall, the diversity in graph characteristics originates from the diverse
application domains and is crucial to evaluate the versatility of graph ML models.

3 OGB Node Property Prediction

We currently provide 5 datasets, adopted from diverse application domains, for predicting the
properties of individual nodes. Specifically, ogbn-products is an Amazon products co-purchasing
network [12] originally developed by Chiang et al. [17]. The ogbn-arxiv, ogbn-mag, and
ogbn-papers100M datasets are extracted from the Microsoft Academic Graph (MAG) [87],
with different scales, tasks, and include both homogeneous and heterogeneous graphs. Specifically,
ogbn-arxiv is a paper citation network of ARXIV papers, ogbn-mag is a heterogeneous academic
graph containing different node types (papers, authors, institutions, and topics) and their relations,
and ogbn-papers100M is an extremely large paper citation network from the entire MAG with
more than 100 million nodes and 1 billion edges. The ogbn-proteins dataset is a protein-
protein association network [80]. Below we present the ogbn-product s dataset and its baseline
experiments. Due to space constraints, we present all the datasets comprehensively in Appendix B.

The ogbn-products dataset. This dataset is an undirected and unweighted graph, representing an
Amazon product co-purchasing network [12]. Nodes represent products sold in Amazon, and edges
between two products indicate that the products are purchased together. The graphs, target labels,
and node features are generated following Chiang et al. [17], where node features are dimensionality-
reduced bag-of-words of the product descriptions. Our contribution, when adopting the dataset in
OGB, is to resolve its critical data split issue by presenting a more realistic and challenging split (see
below).

Prediction task. The task is to predict the category of a product in a multi-class classification setup,
where the 47 top-level categories are used for target labels.

Dataset splitting. We consider a more challenging and realistic dataset splitting that differs from
the one used in Chiang et al. [17]. Instead of randomly assigning 90% of the nodes for training and
10% of the nodes for testing (without a validation set), we use the sales ranking (popularity) to split
nodes into training/validation/test sets. Specifically, we sort the products according to their sales
ranking and use the top 8% for training, next top 2% for validation, and the rest for testing. This is a
more challenging splitting procedure that closely matches the real-world application where manual
labeling is prioritized to important nodes in the network and ML models are subsequently used to
make predictions on less important ones.

Baselines. We perform an extensive empirical study, including the representative node embedding
model, GNNs, and as well as recently-introduced mini-batch-based GNN models, as baselines.

e MLP: A multilayer perceptron (MLP) predictor that uses the given raw node features directly as
input. Graph structure information is not utilized.

e NODE2VEC: An MLP predictor that uses as input the concatenation of the raw node features
and NODE2VEC embeddings [35, 66].

e Full-batch GNNs: GCN [49] and GRAPHSAGE (mean pool) [37].

e Mini-batch training of GNNs based on NEIGHBORSAMPLING [37], CLUSTERGCN [17] and
GRAPHSAINT [103].

Note that the full-batch GCN and GRAPHSAGE are GPU memory-intensive for large graphs as
all the node embeddings need to loaded onto GPU all at once. The mini-batch training techniques,
NEIGHBORSAMPLING, CLUSTERGCN, and GRAPHSAINT, do not suffer from this issue and are
more GPU memory-efficient. All models are trained with a fixed hidden dimensionality of 256, a
fixed number of three layers, and a tuned dropout ratio € {0.0, 0.5}.

Results and discussion. Our benchmarking results in Table 3 show that the highest test performances
are attained by GNNs, while the MLP baseline that solely relies on a product’s description is not
sufficient for accurately predicting the category of a product. Even with the GNNs, we observe
the huge generalization gap'!, which can be explained by differing node distributions across the
splits, as visualized in Figure 3. This is in stark contrast with the conventional random split used by
Chiang et al. [17]. Even with the same split ratio (8/2/88), we find GRAPHS AGE already achieves
88.2040.08% test accuracy with only ~ 1 percentage points of generalization gap. These results
indicate that the realistic split is much more challenging than the random split and offer an important
opportunity to improve out-of-distribution generalization.

"Defined by the difference between training and test accuracy.

Table 3: Results for ogbn-products. ® Train @ Validation Test
TRequires a GPU with 33GB of memory.

Accuracy (%)
Method Training Validation Test et
MLP 84.03+093 75.54+014 61.06-008 :
NODE2VEC 93.39+0.10 90.32+006 72.49+0.10
GCNfT 93.56+0.09 92.00+0.03 75.64+021
GRAPHSAGE' 94.09+005 92.24+007 78.50+0.14
NEIGHBORSAMPLING 92.96+007 91.70+0.09 78.70+0.36 Figure 3: T-SNE visualization of
CLUSTERGCN 93.75+0.13 92.12+009 78.97+033 training/validation/test nodes in
GRAPHSAINT 92.71+0.14 91.62+0.08 79.08+0.24

ogbn-products.

Table 3 also shows that the recent mini-batch-based GNNs? give promising results, even slightly
outperforming the full-batch version of GRAPHS AGE that does not fit into ordinary GPU memory.
The improved performance can be attributed to the regularization effects of mini-batch noise and
edge dropout [71]. Nevertheless, the mini-batch GNNs have been much less explored compared to
the full-batch GNNs due to the prevalent use of the extremely small benchmark datasets such as
CoRA and CITESEER. As a result, many important questions remain open, e.g., what mini-batch
training methods can induce the best regularization effect, and how to allow mini-batch training for
advanced GNNs that rely on large receptive-field sizes [50, 54, 93], since the current mini-batch
methods are rather limited by the number of nodes from which they aggregate information. Overall,
ogbn-products is an ideal benchmark dataset for the field to move beyond the extremely small
graph datasets and to catalyze the development of scalable mini-batch-based graph models with
improved out-of-distribution prediction accuracy.

In Appendix B.4, we present ogbn—-papers100M, which is even larger and is meant to push the
scalability to gigantic web-scale graphs in the real world.

4 OGB Link Property Prediction

We currently provide 6 datasets, adopted from diverse application domains, for predicting the
properties of links (pairs of nodes). Specifically, ogbl—ppa is a protein-protein association network
[80], ogbl-collab is an author collaboration network [87], ogb1-ddi is a drug-drug interaction
network [90], ogbl-citation is a paper citation network [87], ogbl-biokg is a heterogeneous
knowledge graph compiled from a large number of biomedical repositories, and ogbl-wikikg is
a Wikidata knowledge graph [85]. Below we present the ogbl-wikikg dataset and its baseline
experiments. Due to space constraints, we present all the datasets comprehensively in Appendix C.

The ogbl-wikikg dataset. This dataset is a Knowledge Graph (KG) extracted from the Wikidata

knowledge base [85]. It contains a set of triplet edges (head, relation, tail), capturing the different
types of relations between entities in the world, e.g., Canada CHMZER Hinton. We retrieve all the

relational statements in Wikidata and filter out rare entities. Our KG contains 2,500,604 entities and
535 relation types.

Prediction task. The task is to predict new triplet edges given the training edges. The evaluation
metric follows the standard filtered metric widely used in KGs [14, 78, 81, 96]. Specifically, we
corrupt each test triplet edge by replacing its head or tail with randomly-sampled 1,000 negative
entities (500 for head and 500 for tail), while ensuring the resulting triplets do not appear in the KG.
The goal is to rank the true head (or tail) entities higher than the negative entities, which is measured
by the Mean Reciprocal Rank (MRR).

Dataset splitting. We split the triplets according to time, simulating a realistic KG completion
scenario that aims to fill in missing triplets that are not present at a certain timestamp. Specifically,
we downloaded Wikidata at three different time stamps3 (May, August, and November of 2015), and
construct three KGs, where we only retain entities and relation types that appear in the earliest May

>The GRAPHS AGE architecture is used for neighbor aggregation.
*Available at https://archive.org/search.php?query=creator$3A%22Wikidata+
editors%22

Table 4: Results for ogbl-wikikg.
fRequires a GPU with 48GB of memory.

Method . MRR .
Training (Unfiltered) Validation (Filtered) Test (Filtered)
TRANSE 0.3326-£0.0041 0.2314-+0.0035 0.2535-0.0036
DISTMULT 0.4131-0.0057 0.3142-+0.0066 0.3434-+0.0079
CoMPLEX 0.4605-£0.0020 0.3612-+0.0063 0.3877-+0.0051
ROTATE 0.3469-:0.0055 0.2366-£0.0043 0.2681+0.0047
TRANSE (6 xdim)T 0.6491+0.0022 0.4587-+0.0031 0.4536-+0.0028
DISTMULT (6 xdim)? 0.4339-+0.0011 0.3403+0.0009 0.3612+0.0030
COMPLEX (6xdim)f 0.4712-+0.0045 0.3787-+0.0036 0.4028-:0.0033
ROTATE (6 xdim)' 0.6084-+0.0025 0.3613-£0.0031 0.3626-£0.0041

KG. We use the triplets in the May KG for training, and use the additional triplets in the August and
November KGs for validation and test, respectively. Note that our dataset split is different from the
existing Wikidata KG dataset that adopts a conventional random split [89], which does not reflect the
practical usage of KG completion.

Baselines. We consider the four representative KG embedding models: TRANSE [14], DISTMULT
[96], COMPLEX [81], and ROTATE [78]. For KGs with many entities and relations, the embedding
dimensionality can be limited by the available GPU memory, as the embeddings need to be loaded
into GPU all at once. We therefore choose the dimensionality such that training can be performed on
a fixed-budget of GPU memory. Our training procedure follows Sun et al. [78], where we perform
negative sampling and use margin-based logistic loss for the loss function.

Results and discussion. Our benchmark results are provided in Table 4, where the upper-half
baselines are implemented on a single commodity GPU with 11GB memory, while the bottom-half
baselines are implemented on a high-end GPU with 48GB memory.* Training MRR in Table 4 is an
unfiltered metric,’ as filtering is computationally expensive for the large number of training triplets.

First, we see from the upper-half of Table 4 that when the limited embedding dimensionality is used,
CoMPLEX performs the best among the four baselines. With the increased dimensionality, all four
models are able to achieve higher MRR on training, validation and test sets, as seen from the bottom-
half of Table 4. This suggests the importance of using a sufficient large embedding dimensionality
to achieve good performance in this dataset. Interestingly, although TRANSE performs the worst
with the limited dimensionality, it obtains the best performance with the increased dimensionality.
Nevertheless, the extremely low test MRR® suggests that our realistic KG completion dataset is highly
non-trivial. It presents a realistic generalization challenge of discovering new triplets based on existing
ones, which necessitates the development of KG models with more robust and generalizable reasoning
capability. Furthermore, this dataset presents an important challenge of effectively scaling embedding
models to large KGs—naively training KG embedding models with reasonable dimensionality
would require a high-end GPU, which is extremely costly and not scalable to even larger KGs.
A promising approach to improve scalability is to distribute training across multiple commodity
GPUs [52, 105, 106]. A different approach is to share parameters across entities and relations, so that
a smaller number of embedding parameters need to be put onto the GPU memory at once.

*Given a fixed 11GB GPU memory budget, we adopt 100-dimension embeddings for DISTMULT and
TRANSE. Since ROTATE and COMPLEX require the entity embeddings with the real and imaginary parts, we
train these two models with the dimensionality of 50 for each part. On the other hand, on the high-end GPU with
48GB memory, we are able to train all the models with 6 x larger embedding dimensionality.

5This means that the training MRR is computed by ranking against randomly-selected negative entities
without filtering out triplets that appear in KG. The unfiltered metric has the systematic bias of being smaller
than the filtered counterpart (computed by ranking against “true” negative entities, i.e., the resulting triplets do
not appear in the KG) [14].

SNote that our test MRR on ogbl-wikikg is computed using only 500 negative entities per triplet, which
is much less than the number of negative entities used to compute MRR 1in the existing KG datasets, such
as FB15K and FB15K-237 (around 15,000 negative entities). Nevertheless, ROTATE gives either lower or
comparable test MRR on ogbl-wikikg compared to FB15K and FB15K-237 [78].

Table 5: Results for ogbg-molhiv. Table 6: Results for ogbg-molpcba.

Add. Virt. ROC-AUC (%) Add. Virt. AP (%)
Method Feat. Node Training Validation Test Method Feat. Node Training Validation Test
X V' 8865:101 83.73:078 74.18+12 X V' 36251071 23.88+022 22.91+037
GCN 4 X 88.65+12.19 82.04+141 76.06+097 GCN v X 28041058 20.59+033 20.20+024
4 V' 90.07+469 83.844091 75.99+1.19 v V' 38.25:050 24.951042 24.241034
X v 93.891206 84.104105 75.20+130 X V' 45704061 27.54+025 26.61+0.17
GIN 4 X 88.641254 82.324000 75.58:+1.40 GIN v X 37.05+031 23.05+027 22.66+028
4 V' 92731350 84.79+068 77.07+1.49 v V' 46.96+057 27.98+025 27.03+£023

5 OGB Graph Property Prediction

We currently provide 4 datasets, adopted from 3 distinct application domains, for predicting the
properties of entire graphs or subgraphs. Specifically, ogbg-molhiv and ogbg-molpcba are
molecular graphs originally curated by Wu et al. [92], ogbg-ppa is a set of protein-protein asso-
ciation subgraphs [108], and ogbg-code is a collection of ASTs of source code [43]. Below we
present the ogbg-molhiv and ogbg-molpcba datasets and their baseline experiments. Due to
space constraints, we present all the datasets comprehensively in Appendix D.

The ogbg-molhiv and ogbg-molpcba datasets. These datasets are two molecular property
prediction datasets adopted from the MOLECULENET [92], and are among the largest of the MOLECU-
LENET datasets. Besides the two main molecule datasets, we also provide the 10 other MOLECU-
LENET datasets, which are summarized and benchmarked in Appendix F. These datasets can be used
to stress-test molecule-specific methods [46, 97] and transfer learning [40]. All the molecules are
pre-processed using RDKIT [51]. Each graph represents a molecule, where nodes are atoms, and
edges are chemical bonds. Input node features are 9-dimensional, containing atomic number and
chirality, as well as other additional atom features such as formal charge and whether the atom is
in the ring. Input edge features are 3-dimensional, containing bond type, bond stereochemistry as
well as an additional bond feature indicating whether the bond is conjugated. Note that the above
additional features are not needed to uniquely identify molecules, and are not adopted in the previous
work [40, 44]. In the experiments, we perform an ablation study on the molecule features and find
that including the additional features improves generalization performance.

Prediction task. The task is to predict the target molecular properties as accurately as possible,
where the molecular properties are cast as binary labels, e.g., whether a molecule inhibits HIV
virus replication or not. For evaluation metric, we closely follow Wu et al. [92]. Specifically, for
ogbg-molhiv, we use ROC-AUC for evaluation. For ogbg-molpcba, as the class balance is
extremely skewed (only 1.4% of data is positive) and the dataset contains multiple classification tasks,
we use the Average Precision (AP) averaged over the tasks as the evaluation metric.

Dataset splitting. We adopt the scaffold splitting procedure that splits the molecules based on their
two-dimensional structural frameworks. The scaffold splitting attempts to separate structurally differ-
ent molecules into different subsets, which provides a more realistic estimate of model performance
in prospective experimental settings. The scaffold splitting was originally proposed by Wu et al. [92]
and has been adopted by the follow-up works [40, 44, 70, 97]; however, the precise implementation
differs significantly across works, making their results not directly comparable to each other. In OGB,
we aim to standardize the scaffold split by adopting its most challenging version where test molecules
are maximally diverse.

Baselines. We consider the two representative GNNs: GCN [49] and GIN [94]. We additionally
consider augmenting the models with VIRTUAL NODES, where message-passing is performed over
an augmented graph with an additional node that is connected to all nodes in the original graph [34,
44, 55]. We use 5-layer GNNSs, average graph pooling, a hidden dimensionality of 300, and a tuned
dropout ratio of {0, 0.5}. To include edge features, we follow Hu et al. [40] and add transformed
edge features into the incoming node features.

Results and discussion. Benchmarking results are given in Tables 5 and 6. We see that GIN with
both additional features and VIRTUAL NODES provides the best performance in the two datasets.
In Appendix F, we show that even for the other MOLECULENET datasets, the additional features

consistently improve generalization performance. In OGB, we therefore include the additional
node/edge features in our molecular graphs.

We further report the performance on the random splitting, keeping the split ratio the same as the
scaffold splitting. We find the random split to be much easier than scaffold split. On random splits
of ogbg-molhiv and ogbg-molpcba, the best GIN achieves the ROC-AUC of 82.73+2.02%
(5.66 percentage points higher than scaffold) and AP of 34.40+0.90% (7.37 percentage points higher
than scaffold), respectively. The same trend holds true for the other MOLECULENET datasets, e.g.,
the best GIN performance on the random split of ogbg-moltox21 is 86.03+1.37%, which is 8.46
percentage points higher than that of the best GIN for the scaffold split (77.57+0.62% ROC-AUC).
These results highlight the challenges of the scaffold split compared to the random split, and opens up
a fruitful research opportunity to increase the out-of-distribution generalization capability of GNNss.

6 Conclusions

To enable scalable, robust, and reproducible graph ML research, we introduce the Open Graph
Benchmark (OGB)—a diverse set of realistic graph datasets in terms of scales, domains, and task
categories. We employ realistic data splits for the given datasets, driven by application-specific
use cases. Through extensive benchmark experiments, we highlight that the OGB datasets present
significant challenges for ML models to handle large-scale graphs and make accurate prediction
under the realistic data splitting scenarios. Altogether, OGB presents fruitful opportunities for future
research to push the frontier of graph ML.

OGB is an open-source initiative that provides ready-to-use datasets as well as their data loaders,
evaluation scripts, and public leaderboards. We hereby invite the community to develop and contribute
state-of-the-art graph ML models at https://ogb.stanford.edu.

Broader Impact

We expect the Open Graph Benchmark (OGB) to have a significant impact on fundamental graph ML
research as well as many of its application domains. We also discuss a potential negative impact.

Impact on Graph ML Research

Historically, high-quality and large-scale datasets have played significant roles in advancing re-
search fields (e.g., IMAGENET [23], MS-COCO [58], GLUE benchmark [86], SQUAD [69]). The
amount of impact these datasets have brought is enormous, leading to the significant methodological
advancements in the respective fields [24, 39].

We expect OGB to be a standard benchmark in graph ML, contributing to the significant advancements
of the field. To this end, our datasets are carefully designed to address the two major drawbacks
of current graph benchmark datasets, namely (1) small dataset sizes, and (2) unrealistic random
splits. Overall, OGB provides a set of diverse, realistic, and large-scale graph datasets to facilitate the
development of graph ML models that are scalable and generalizable under realistic data splits, both
of which are crucial in practice.

In addition, OGB aims to address the fundamental problem of reproducibility in graph ML research.
We promote the reproducibility by standardizing the research pipeline, as illustrated in Figure 2, and
provide official leaderboards, for which public code is mandatory to make a submission. Altogether,
OGB incentivises researchers to release their code, and allows researchers to easily compare different
models under equal settings.

Impact on Diverse Application Domains

In OGB, we have curated graph datasets that are relevant to a variety of practical and realistic appli-
cation domains, including science (e.g., biology, chemistry), knowledge graphs, academic graphs,
and source code ASTs. For example, we provided a biomedical knowledge graph (ogbl-biokg),
where algorithmic advances on this dataset can be immediately translated into solutions for prob-
lems in precision medicine. In another example, we provide a dataset of 450K molecular graphs
(ogbg-molpcba) that have direct implications for drug discovery. In academic domains, we

prepared a variety of prediction tasks (e.g., recommending missing citations as well as future collabo-
rations, predicting paper categories and venues, etc.), solving which can lead to improved scholarly
efficiency and to better organization of academic knowledge. In technological domains, OGB includes
a dataset of source code snippets (ogbg—code). The development of graph ML models on this
dataset can lead to exciting applications for advanced code analysis and retrieval.

To further increase the impact of OGB, all of our datasets are mapped to real entities in the world.
For example, each node in the drug-drug interaction network (ogbl-ddi) is mapped to a unique
Drug ID in DrugBank [90], each molecule in the molecule datasets (ogbg-mol+) is mapped to a
SMILES string that uniquely identifies the molecule, and each node in the paper citation networks
(ogbn-arxiv and ogbn-papers100M) is mapped into a real research paper indexed by the
Microsoft Academic Graph [87]. Such mappings to real entities allow researchers to draw scientific
insight and to augment the graphs with external information.

Potential Negative Impact

If OGB becomes the standard de-facto benchmark for graph ML, one potential negative impact is that
OGB might contribute to narrowing down the scope of future papers to the tasks and dataset types
that have been included in OGB. In order to avoid such a negative impact, we will regularly update
our datasets and tasks, based on the input from the community.

Acknowledgements

We thank Adrijan Bradaschia and Rok Sosic for their help in setting up the server and website. We
also thank Emma Pierson and Shigeru Maya for their suggestions on the paper writing. Finally, we
thank the entire community of graph ML for providing valuable feedback to improve OGB. Weihua
Hu is supported by Funai Overseas Scholarship and Masason Foundation Fellowship. Matthias Fey
is supported by the German Research Association (DFG) within the Collaborative Research Center
SFB 876 “Providing Information by Resource-Constrained Analysis”, project A6. Marinka Zitnik is
in part supported by NSF IIS-2030459. We gratefully acknowledge the support of DARPA under
Nos. FA865018C7880 (ASED), N660011924033 (MCS); ARO under Nos. W911NF-16-1-0342
(MURI), WI911NF-16-1-0171 (DURIP); NSF under Nos. OAC-1835598 (CINES), OAC-1934578
(HDR), CCF-1918940 (Expeditions), I[IS-2030477 (RAPID); Stanford Data Science Initiative, Wu
Tsai Neurosciences Institute, Chan Zuckerberg Biohub, Amazon, Boeing, JPMoran Chase, Docomo,
Hitachi, JD.com, KDDI, NVIDIA, Dell. Jure Leskovec is a Chan Zuckerberg Biohub investigator.

References

[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for
large-scale machine learning. In Symposium on Operating Systems Design and Implementation
OSDI), pages 265-283, 2016.

[2] Miltiadis Allamanis. The adverse effects of code duplication in machine learning models of
code. In Proceedings of the 2019 ACM SIGPLAN International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software, pages 143—-153, 2019.

[3] Miltiadis Allamanis, Hao Peng, and Charles Sutton. A convolutional attention network for
extreme summarization of source code. In International conference on machine learning,
pages 2091-2100, 2016.

[4] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. Learning to represent
programs with graphs. arXiv preprint arXiv:1711.00740, 2017.

[5] Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu, and Charles Sutton. A survey of
machine learning for big code and naturalness. ACM Computing Surveys (CSUR), 51(4):1-37,
2018.

[6] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. code2seq: Generating sequences from
structured representations of code. arXiv preprint arXiv:1808.01400, 2018.

10

(7]

(8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

(20]

(21]

[22]

(23]

(24]

[25]

Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. code2vec: Learning distributed
representations of code. Proceedings of the ACM on Programming Languages, 3(POPL):1-29,
2019.

Jirgen Bajorath. Integration of virtual and high-throughput screening. Nature Reviews Drug
Discovery, 1(11):882-894, 2002.

Albert-Laszlo Barabasi and Zoltan N Oltvai. Network biology: understanding the cell’s
functional organization. Nature reviews genetics, 5(2):101-113, 2004.

Jon Barker, Ricard Marxer, Emmanuel Vincent, and Shinji Watanabe. The third ‘chime’speech
separation and recognition challenge: Dataset, task and baselines. In 2015 IEEE Workshop on
Automatic Speech Recognition and Understanding (ASRU), pages 504-511. IEEE, 2015.

Rianne van den Berg, Thomas N. Kipf, and Max Welling. Graph convolutional matrix
completion. arXiv preprint arXiv:1706.02263, 2017.

K. Bhatia, K. Dahiya, H. Jain, A. Mittal, Y. Prabhu, and M. Varma. The extreme classifica-
tion repository: Multi-label datasets and code, 2016. URL http://manikvarma.org/
downloads/XC/XMLRepository.html.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Freebase: a
collaboratively created graph database for structuring human knowledge. In Special Interest
Group on Management of Data (SIGMOD), pages 1247-1250. AcM, 2008.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana
Yakhnenko. Translating embeddings for modeling multi-relational data. In Advances in
Neural Information Processing Systems (NeurIPS), pages 2787-2795, 2013.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst.
Geometric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34
(4):18-42, 2017.

Tiangi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing Xu,
Chiyuan Zhang, and Zheng Zhang. Mxnet: A flexible and efficient machine learning library
for heterogeneous distributed systems. In NeurIPS workshop on Machine Learning Systems,
2015.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-
GCN: An efficient algorithm for training deep and large graph convolutional networks. In
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), pages 257-266,
2019.

Gene Ontology Consortium. The gene ontology resource: 20 years and still going strong.
Nucleic acids research, 47(D1):D330-D338, 2018.

Lenore Cowen, Trey Ideker, Benjamin J Raphael, and Roded Sharan. Network propagation: a
universal amplifier of genetic associations. Nature Reviews Genetics, 18(9):551, 2017.

Allan Peter Davis, Cynthia J Grondin, Robin J Johnson, Daniela Sciaky, Roy McMorran,
Jolene Wiegers, Thomas C Wiegers, and Carolyn J Mattingly. The comparative toxicogenomics
database: update 2019. Nucleic Acids Research, 47(D1):D948-D954, 2019.

Jesse Davis and Mark Goadrich. The relationship between precision-recall and roc curves. In
International Conference on Machine Learning (ICML), pages 233-240, 2006.

David De Juan, Florencio Pazos, and Alfonso Valencia. Emerging methods in protein co-
evolution. Nature Reviews Genetics, 14(4):249-261, 2013.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In cvpr, pages 248-255. Ieee, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

Elizabeth Dinella, Hanjun Dai, Ziyang Li, Mayur Naik, Le Song, and Ke Wang. Hoppity:
Learning graph transformations to detect and fix bugs in programs. In International Conference
on Learning Representations (ICLR), 2020.

11

[26] Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. metapath2vec: Scalable represen-
tation learning for heterogeneous networks. In ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (KDD), pages 135-144, 2017.

[27] Yuxiao Dong, Hao Ma, Zhihong Shen, and Kuansan Wang. A century of science: Globalization
of scientific collaborations, citations, and innovations. In ACM SIGKDD Conference on
Knowledge Discovery and Data Mining (KDD), pages 1437-1446. ACM, 2017.

[28] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel,
Alan Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning
molecular fingerprints. In Advances in Neural Information Processing Systems (NeurIPS),
pages 2224-2232, 2015.

[29] Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and Xavier
Bresson. Benchmarking graph neural networks. arXiv preprint arXiv:2003.00982, 2020.

[30] David Easley, Jon Kleinberg, et al. Networks, crowds, and markets, volume 8. Cambridge
university press Cambridge, 2010.

[31] Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair comparison of
graph neural networks for graph classification. arXiv preprint arXiv:1912.09893, 2019.

[32] Matthias Feurer, Jan N van Rijn, Arlind Kadra, Pieter Gijsbers, Neeratyoy Mallik, Sahithya
Ravi, Andreas Miiller, Joaquin Vanschoren, and Frank Hutter. Openml-python: an extensible
python api for openml. arXiv preprint arXiv:1911.02490, 2019.

[33] M. Fey and J. E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

[34] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl.
Neural message passing for quantum chemistry. In International Conference on Machine
Learning (ICML), pages 1273-1272, 2017.

[35] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), pages 855-864.
ACM, 2016.

[36] Emre Guney. Reproducible drug repurposing: When similarity does not suffice. In Pacific
Symposium on Biocomputing, pages 132—143,2017.

[37] William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Advances in Neural Information Processing Systems (NeurIPS), pages 1025-1035,
2017.

[38] William L Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs:
Methods and applications. IEEE Data Engineering Bulletin, 40(3):52-74, 2017.

[39] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
770-778, 2016.

[40] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. In International Conference on
Learning Representations (ICLR), 2020.

[41] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph transformer.
In Proceedings of the International World Wide Web Conference (WWW), 2020.

[42] Laura A Hug, Brett J Baker, Karthik Anantharaman, Christopher T Brown, Alexander J Probst,
Cindy J Castelle, Cristina N Butterfield, Alex W Hernsdorf, Yuki Amano, Kotaro Ise, et al. A
new view of the tree of life. Nature Microbiology, 1(5):16048, 2016.

[43] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc Brockschmidt.
Codesearchnet challenge: Evaluating the state of semantic code search. arXiv preprint
arXiv:1909.09436, 2019.

[44] Katsuhiko Ishiguro, Shin-ichi Maeda, and Masanori Koyama. Graph warp module: An auxil-
iary module for boosting the power of graph neural networks. arXiv preprint arXiv:1902.01020,
2019.

[45] S.Ivanov, S. Sviridov, and E. Burnaev. Understanding isomorphism bias in graph data sets.
arXiv preprint arXiv:1910.12091, 2019.

12

[46] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Hierarchical generation of molecular
graphs using structural motifs. arXiv preprint arXiv:2002.03230, 2020.

[47] Kristian Kersting, Nils M Kriege, Christopher Morris, Petra Mutzel, and Marion Neumann.
Benchmark data sets for graph kernels, 2020. URL http://www.graphlearning.io/.

[48] Thomas N. Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016.

[49] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations (ICLR), 2017.

[50] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Giinnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. In International Conference on Learning
Representations (ICLR), 2019.

[51] Greg Landrum et al. Rdkit: Open-source cheminformatics, 2006.

[52] Adam Lerer, Ledell Wu, Jiajun Shen, Timothee Lacroix, Luca Wehrstedt, Abhijit Bose, and
Alex Peysakhovich. Pytorch-biggraph: A large-scale graph embedding system. arXiv preprint
arXiv:1903.12287, 2019.

[53] Jure Leskovec and Rok Sosi€. Snap: A general-purpose network analysis and graph-mining
library. ACM Transactions on Intelligent Systems and Technology (TIST), 8(1):1-20, 2016.

[54] Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. Deepgcns: Can gcns go as
deep as cnns? In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 9267-9276, 2019.

[55] Junying Li, Deng Cai, and Xiaofei He. Learning graph-level representation for drug discovery.
arXiv preprint arXiv:1709.03741, 2017.

[56] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence
neural networks. In International Conference on Learning Representations (ICLR), 2016.

[57] David Liben-Nowell and Jon M. Kleinberg. The link-prediction problem for social networks.
Journal of the Association for Information Science and Technology, 58(7):1019-1031, 2007.

[58] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollar, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In eccv,
pages 740-755. Springer, 2014.

[59] Sharon L Lohr. Sampling: design and analysis. Nelson Education, 2009.

[60] Ricardo Macarron, Martyn N Banks, Dejan Bojanic, David J Burns, Dragan A Cirovic, Tina
Garyantes, Darren VS Green, Robert P Hertzberg, William P Janzen, Jeff W Paslay, ef al.
Impact of high-throughput screening in biomedical research. Nature Reviews Drug discovery,
10(3):188-195, 2011.

[61] Noél Malod-Dognin, Kristina Ban, and Natasa Przulj. Unified alignment of protein-protein
interaction networks. Scientific Reports, 7(1):1-11, 2017.

[62] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In Advances in Neural
Information Processing Systems (NeurlPS), pages 3111-3119, 2013.

[63] Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. A review of
relational machine learning for knowledge graphs. Proceedings of the IEEE, 104(1):11-33,
2015.

[64] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: an
asr corpus based on public domain audio books. In 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 5206-5210. IEEE, 2015.

[65] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, ef al. PyTorch: An imperative
style, high-performance deep learning library. In Advances in Neural Information Processing
Systems (NeurIPS), pages 8024-8035, 2019.

[66] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social
representations. In ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD), pages 701-710. ACM, 2014.

13

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

[77]

(78]

[79]

[80]

[81]

(82]

[83]

[84]

Janet Pifiero, Juan Manuel Ramirez-Anguita, Josep Saiich-Pitarch, Francesco Ronzano, Emilio
Centeno, Ferran Sanz, and Laura I Furlong. The DisGeNET knowledge platform for disease
genomics: 2019 update. Nucleic Acids Research, 48(D1):D845-D855, 2020.

Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Chi Wang, Kuansan Wang, and Jie Tang.
Netsmf: Large-scale network embedding as sparse matrix factorization. In Proceedings of the
International World Wide Web Conference (WWW), pages 1509-1520, 2019.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+
questions for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang, and Junzhou
Huang. Grover: Self-supervised message passing transformer on large-scale molecular data.
arXiv preprint arXiv:2007.02835, 2020.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep
graph convolutional networks on node classification. In International Conference on Learning
Representations (ICLR), 2020.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and
Max Welling. Modeling relational data with graph convolutional networks. In European
Semantic Web Conference, pages 593—607. Springer, 2018.

Roded Sharan, Silpa Suthram, Ryan M Kelley, Tanja Kuhn, Scott McCuine, Peter Uetz, Taylor
Sittler, Richard M Karp, and Trey Ideker. Conserved patterns of protein interaction in multiple
species. Proceedings of the National Academy of Sciences, 102(6):1974-1979, 2005.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Giinnemann.
Pitfalls of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018.

Martin Simonovsky and Nikos Komodakis. Dynamic edge-conditioned filters in convolutional
neural networks on graphs. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3693-3702, 2017.

Koustuv Sinha, Shagun Sodhani, Joelle Pineau, and William L Hamilton. Evaluating logical
generalization in graph neural networks. arXiv preprint arXiv:2003.06560, 2020.

Jonathan M Stokes, Kevin Yang, Kyle Swanson, Wengong Jin, Andres Cubillos-Ruiz, Nina M
Donghia, Craig R MacNair, Shawn French, Lindsey A Carfrae, Zohar Bloom-Ackerman, ef al.
A deep learning approach to antibiotic discovery. Cell, 180(4):688-702, 2020.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph
embedding by relational rotation in complex space. In International Conference on Learning
Representations (ICLR), 2019.

Damian Szklarczyk, Alberto Santos, Christian von Mering, Lars Juhl Jensen, Peer Bork, and
Michael Kuhn. STITCH 5: augmenting protein—chemical interaction networks with tissue and
affinity data. Nucleic Acids Research, 44(D1):D380-D384, 2016.

Damian Szklarczyk, Annika L. Gable, David Lyon, Alexander Junge, Stefan Wyder, Jaime
Huerta-Cepas, Milan Simonovic, Nadezhda T Doncheva, John H Morris, Peer Bork, ef al.
STRING vl11: protein—protein association networks with increased coverage, supporting
functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47(D1):
D607-D613, 2019.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Eric Gaussier, and Guillaume Bouchard.
Complex embeddings for simple link prediction. In International Conference on Machine
Learning (ICML), pages 2071-2080, 2016.

Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. Openml: Networked
science in machine learning. SIGKDD Explorations, 15(2):49-60, 2013. doi: 10.1145/
2641190.2641198. URL http://doi.acm.org/10.1145/2641190.2641198.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and
Yoshua Bengio. Graph attention networks. In Infernational Conference on Learning Represen-
tations (ICLR), 2018.

Petar Velickovi¢, William Fedus, William L Hamilton, Pietro Lio, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. In International Conference on Learning Representations (ICLR),
2019.

14

[85] Denny Vrandeci¢ and Markus Krotzsch. Wikidata: a free collaborative knowledgebase.
Communications of the ACM, 57(10):78-85, 2014.

[86] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

[87] Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong, and Anshul
Kanakia. Microsoft academic graph: When experts are not enough. Quantitative Science
Studies, 1(1):396-413, 2020.

[88] Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li, Jinjing Zhou,
Qi Huang, Chao Ma, Ziyue Huang, Qipeng Guo, Hao Zhang, Haibin Lin, Junbo Zhao,
Jinyang Li, Alexander J Smola, and Zheng Zhang. Deep graph library: Towards efficient and
scalable deep learning on graphs. ICLR Workshop on Representation Learning on Graphs and
Manifolds, 2019. URL https://arxiv.org/abs/1909.01315.

[89] Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhiyuan Liu, Juanzi Li, and Jian Tang. Kepler:
A unified model for knowledge embedding and pre-trained language representation. arXiv
preprint arXiv:1911.06136, 2019.

[90] David S Wishart, Yannick D Feunang, An C Guo, Elvis J Lo, Ana Marcu, Jason R Grant,
Tanvir Sajed, Daniel Johnson, Carin Li, Zinat Sayeeda, et al. DrugBank 5.0: a major update to
the DrugBank database for 2018. Nucleic Acids Research, 46(D1):D1074-D1082, 2018.

[91] Felix Wu, Tianyi Zhang, Amauri Holanda de Souza Jr, Christopher Fifty, Tao Yu, and Kilian Q
Weinberger. Simplifying graph convolutional networks. In International Conference on
Machine Learning (ICML), 2019.

[92] Zhengin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine
learning. Chemical science, 9(2):513-530, 2018.

[93] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and
Stefanie Jegelka. Representation learning on graphs with jumping knowledge networks. In
International Conference on Machine Learning (ICML), pages 5453-5462, 2018.

[94] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations (ICLR), 2019.

[95] Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In ACM SIGKDD Conference
on Knowledge Discovery and Data Mining (KDD), pages 1365-1374. ACM, 2015.

[96] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities
and relations for learning and inference in knowledge bases. In International Conference on
Learning Representations (ICLR), 2015.

[97] Kevin Yang, Kyle Swanson, Wengong Jin, Connor Coley, Philipp Eiden, Hua Gao, Angel
Guzman-Perez, Timothy Hopper, Brian Kelley, Miriam Mathea, et al. Analyzing learned
molecular representations for property prediction. Journal of chemical information and
modeling, 59(8):3370-3388, 2019.

[98] Zhilin Yang, William W Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised
learning with graph embeddings. In International Conference on Machine Learning (ICML),
pages 4048, 2016.

[99] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure
Leskovec. Graph convolutional neural networks for web-scale recommender systems. In
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), pages 974-983,
2018.

[100] Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L Hamilton, and Jure
Leskovec. Hierarchical graph representation learning with differentiable pooling. In Advances
in Neural Information Processing Systems (NeurIPS), 2018.

[101] Jiaxuan You, Rex Ying, and Jure Leskovec. Position-aware graph neural networks. In
International Conference on Machine Learning (ICML), 2019.

[102] David Younger, Stephanie Berger, David Baker, and Eric Klavins. High-throughput character-
ization of protein—protein interactions by reprogramming yeast mating. Proceedings of the
National Academy of Sciences, 114(46):12166-12171, 2017.

15

[103] Hanqging Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna.
GraphSaint: Graph sampling based inductive learning method. In International Conference on
Learning Representations (ICLR), 2020.

[104] Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. In Advances
in Neural Information Processing Systems (NeurIPS), pages 5165-5175, 2018.

[105] Da Zheng, Xiang Song, Chao Ma, Zeyuan Tan, Zihao Ye, Jin Dong, Hao Xiong, Zheng Zhang,
and George Karypis. Dgl-ke: Training knowledge graph embeddings at scale. arXiv preprint
arXiv:2004.08532, 2020.

[106] Zhaocheng Zhu, Shizhen Xu, Jian Tang, and Meng Qu. Graphvite: A high-performance
cpu-gpu hybrid system for node embedding. In Proceedings of the International World Wide
Web Conference (WWW), pages 2494-2504, 2019.

[107] Marinka Zitnik, Monica Agrawal, and Jure Leskovec. Modeling polypharmacy side effects
with graph convolutional networks. Bioinformatics, 34(13):457-466, 2018.

[108] Marinka Zitnik, Marcus W Feldman, Jure Leskovec, et al. Evolution of resilience in protein
interactomes across the tree of life. Proceedings of the National Academy of Sciences, 116
(10):4426-4433, 2019.

[109] Xu Zou, Qiuye Jia, Jianwei Zhang, Chang Zhou, Zijun Yao, Hongxia Yang, and Jie Tang.
Dimensional reweighting graph convolution networks, 2020. URL https://openreview.
net/forum?id=SJeLO34KwS.

16

