Copar et al. BioData Mining (2017) 10:41

DOI 10.1186/513040-017-0160-6 BioData I\/Ilnlng

RESEARCH Open Access

Scalable non-negative matrix @) e
tri-factorization

Andrej Copar'”, Marinka Zitnik'? and Blaz Zupan'?>

*Correspondence:
andrej.copar@fri.uni-j.si Abstract

1
Faculty of Computerand Background: Matrix factorization is a well established pattern discovery tool that has
Information Science, University of

Ljubljana, Ljubljana, Slovenia seen numerous applications in biomedical data analytics, such as gene expression
Fulllist of author information is co-clustering, patient stratification, and gene-disease association mining. Matrix
available at the end of the article factorization learns a latent data model that takes a data matrix and transforms it into a
latent feature space enabling generalization, noise removal and feature discovery.
However, factorization algorithms are numerically intensive, and hence there is a
pressing challenge to scale current algorithms to work with large datasets. Our focus in
this paper is matrix tri-factorization, a popular method that is not limited by the
assumption of standard matrix factorization about data residing in one latent space.
Matrix tri-factorization solves this by inferring a separate latent space for each
dimension in a data matrix, and a latent mapping of interactions between the inferred
spaces, making the approach particularly suitable for biomedical data mining.

Results: We developed a block-wise approach for latent factor learning in matrix
tri-factorization. The approach partitions a data matrix into disjoint submatrices that are
treated independently and fed into a parallel factorization system. An appealing
property of the proposed approach is its mathematical equivalence with serial matrix
tri-factorization. In a study on large biomedical datasets we show that our approach
scales well on multi-processor and multi-GPU architectures. On a four-GPU system we
demonstrate that our approach can be more than 100-times faster than its
single-processor counterpart.

Conclusions: A general approach for scaling non-negative matrix tri-factorization is
proposed. The approach is especially useful parallel matrix factorization implemented
in a multi-GPU environment. We expect the new approach will be useful in emerging
procedures for latent factor analysis, notably for data integration, where many large
data matrices need to be collectively factorized.

Keywords: Matrix factorization, Non-negative matrix tri-factorization, Non-negative
block value decomposition, Block-wise multiplication, Graphics-processing unit, Large
scale latent factor analysis

Background

Biomedical data are becoming increasingly challenging to analyze due to their sheer vol-
ume and complexity. Dimensionality reduction approaches address challenges in modern
biomedical data analytics by learning useful projections of data into a smaller, compact
and pattern-rich latent space. An especially popular dimensionality reduction approach
uses matrix factorization [1]. Numerous non-negative matrix factorization methods have

- . © The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
(B'oMed Central International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and

reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://
creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13040-017-0160-6&domain=pdf
http://orcid.org/0000-0002-5864-7056
mailto: andrej.copar@fri.uni-lj.si
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

Copoar et al. BioData Mining (2017) 10:41 Page 2 of 16

successfully been used for gene expression analysis [2—4], patient stratification [5], drug-
target interaction discovery [6], gene phenotyping [7], and magnetic resonance image
analysis [8-10].

Non-negative (two-factor) matrix factorization considers as input a data matrix X and
learns two latent factors, U and V, such that their product UV approximates X, X ~ UV,
under some criterion of approximation error. One class of non-negative matrix factor-
ization approaches is non-negative matrix tri-factorization, which extends a two-factor
model by introducing a third latent factor S, such that X &~ USVT [11]. This representa-
tion is more appropriate for non-square data because it explicitly models data interactions
through a latent factor S [12]. Several optimization techniques for parallel non-negative
(two-factor) matrix factorization have recently been proposed [13—15]. These techniques
first partition matrix X into blocks and then exploit the block-matrix multiplication when
learning U and V. However, such a straightforward approach does not apply to matrix tri-
factorization because, as we show in the Methods section, the learning of any block of U
and V depends on factor S.

In this paper, we develop a principled mathematical approach and an algorithmic solu-
tion to latent factor learning for non-negative matrix tri-factorization. While there exists
an initial solution to speed up the latent factor learning procedure using accelerated
matrix operations on a MapReduce cluster [16], this approach is not optimal because it
requires a specialized architecture [17]. Even more importantly, in the case of two-factor
non-negative matrix factorization, it was shown that the MapReduce-based approach
was outperformed by block-wise approaches by two orders of magnitude [18]. Block-
wise approaches also provide the means for load balancing. These related studies thus
encourage the development of a block-wise approach for matrix tri-factorization.

The paper makes the following contributions. We develop a block-wise approach for
matrix tri-factorization. The new approach enables fast factorization on concurrent sys-
tems, such as multi-processor and multi-GPU architectures. We report on two variants of
the approach: one variant for orthogonal matrix factorization [11] and the other for non-
orthogonal matrix factorization [19]. We provide implementation of the new approach for
both multi-processor and multi-GPU architectures. We evaluate the proposed approach
with respect to dataset shape and size, parallelization degree, factorization rank, and data
sparsity. In experiments on several biomedical datasets, we demonstrate that the new
approach provides substantial speedups. The speedup is most pronounced on multi-GPU
architectures, where matrix tri-factorization can be more than 100-times faster than its
serial counterpart.

Methods

We start by describing the notation, factorization model, and matrix tri-factorization
algorithm. The algorithm starts by initializing the latent factors, which are then iteratively
revised until convergence. We then introduce a block data representation and provide an
algorithm for partitioning data matrices into blocks. Finally, we develop the block-wise
latent factor update rules and present the block-wise matrix tri-factorization algorithm.

Preliminaries: non-negative matrix tri-factorization
Consider a non-negative data matrix X € R’*", where n rows typically describe data

instances and m columns provide their features. Non-negative matrix tri-factorization

Copar et al. BioData Mining (2017) 10:41 Page 30of 16

(NMTF) learns a decomposition of X into three latent factors U € RZX k ,S € Rlﬂ X]Q, and

Ve fob by minimizing the reconstruction error F(U,S, V) = | X — USVT ||12:m [20, 21].
Columns in factors U and V are latent vectors and provide the basis of the vector space
into which the data (columns and rows of X, respectively) are projected. Factorization
ranks ki, ko < min(m, n) are model parameters that specify the number of latent vectors.
Reconstruction error is typically minimized using the multiplicative update rules [1].
The rules are derived by computing the gradient of the reconstruction error F with
respect to model parameters U, S, and V and by solving the gradient equations for the
model parameters. This procedure results in the following set of update rules [19]:

xvsT

U< Uo Gsvivst (1)
xTus

V<«<Vo 7VSTUTUS (2)
ulxv

§ < 8o grusviy ®

where o represents the element-wise product and the division is performed element-
wise. The matrix tri-factorization algorithm starts by initializing latent factors using
small random values and then iteratively applies the update rules in Egs. (1-3) until
convergence [1].

An often-desired variant [11] of matrix tri-factorization imposes orthogonality con-
straints on the latent vectors. Orthogonality helps in data interpretation because latent
vectors are independent of each other and can thus be associated with a particular com-
bination of input features (for U) or input data instances (for V) [22, 23]. The objective
function of orthogonal matrix tri-factorization is F(U, S, V) = || X — UsvT ||12:m, under the
constraint that UTU = I and VTV = I, where I is an identity matrix. Following a similar
procedure of gradient computation as described above, we arrive at the following update

rules for orthogonal matrix tri-factorization [11]:

Block-wise multiplicative update rules

We present a block-wise formulation of multiplicative update rules for NMTF. We par-
tition the input data X into N x M blocks, X®), where i € {0,1,...,N — 1} and
j € {0,1,...,M — 1}. Conversely, latent factor U is row-partitioned into N blocks, and
V is column-partitioned into M blocks. Figure 1 shows an example where matrix X is
row-partitioned into N = 3 blocks and column-partitioned into M = 2 blocks.

Copoar et al. BioData Mining (2017) 10:41 Page 4 of 16

Xx(0,0) x(0.1) U©
X (1,0) X @D ~ U X S X v ymr
X (20 P U®

Fig. 1 Bock-wise partitioning of data matrix X using a 3 x 2 configuration. Latent factor U is divided into
three blocks, U, and latent factor V9 is divided into two blocks. The remaining latent factor S is not
partitioned into blocks

Using this block-wise data representation we reformulate the multiplicative update
rules from Egs. (1-3) as follows:

Z}, X @) (V(/)ST)

U® U, vy, (s ((v</‘>)T) (Vo) sT)) 7)

VO V0 o X ()" u0)s (8)
VOST Y, ((Uu‘))T U(i)) S

e DR ()

Y, ((Uu))T U<i>) sy, ((V@)T V(/))
where i and j denote i-th row and j-th column matrix block, respectively. Notice that our
block partitioning scheme and update rules in Egs. (7-9) preserve all properties of factor-
izing a non-partitioned matrix X. That is, the result of block-wise matrix tri-factorization
is identical to the result returned by non-partitioned matrix tri-factorization as pro-
posed by Long et al. [19]. For example, consider an update for factor U in Eq. (1) and
its block-wise variant in Eq. (7). To show that these two update rules are equivalent, we
need to check that the values in U® are identical to the values of U at corresponding
positions. Notice that division in both updates is element-wise; hence, we can indepen-
dently check equivalency of numerator and denominator. For example, the numerator in
Eq. (1) is expressed as XVST. An i-th row of this expression can be written in a block-
wise manner as Zj XEVIST, which is exactly the corresponding numerator in Eq. (7).
The equivalency of other terms of non-partitioned and block-wise updated rules are fur-
ther shown in the proof of equivalence of block-wise and non-block-wise formulation of
NMTF (Additional file 1: Section 1).

Next, we propose update rules for block-wise orthogonal matrix tri-factorization:

X (VOST
UD < u9o 2 XT” (v0s) (10)
uo 'y, (U(t)) Z}, (x(u) (V(])ST))
‘ ' v ((x@) T uo) s
VO (VO)) Z,-((X“")) Uo’))s
3 (U@ X6) v
S<So ! l<()) 12)

= ((U9) U) s, ((v0) V)

Copar et al. BioData Mining (2017) 10:41 Page 50f 16

The formulation is identical to the non-block-wise formulation originally proposed in
Ding et al. [11] and shown in Eqgs. (4—6). As before, this property is important because
it indicates the proposed block-wise update rules yield latent factors that are identical to
the non-block-wise update rules in Ding et al. [11].

Matrix partitioning

To effectively partition data matrix X and latent factors U, V and S into blocks, we distin-
guish between sparse and dense data matrices. In general, most elements of sparse data
matrices are zero, whereas most elements of dense matrices are nonzero [24]. In the case
of dense matrix X, our matrix partitioning procedure splits X into contiguous blocks of
approximately equal size. In the case of sparse matrix X, we adapt the block size such that
each block contains approximately equal number of nonzero elements. Such partitioning
leads to workload balancing when factorization is carried out in parallel.

The details of matrix partitioning are provided in Algorithm 1. The algorithm takes as
input a data matrix X and a desired block-wise configuration and returns an appropriate
partitioning of X. Additional parameters are the number of row blocks N and column
blocks M. Partitioning of latent factors U, V and S is determined by the partitioning of
matrix X (for example, see Fig. 2).

Algorithm 1 Algorithm for partitioning data matrix X into N x M block matrices.

Input: Data matrix X € R””", Number of row blocks N, Number of column blocks M.
1: z = nonzero(X)

2. r[0]=0

3: forie{l,...,N} do

4 r[i] = min(k; nonzero(X[r[i— 1]: k,:]) > iz/N)
5. end for

6: c[0]=0

7. forje{l,...,M} do

8 c¢[j]= min(k; nonzero(X[:,c[j — 1]: k]) > jz/M)
9: end for

10: fori € {0,1,...,N — 1} do

11: forje{0,1,...,M—1}do

12: X = X[r[i]: r[i 4+ 1], c[j]: c[j + 1]]
13: end for

14: end for

15: return X for all i,

Overview of block-wise matrix tri-factorization

A complete algorithm for matrix tri-factorization is given as Algorithm 2. The algorithm
starts with matrix partitioning, followed by initialization of latent factors. Initial latent
factors are then iteratively refined until convergence using the proposed block-wise mul-
tiplicative update rules. While not the subject of this paper, convergence is heuristically
determined by observing the value of the objective function or the quality of latent factors
and corresponding reconstruction error [11, 19].

Copoar et al. BioData Mining (2017) 10:41 Page 6 of 16

Xx(0,0) x01) U©

~ X S X v yr

x(1,0) x @1 [A)

Fig. 2 Block-wise partitioning of data matrix X using a 2 x 2 configuration. Latent factors U and V are each
partitioned into two blocks. The remaining latent factor S is not partitioned into blocks

Algorithm 2 Algorithm for learning latent factors in block-wise matrix tri-factorization.

Description on how to reuse the calculated latent factors is in Implementation section.

Input: Data matrixX € RT’", Factorization ranks k1, k2, Number of row blocks N, Num-
ber of column blocks M, Factorization type F € {“orthogonal”, “non-orthogonal”}

—

Partition X into N x M block matrices using Algorithm 1

Initialize U ~ 1/(0, 1) in parallel for i € {0,1,...,N — 1}

Initialize V? ~ 2/(0, 1) in parallel for j € {0,1,...,M — 1}

Initialize S ~ U/(0, 1)

repeat
Update U® using Eq. (7) if non-orthogonal or Eq. (10) if orthogonal.
Update V) using Eq. (8) if non-orthogonal or Eq. (11) if orthogonal.
Update S using Eq. (9) if non-orthogonal or Eq. (12) if orthogonal.

R AT L -

until U, V and S converge or maximum number of iterations is exceeded
return U, Vand S

—
=

Data and experimental setup

To test the benefits of the block-wise tri-factorization approach, we implemented the
approach on multi-processor and multi-GPU architecture. We then tested the implemen-
tation on several biomedical datasets. Here, we describe the datasets, evaluation approach
and implementation details.

Data
We considered the following six datasets (Table 1):

e TCGA-BRCA is an RNA-Seq gene expression dataset from the GDC databases [25].
The dataset contains expression measurements [26] of genes and gene variants from
almost 1,300 human samples.

e E-TABM-185 is a microarray gene expression dataset [27] available at ArrayExpress
database with accession number E-TABM-185 [28]. It contains gene expression
measurements from almost 6,000 human samples representing different cell and
tissue types.

e Fetus denotes the fetus-specific functional interaction network from the GIANT
database [29]. This is a network on human genes where two genes are connected if
they are specifically co-expressed in fetal tissue. The fetus-specific gene interaction
network [30] has 30 million interactions and is the sparsest network dataset in the
GIANT database.

Copar et al. BioData Mining (2017) 10:41 Page 7 of 16

Table 1 Summary of datasets

Dataset Database Rows Columns Shape Datatype Density ~ Nonzero
Fetus GIANT [29] 25,569 25,608 rectangular sparse 4.7% 31M
TCGA-BRCA GDC[25] 1,222 60,483 wide dense 100.0% 74M
E-TABM-185 ArrayExpress [28] 5,896 22,283 tall dense 100.0% 131M
Retina GIANT [29] 25,823 25,822 rectangular dense 22.0% 147M
Cochlea GIANT [29] 25,824 25,824 rectangular dense 42.0% 280M
TCGA-Methyl GDC [25] 10,181 485,577 wide dense 81.4% 3841TM

We manually categorized each data matrix into three shapes: tall datasets have substantially more rows than columns, wide
datasets vice versa, and rectangular datasets have a comparable number of rows and columns. Density denotes the fraction of
nonzero matrix elements. The number of nonzero elements in each matrix is given in the last column

® Retina denotes the retina-specific functional interaction network from the GIANT
database [29]. This is a network on human genes where two genes are connected if
they are specifically co-expressed in retinal tissue. The retina-specific gene
interaction network [31] has 147 million interactions.

e Cochlea denotes the cochlea-specific functional interaction network from the
GIANT database [29]. This is a network on human genes where two genes are
connected if they are specifically co-expressed in cochlear tissue. The
cochlea-specific gene interaction network [32] has 280 million interactions and is the
densest network dataset in the GIANT database.

e TCGA-Methyl is a DNA methylation dataset from the GDC database [25], which
contains 10,181 samples from Illumina Human Methylation 450 platform [33]. Each
sample contains methylation beta values for over 485,577 CpQ sites.

Experimental setup

We factorized each dataset on multi-processor and on multi-GPU architectures. To asses
the runtime statistics for a single iteration of factorization, factorization was run for 100
iterations, and measurements were averaged across ten runs. To test relationship between
scalability and factorization rank, we varied parameter &, such that k € {10, 20,...,100}.
For a given dataset and a given value of factorization rank, factor matrices were initialized
to the same values across different platforms.

We considered the following runtime metrics:

e Speedup was expressed as the ratio between processing time z4 for single iteration on
ta

tcru-1°

e Efficiency was expressed as a fraction of linear speedup, a speedup that assumes that

observed architecture A, and processing time tcpy/—1 on a single-CPU: s4 =

p processing units would reduce the runtime by a factor of p. For an system A, with p

processing units, we compute efficiency relative to performance of a single-unit

. . T . .
system A; on the same architecture. The formula is: Ey, = pT/; L Efficiency of
p

E4, = 1indicates a linear speedup. Communication cost pushes efficiency below this

optimal value.

Implementation
We implemented the block-wise matrix factorization in a Python module. To support
multi-GPU architecture we use PyCUDA [34]. Communication between processing units

Copoar et al. BioData Mining (2017) 10:41 Page 8 of 16

uses OpenMPI [35] with Mpi4py Python interface [36]. Matrix operations are accelerated
with OpenBLAS [37] on multi-processor architectures and CuBLAS [38] on GPUs. On
multi-processor architectures we use NumPy for dense matrices and SciPy for opera-
tions on sparse matrices. On GPUs we use Scikit-cuda [39] for dense matrix operations
and CuSPARSE [40] with Python-cuda-cffi [41] for operations on sparse matrices. Our
implementation is available online [42].

All experiments were run on a computational server with Intel Xeon E5-1650 proces-
sor and on four NVIDIA Titan X (Maxwell) GPUs, each with 12 GB of memory. Given p
processing units, we split input data matrix X into p blocks, testing various block config-
urations. Each block was passed to a processing unit that communicated the block with
other units when data for next computational steps were required. Figure 3 shows an
example of this computational and data transfer workflow for one update of matrix U on
a 2 x 2-block configuration. Notice this workflow applies to both 4-GPU and 4-processor
architecture.

Results

We here present results for non-orthogonal block-wise matrix tri-factorization. Results
for orthogonal block-wise matrix tri-factorization are qualitatively the same and are
provided in the Additional file 1.

Figures 4 and 5 show speedups achieved on multi-processing and multi-GPU architec-
tures, respectively, for each of six considered biomedical datasets. Runtime performance
was tested on architectures with one, two or four processing units. Data matrices were
partitioned according to block configurations in Table 2.

Efficiency of parallel implementation depends on dataset shape and on chosen block
configuration. Measurements illustrating this dependency are shown in Fig. 6 for multi-
processor architectures and in Fig. 7 for multi-GPU architectures.

One bottleneck of GPU-based architectures is communication overhead that occurs
when copying data between GPU boards. This overhead was also observed in our
experiments. For example, up to 50% of time needed to factorize TCGA-BRCA
dataset in a 4-GPU environment was spent for communication. On larger datasets,
however, this overhead was less pronounced. A detailed analysis is provided in
Additional file 1: Figures S6 and S8. The communication overhead on multi-
processor architectures is negligible as shown in the Additional file 1: Figures S5
and S7.

We also studied algorithm scalability with respect to factorization rank. Figure 9 shows
runtime of one iteration as a function of factorization rank value on a four-GPU archi-
tecture using a 2 x 2-block configuration. Figure 8 shows the results on a four-processor
architecture.

Using matrix partitioning approach presented in Algorithm 1, we can increase
speedup on sparse datasets that have imbalanced distribution of nonzero elements.
The approach adapts matrix block size based on the number of nonzero elements. In
Additional file 1: Figure S11 we show factorization speedup attributed to the
adaptive nature of Algorithm 1, and compared to non-adaptive partitioning
of data matrix into equally sized blocks. We observe a speedup of up to
1.4-times on multi-processor architecture, and up to 1.2-times on multi-GPU
architecture.

Copar et al. BioData Mining (2017) 10:41

PU 0O PU 1 PU 2 PU 3
to
ty
ta
l3
ty
o (T]
TTT vt
e e
te E Ts s j Ts E
tr [Ts :_\‘.
P b
oo TP LT
\ —» addressing
- - synchronization
— non-temporary matri
== - temporary matrix
T block matrix
tio 1 Ty
row-blockwise matrix
column-blockwise
matrix
single-block matrix
t11 O operation
Fig. 3 Computational and data transfer workflow for block-wise update of factor matrix U on architecture
with four processing units and data matrix X partitioned into 2 x 2 blocks. Each vertical band represents a
processing unit (PUO to PU3). Stages where all data are available for the next wave of asynchronous
operations are horizontally aligned and are marked with t;,i € {0,1,...,11}

Discussion

Speedup

Speedup on GPU-architectures is substantial, and pronounced with the dataset size and
number of GPUs. For example, factorization on a retina dataset was 150-times faster than

that on a single processor. Datasets in Fig. 5 are ordered by their number of nonzero

Page 9 of 16

Copoar et al. BioData Mining (2017) 10:41 Page 10 of 16

3.5

3.0

2.5 . B

Processing Units

1

- 2
4

1.5

1.0

0.5

0.0

Fetus TCGA-BRCA E-TABM-185 Retina Cochlea TCGA-Methyl
Dataset

Speedup
o
[=3

Fig. 4 Computational speedups on multi-processing architectures. Speedup using 1, 2 and 4 processes
compared to a configuration with one processor. Datasets are ordered from smallest to largest based on the
number of non-zero values

elements, and we can observe a steady increase in speedup. Similar trends can also be
observed on multi-processor architectures (Fig. 4), but the speedups are substantially
lower than those on the GPUs.

For TCGA-Methyl dataset, the complete data matrix occupies about 19 GBytes of
GPU’s memory (Additional file 1: Table S1). With a 12 GBytes of total memory on
each GPU, and considering the overhead of libraries and temporary data matrices for
inter-GPU communication, the data does not fit to the working memory in 1 x 1 and
1 x 2 block configurations. Running the factorization with 1 x 4 block configurations
on 1-GPU or 2-GPU is feasible, but due to insufficient memory to store all necessary
blocks in a single GPU requires a transfer of data between main memory and GPUs
which severely impacts the runtime and prohibits any speedup. On this large dataset,
a configuration with 4-GPUs has sufficient memory and provides for excellent speed-
up (Fig. 5). This case also demonstrates that for large datasets the proposed approach

150
o 125 Processing Units
E} 1
3
2 100 2
(%]
4
5
50
0

Fetus TCGA-BRCA E-TABM-185 Retina Cochlea ~ TCGA-Methyl
Dataset

Fig.5 Computational speedups on multi-GPU architectures. Speedup on 1-, 2- and 4-GPU devices is
compared to a single-processor configuration. Datasets are ordered from smallest to largest based on the
number of non-zero values

Copar et al. BioData Mining (2017) 10:41 Page 11 of 16

Table 2 Block configurations used in experiments where we tested architectures with two or four
processing units (PUs)

Dataset Data type 2 PUs 4 PUs
Fetus sparse 2x1 2x2
TCGA-BRCA dense 1x2 1 x4
E-TABM-185 dense 2x1 4% 1
Retina dense 2x1 2x?2
Cochlea dense 2x1 2x2
TCGA-Methyl dense 1 x 2 (CPU only) 1x4

requires setups with the adequate number of GPUs that can keep all the data in working
GPU memory.

Efficiency effects of block configuration
Block configuration plays a significant role in minimizing the impact of data transfers and
balancing the load across devices (Figs. 6 and 7). Tall datasets (E-TABM-185) favor row-
wise partitioning (e.g., 2x 1 and 4x 1). Wide datasets (TCGA-BRCA, TCGA-Methyl) favor
column-wise partitioning (1 x 2 and 1 x4). The two mentioned datasets, E-TABM-185 and
TCGA-BRCA, are also those where the effect of the block configuration on efficiency was
most pronounced. This observation highlights that suitable block configuration is data
dependent, and also indicates that the selection of block configuration can be automated.
The drop in efficiency under a particular choice of block configuration can be explained
by increased communication overhead (Additional file 1: Figures S5 and S6). As we
increase the number of devices that run in parallel, we need to perform additional
data transfers that are not needed on setups with one matrix block. For example,
in the case of tall dataset E-MTAB-185 and column-wise partitioning (1 x 4), over
40% of factorization runtime was spent for transferring data between GPUs. On the
other hand, in the case of wide TCGA-BRCA dataset, the lowest efficiency was mea-
sured when row-wise partitioning (4 x 1) was used, because communication cost was

the highest.
1.0
0.

Partitioning
1x1
2x1
1x2
4x1

) 2x2
1x4
0.
0.0

Fetus TCGA-BRCA E-TABM-185 Retina Cochlea TCGA-Methyl
Dataset

s}

Efficiency
=
(=2}

=}
S

o

Fig. 6 Efficiency of multi-processor architectures for different block configurations. Efficiency is represented
by the fraction of linear speedup. The number of parallel processes is equal to the number of partitions

Copoar et al. BioData Mining (2017) 10:41 Page 12 of 16

1.0
0.8
Partitioning
1x1
2x1
1x2
4x1
4 2x2
1x4
0.0

Fetus TCGA-BRCA E-TABM-185 Retina Cochlea
Dataset

=
>

Efficiency

=)
S

=}
)

Fig. 7 Efficiency of multi-GPU architectures for different block configurations. Efficiency is represented by the
fraction of linear speedup. The number of GPU devices is equal to the number of matrix blocks

Factorization rank
Next, we evaluate the performance of our approach when varying the value of the matrix
factorization rank. Factorization rank is a vital parameter of all matrix factorization meth-
ods because it determines the number of latent vectors. A larger factorization rank means
the inferred latent model has a larger degree of freedom and can thus better approximate
the input data matrix [43]. However, increasing factorization rank demands more com-
putational resources and can result in poorer generalization performance [44]. Instead
of determining the optimal factorization rank for a given dataset, our goal here is to
investigate how the scalability of the proposed block-wise matrix factorization algorithm
depends on the value of the factorization rank and on the sparsity of the input data matrix.
Figure 8 shows the iteration time of NMTF as a function of factorization rank on a
4-processor architecture. We can observe that by increasing the factorization rank, the
time of iteration increases linearly. For this analysis, both parameters k; and kg, were
set with equal values and shown as a single factorization rank parameter. Partitioning

8 Dataset
TCGA-Methyl
Retina
Cochlea

Fetus

e E-TABM-185
e TCGA-BRCA

L]

Iteration time [s]
[=2]
L]

- 0 0 80 100
Factorization rank (k; = ks)

Fig. 8 Iteration time depending on factorization rank in a 4-processor environment. The average runtime of
one iteration is plotted against factorization rank. Factorization rank is represented by parameters k1 = k»

Copar et al. BioData Mining (2017) 10:41 Page 13 of 16

was done according to Table 2. When using a single process, the iteration time is
proportionally slower according to the speedup shown in Fig. 4.

Figure 9 shows results that correspond to iteration time on 4-GPU architecture. We can
see step-wise increases in iteration time, which is a result of the way the multiplication
kernel utilizes the physical resources of the GPU [45]. The multiplication on the GPU is
done on tiles of data which are processed by several threads in parallel. If the matrix shape
is not aligned to the tile size, the border tiles will not make full use of the resources [46].

When comparing the factorization time of a sparse dataset (Fetus) and dense datasets
(Retina, Cochlea) of similar size, the benefits of using sparse data structure are substantial.
On a GPU, the factorization time on a sparse dataset (Fetus) is slower than on comparable
dense datasets (Retina, Cochlea). This is because multiplication with sparse structures

requires slower non-sequential memory access [47].

Interpretation of factorization results

Matrix factorization methods can be used to gain a better understanding of the data and
their relationships as the methods identify cluster structures and detect potential new
associations. The latent factors learned by NMTF reveal clusters in each of the two dimen-
sions of the input data (matrices U and V) and encode cluster interactions (matrix S). The
analysis of the latent factors can then lead to data interpretation, cluster discovery, and to
prediction of new interactions.

We here demonstrate that tri-factorization can lead to the reconstruction of biologi-
cally meaningful interactions. We have used a DNA methylation dataset (TCGA-Methyl,
Table 1) consisting of 10,181 tissue samples from 33 cancer types. Tissue samples are pro-
filed using methylation beta values for 485,577 CpG sites of the DNA. From these, we have
considered only the sites that are related to 567 genes with known cancer interactions as
listed in the Sanger cancer catalog [48]. Of those, 491 genes were included in our dataset
and altogether involved 14,299 methylation sites. The resulting matrix had 10,181 rows
and 14,299 columns. We factorized the matrix using factorization ranks k; = 25, ko = 30,
which yielded an optimal data compression with respect to the accuracy evaluated on a
validation dataset (see Additional file 1: Figure S15).

0.175

0.150

0.125
Dataset
TCGA-Methyl

0.100
Fetus

Retina
0.075 Cochlea
E-TABM-185

e TCGA-BRCA

Iteration time [s]
L]

0.050

0.025

0.000 20 40 60 80 100

Factorization rank (k; = ky)

Fig. 9 Iteration time depending on factorization rank in a 4-GPU environment. The average runtime of one
iteration is plotted against factorization rank. Factorization rank is represented by parameters k; = k»

Copoar et al. BioData Mining (2017) 10:41 Page 14 of 16

Additional file 1: Table S2 lists five resulting cluster pairs that relate clusters
of genes (from matrix V) and clusters of cancer types (from matrix U) with
highest interaction scores in matrix S. First, we note that factorization revealed
related cancer types, with, for example, colon, stomach and rectum adenocarcinoma
(Additional file 1: Table S2, first row) forming its own group. Also, we found several com-
mon Gene Ontology annotations for the clustered genes (Additional file 1: Table S3).
Most importantly, we found evidence in published literature for a majority of inter-
actions between genes and cancer types inferred through matrix tri-factorization.
For example, GATA2 was suggested as a prospective indicator for poor prog-
nosis in patients with colorectal cancer [49], and FAT4 functions as a tumor
suppressor for stomach cancer [50]. Other supporting publications are listed in
Additional file 1: Table S2.

Transcriptional silencing by DNA methylation plays an important role in the onset
of cancer [51, 52]. It is thus encouraging that some of the critical interactions between
methylated genes and diseases can be inferred, as demonstrated by this analysis, by

non-negative matrix factorization of methylation cancer data alone.

Conclusion

Non-negative matrix tri-factorization is a successful modeling approach that can reveal
hidden patterns in biomedical datasets. Current serial factorization approaches take sub-
stantial runtime, particularly for larger datasets. We proposed a block-wise approach
to speed up matrix tri-factorization through parallel execution. Experiments show the
approach easily scales to very large datasets, and can achieve speedups of up to two orders
of magnitude on current GPU-based architectures. We anticipate the proposed approach
will be important for data integration, where matrix tri-factorization on large collections
of data matrices [53] has already been proven superior and where execution times run
into days.

Additional file

Additional file 1: Document with mathematical proofs, results for impact of communication, impact of balancing
sparse datasets and results for orthogonal NMTF. (PDF 317 kb)

Abbreviations
CPU: Central processing unit; GPU: Graphics processing unit; MPI: Message passing interface; NMTF: Non-negative matrix
tri-factorization; PU: Processing unit; RNA: Ribonucleic acid

Acknowledgements
This work was supported by Slovenian Research Agency grant P2-0209 and by a grant Health-F5-2010-242038 from
European Union FP7 programme.

Availability of data and materials
A Python library implementing the proposed block-wise matrix tri-factorization is available at the GitHub repository
https://github.com/acopar/crow.

Authors’ contributions
AC and MZ developed the method; AC implemented the method and performed the experiments; and AC, MZ and BZ
wrote the manuscript. BZ coordinated the project. All authors read and approved the final manuscript.

Ethics approval and consent to participate
The work described herein does not involve humans, human data or animals. Therefore ethics and consent approval is
not applicable.

http://dx.doi.org/10.1186/s13040-017-0160-6
https://github.com/acopar/crow

Copar et al. BioData Mining (2017) 10:41

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
'Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia. 2Department of Computer
Science, Stanford University, Stanford, CA 94305, USA. 3Baylor College of Medicine, Houston, TX 77030, USA.

Received: 23 May 2017 Accepted: 4 December 2017
Published online: 29 December 2017

References

1.

2.

20.

21.

22.

23.

24.

25.

Lee DD, Seung HS. Algorithms for non-negative matrix factorization. In: Advances in Neural Information Processing
Systems. Cambridge: MIT Press. 2001. p. 556-62.

Devarajan K. Nonnegative matrix factorization: an analytical and interpretive tool in computational biology. PLoS
Comput Biol. 2008;4(7):1000029.

Lee CM, Mudaliar MA, Haggart D, Wolf CR, Miele G, Vass JK, Higham DJ, Crowther D. Simultaneous non-negative
matrix factorization for multiple large scale gene expression datasets in toxicology. PloS ONE. 2012;7(12):48238.
Wang JJ-Y, Wang X, Gao X. Non-negative matrix factorization by maximizing correntropy for cancer clustering. BMC
Bioinformatics. 2013;14(1):107.

Northcott PA, Korshunov A, Witt H, Hielscher T, Eberhart CG, Mack S, Bouffet E, Clifford SC, Hawkins CE, French P,
et al. Medulloblastoma comprises four distinct molecular variants. J Clin Oncol. 2010;,29(11):1408-14.

Gonen M. Predicting drug-target interactions from chemical and genomic kernels using bayesian matrix
factorization. Bioinformatics. 2012;28(18):2304-310.

Hwang T, Atluri G, Xie M, Dey S, Hong C, KumarV, Kuang R. Co-clustering phenome-genome for phenotype
classification and disease gene discovery. Nucleic Acids Res. 2012;40(19):146—6.

Sajda P, Du'S, Brown TR, Stoyanova R, Shungu DC, Mao X, Parra LC. Nonnegative matrix factorization for rapid
recovery of constituent spectra in magnetic resonance chemical shift imaging of the brain. I[EEE Trans Med Imaging.
2004;23(12):1453-65.

Tikole S, Jaravine V, Rogov V, Détsch V, Guntert P. Peak picking NMR spectral data using non-negative matrix
factorization. BMC Bioinformatics. 2014;15(1):46.

Anderson A, Douglas PK, Kerr WT, Haynes VS, Yuille AL, Xie J, Wu YN, Brown JA, Cohen MS. Non-negative matrix
factorization of multimodal MRI, fMRI and phenotypic data reveals differential changes in default mode
subnetworks in ADHD. Neurolmage. 2014;102:207-19.

Ding C, LiT, Peng W, Park H. Orthogonal nonnegative matrix t-factorizations for clustering. In: Proceedings of the
12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM. 2006. p.
126-35.

Benson AR, Lee JD, Rajwa B, Gleich DF. Scalable methods for nonnegative matrix factorizations of near-separable
tall-and-skinny matrices. In: Advances in Neural Information Processing Systems. Red Hook: Curran Associates, Inc.
2014. p.945-53.

Kysenko V, Rupp K, Marchenko O, Selberherr S, Anisimov A. GPU-accelerated non-negative matrix factorization for
text mining. In: International Conference on Application of Natural Language to Information Systems. Berlin:
Springer. 2012. p. 158-63.

Plato$ J, Gajdos P, Kromer P, Snésel V. Non-negative matrix factorization on GPU. In: International Conference on
Networked Digital Technologies. Berlin: Springer. 2010. p. 21-30.

Mejia-Roa E, Tabas-Madrid D, Setoain J, Garcia C, Tirado F, Pascual-Montano A. NMF-mGPU: non-negative matrix
factorization on multi-GPU systems. BMC Bioinformatics. 2015;16(1):43.

Sun Z, LiT, Rishe N. Large-scale matrix factorization using mapreduce. In: 2010 IEEE International Conference on
Data Mining Workshops (ICDMW). Los Alamitos: IEEE Computer Society. 2010. p. 1242-8.

Dean J, Ghemawat S. Mapreduce: simplified data processing on large clusters. Commun ACM. 2008;51(1):107-13.
Yin J, Gao L, Zhang ZM. Scalable nonnegative matrix factorization with block-wise updates. In: Joint European
Conference on Machine Learning and Knowledge Discovery in Databases. Berlin: Springer. 2014. p. 337-52.

Long B, Zhang ZM, Yu PS. Co-clustering by block value decomposition. In: Proceedings of the Eleventh ACM
SIGKDD International Conference on Knowledge Discovery in Data Mining. New York: ACM. 2005. p. 635-40.

Ma C, Kamp Y, Willems LF. A frobenius norm approach to glottal closure detection from the speech signal. [EEE
Trans Speech Audio Process. 1994,2(2):258-65.

Guo S, Wu X, Li'Y.On the lower bound of reconstruction error for spectral filtering based privacy preserving data
mining. In: European Conference on Principles of Data Mining and Knowledge Discovery. Berlin: Springer. 2006.

p. 520-7.

Zhang 'Y, Yeung DY. Overlapping community detection via bounded nonnegative matrix tri-factorization.

In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New
York: ACM. 2012. p. 606-14.

Chen G, Wang F, Zhang C. Collaborative filtering using orthogonal nonnegative matrix tri-factorization. Inf Process
Manag. 2009;45(3):368-79.

Soni A, Jain'S, Haupt J, Gonella S. Noisy matrix completion under sparse factor models. |EEE Trans Inf Theory.
2016;62(6):3636-61.

Grossman RL, Heath AP, FerrettiV, Varmus HE, Lowy DR, Kibbe WA, Staudt LM. Toward a shared vision for cancer
genomic data. N Engl J Med. 2016;375(12):1109-12.

Page 15 of 16

Copoar et al. BioData Mining (2017) 10:41

26.

27.

28.

29.

30.

32.

33.
34.

35.

36.

37.

38.

39.

40.

41.
42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.
53.

Lingle W, Erickson B, Zuley M, Jarosz R, Bonaccio E, FilippiniJ, Gruszauskas N.Radiology data from the cancer
genome atlas breast invasive carcinoma [TCGA-BRCA] collection. The Cancer Imaging Archive. 2016. http://doi.org/
10.7937/K9/TCIA.2016.AB2NAZRP. https://wiki.cancerimagingarchive.net/display/Public/ TCGABRCA#
a1133e32f8c541859b2e9a19ec11c3cb. Accessed 12 Oct 2016.

Lukk M, Kapushesky M, Nikkild J, Parkinson H, Goncalves A, Huber W, Ukkonen E, Brazma A. A global map of
human gene expression. Nat Biotechnol. 2010;28(4):322-4.

Kolesnikov N, Hastings E, Keays M, Melnichuk O, Tang YA, Williams E, Dylag M, Kurbatova N, Brandizi M,

Burdett T, et al. Arrayexpress update-simplifying data submissions. Nucleic Acids Res. 2014;43(D1):D1113-D1116.
Greene CS, Krishnan A, Wong AK, Ricciotti E, Zelaya RA, Himmelstein DS, Zhang R, Hartmann BM, Zaslavsky E,
Sealfon SC, et al. Understanding multicellular function and disease with human tissue-specific networks. Nat Genet.
2015;47(6):569-76.

Fetus-specific functional interaction network. http://giant.princeton.edu/static/networks/fetus.gz. Accessed 10 Oct
2016.

Retina-specific functional interaction network. http://giant.princeton.edu/static/networks/retina.gz. Accessed 10
Oct 2016.

Cochlea-specific functional interaction network. http://giant.princeton.edu/static/networks/cochlea.gz. Accessed 10
Oct 2016.

GDC data portal. https://portal.gdc.cancer.gov/. Accessed 25 Sept 2017.

Kléckner A, Pinto N, Lee Y, Catanzaro B, Ivanov P, Fasih A. PyCUDA and PyOpenCL: a scripting-based approach to
GPU run-time code generation. Parallel Comput. 2012;38(3):157-74.

Gabriel E, Fagg GE, Bosilca G, Angskun T, Dongarra JJ, Squyres JM, Sahay V, Kambadur P, Barrett B, Lumsdaine A,
Castain RH, Daniel DJ, Graham RL, Woodall TS. Open MPI: Goals, concept, and design of a next generation MPI
implementation. In: Proceedings, 11th European PVM/MPI Users’ Group Meeting. Berlin: Springer. 2004. p. 97-104.
Dalcin LD, Paz RR, Kler PA, Cosimo A. Parallel distributed computing using python. Adv Water Resources.
2011;34(9):1124-39.

Xianyi Z, Qian W, Yunquan Z. Model-driven level 3 BLAS performance optimization on loongson 3A processor. In:
18th IEEE International Conference on Parallel and Distributed Systems (ICPADS). Los Alamitos: IEEE Computer
Society. 2012. p. 684-91.

CUDA Basic Linear Algebra Subroutines (cuBLAS). 2014. Available:https://developer.nvidia.com/cuBLAS. Accessed 13
June 2017.

Givon LE, Unterthiner T, Erichson NB, Chiang DW, Larson E, Pfister L, DielemanS, Lee GR, van der Walt S,
Moldovan TM, Bastien F, Shi X, Schliter J, Thomas B, Capdevila C, Rubinsteyn A, Forbes MM, Frelinger J, Klein T,
Merry B, Pastewka L, Taylor S, Wang F, Zhou Y. scikit-cuda 0.5.1: a Python interface to GPU-powered libraries. 2015.
doi:10.5281/zenodo.40565. Accessed 27 Sept 2017.

NVIDIA CUDA Sparse Matrix library (cuSPARSE). 2010. Available: https://developer.nvidia.com/cusparse. Accessed 13
June 2017.

Lee GR. python-cuda-cffi repository. https://github.com/grlee77/python-cuda-cffi. Accessed 27 Sept 2017.

Copar A, Zitnik M, Zupan B. CROW: Fast Non-Negative Matrix Tri-Factorization. https://github.com/acopar/crow.
Accessed 27 Sept 2017.

Tan VY, Févotte C. Automatic relevance determination in nonnegative matrix factorization with the g-divergence.
|EEE Trans Pattern Anal Mach Intell. 2013;35(7):1592-605.

Kanagal B, Sindhwani V. Rank selection in low-rank matrix approximations: A study of cross-validation for NMFs. In:
Proceedings of NIPS 2010: 6-11 December. Red Hook: Curran Associates, Inc. 2010.

Kurzak J, Tomov S, Dongarra J. Autotuning GEMM kernels for the fermi GPU. IEEE Trans Parallel Distributed Syst.
2012;23(11):2045-57.

Serensen HHB. High-performance matrix-vector multiplication on the GPU. In: European Conference on Parallel
Processing. Berlin: Springer. 2011. p. 377-86.

Monakov A, Lokhmotov A, Avetisyan A. Automatically tuning sparse matrix-vector multiplication for GPU
architectures. In: International Conference on High-Performance Embedded Architectures and Compilers. Berlin:
Springer.2010. p. 111-25.

Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R, Rahman N, Stratton MR. A census of human
cancer genes. Nat Rev Cancer. 2004;4(3):177.

Xu K, Wang J, Gao J, DiJ, Jiang B, ChenL, Wang Z, Wang A, Wu F, Wu W, et al. GATA binding protein 2
overexpression is associated with poor prognosis in KRAS mutant colorectal cancer. Oncol Rep. 2016;36(3):1672-8.
CaiJ, Feng D, HuL, ChenH, Yang G, CaiQ, Gao C, Wei D. FAT4 functions as a tumour suppressor in gastric cancer
by modulating wnt/B-catenin signalling. Br J Cancer. 2015;113(12):1720.

Luczak MW, Jagodzinski PP. The role of DNA methylation in cancer development. Folia Histochem Cytobiol.
2006;44(3):143-54.

Jin B, Robertson KD. DNA methyltransferases, DNA damage repair, and cancer. Adv Exp Med Biol. 2013;754:3-29.
Zitnik M, Zupan B. Data fusion by matrix factorization. Pattern Anal Mach Intell IEEE Trans. 2015;37(1):41-53.

Page 16 of 16

http://doi.org/10.7937/K9/TCIA.2016.AB2NAZRP
http://doi.org/10.7937/K9/TCIA.2016.AB2NAZRP
https://wiki.cancerimagingarchive.net/display/Public/TCGABRCA#a1133e32f8c541859b2e9a19ec11c3cb
https://wiki.cancerimagingarchive.net/display/Public/TCGABRCA#a1133e32f8c541859b2e9a19ec11c3cb
http://giant.princeton.edu/static/networks/fetus.gz
http://giant.princeton.edu/static/networks/retina.gz
http://giant.princeton.edu/static/networks/cochlea.gz
https://portal.gdc.cancer.gov/
https://developer.nvidia.com/cuBLAS
http://dx.doi.org/10.5281/zenodo.40565
https://developer.nvidia.com/cusparse
https://github.com/grlee77/python-cuda-cffi
https://github.com/acopar/crow

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Preliminaries: non-negative matrix tri-factorization
	Block-wise multiplicative update rules
	Matrix partitioning
	Overview of block-wise matrix tri-factorization

	Data and experimental setup
	Data
	Experimental setup
	Implementation

	Results
	Discussion
	Speedup
	Efficiency effects of block configuration
	Factorization rank
	Interpretation of factorization results

	Conclusion
	Additional file
	Additional file 1

	Abbreviations
	Acknowledgements
	Availability of data and materials
	Authors' contributions
	Ethics approval and consent to participate
	Competing interests
	Publisher's Note
	Author details
	References

