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Abstract

NIMFA is an open-source Python library that provides a unified interface to nonnegative matrix
factorization algorithms. It includes implementations ofstate-of-the-art factorization methods, ini-
tialization approaches, and quality scoring. It supports both dense and sparse matrix representation.
NIMFA’s component-based implementation and hierarchicaldesign should help the users to em-
ploy already implemented techniques or design and code new strategies for matrix factorization
tasks.
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1. Introduction

As a method to learn parts-based representation, a nonnegative matrix factorization (NMF) has
become a popular approach for gaining new insights about complex latent relationships in high-
dimensional data through feature construction, selection and clustering. It has recently been suc-
cessfully applied to many diverse fields such as image and signal processing, bioinformatics, text
mining, speech processing, and analysis of multimedia data (Cichocki et al., 2009). NMF’s dis-
tinguishing feature is imposition of nonnegativity constraints, where only non-subtractive combi-
nations of vectors in original space are allowed (Lee and Seung, 1999,2001). Specific knowledge
of the problem domain can be modelled by further imposing discriminative constraints, locality
preservation, network-regularization or constraint on sparsity.

We have developed a Python-based NMF library called NIMFA which implements a wide va-
riety of useful NMF operations and its components at a granular level. Ouraim was both to pro-
vide access to already published variants of NMF and ease the innovativeuse of its components
in crafting new algorithms. The library intentionally focuses on nonnegativevariant of matrix fac-
torization, and in terms of variety of different approaches compares favourably to several popular
matrix factorization packages that are broader in scope (PyMF, (http://code.google.com/p/
pymf), NMF package (http://nmf.r-forge.r-project.org), and bioNMF (http://bionmf.
cnb.csic.es); see Table 1).
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NIMFA PyMF NMF bioNMF
Language Python Python R, C++ PHP, Matlab, C
License/Copyright GPL3 GPL3 GPL2+ license-free
Hierarchical factorization models + – (+) –
Sparse format support + (+) – –
Web based client – – – +
Quality measures + – + +
Fitted model and residuals tracking + – + –
Algorithm specific parameters + + + +
Advanced initialization methods + – + (+)
Extensive documentation + – + +
Support for multiple runs + – + +
Visualization (+) – + +
Methods / Shared with NIMFA 11/11 10/3 5/4 3/3

Table 1: Feature comparison of NIMFA and three popular matrix factorization libraries. Symbol+
denotes full support,(+) partial support and symbol− no support. Last row reports on a
number of different NMF algorithms implemented and a number of these that areshared
with NIMFA .

2. Supported Factorization Methods and Approaches

In a standard model of NMF (Lee and Seung, 2001), a data matrixV is factorized toV ≡ W H
by solving a related optimization problem. Nonnegative matricesW andH are commonly referred
to as basis and mixture matrix, respectively. NIMFA implements an originally proposed optimiza-
tion (Lee and Seung, 2001; Brunet et al., 2004) with Euclidean or Kullback-Leibler cost function,
along with Frobenius, divergence or connectivity costs. It also supports alternative optimization
algorithms including Bayesian NMF Gibbs sampler (Schmidt et al., 2009), iterated conditional
modes NMF (Schmidt et al., 2009), probabilistic NMF (Laurberg et al., 2008) and alternating least
squares NMF using projected gradient method for subproblems (Lin, 2007). Sparse matrix factor-
ization is provided either through probabilistic (Dueck and Frey, 2004) oralternating nonnegativity-
constrained least squares factorization (Kim and Park, 2007). Fisherlocal factorization (Wang et
al., 2004; Li et al., 2001) may be used when dependency of a new feature is constrained to a given
small number of original features. Crisp relations can be revealed by binary NMF (Zhang et al.,
2007).

NIMFA also implements several non-standard models. These comprise nonsmooth factorization
V ≡ W S(θ) H (Pascual-Montano et al., 2006) and multiple model factorization for simultaneous
treatment of several input matrices and their factorization with the same basis matrix W (Zhang et
al., 2011).

All mentioned optimizations are incremental and start with initial approximation of matricesW
andH. Appropriate choice of initialization can greatly speed-up the convergence and increase the
overall quality of the factorization results. NIMFA contains implementations of popular initializa-
tion methods such as nonnegative double singular value decomposition (Boutsidis and Gallopoulos,
2007), random C and random Vcol algorithms (Albright et al., 2006). User can also completely
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specify initial factorization by passing fixed factors or choose any inexpensive method of randomly
populated factors.

Factorization rank, choice of optimization method, and method-specific parameters jointly de-
fine the quality of approximation of input matrixV with the factorized system. NIMFA provides a
number of quality measures ranging from standard ones (e.g., Euclidean distance, Kullback-Leibler
divergence, and sparseness) to those more specific like feature scoring representing specificity to
basis vectors (Kim and Park, 2007).

3. Design and Implementation

NIMFA has hierarchical, modular, and scalable structure which allows uniform treatment of numer-
ous factorization models, their corresponding factorization algorithms and initialization methods.
The library enables easy integration into user’s code and arbitrary combinations of its factoriza-
tion algorithms and their components. NIMFA’s modules encompass implementationsof factoriza-
tion (nimfa.methods.factorization) and initialization algorithms (nimfa.methods.seeding),
supporting models for factorization, fitted results, tracking and computation of quality and perfor-
mance measures (nimfa.models), and linear algebra helper routines for sparse and dense matrices
(nimfa.utils).

The library provides access to a set of standard data sets (nimfa.datasets), including those
from text mining, image processing, bioinformatics, functional genomics, and collaborative filter-
ing. Modulenimfa.examples stores scripts that demonstrate factorization-based analysis of these
data sets and provide examples for various analytic approaches like factorization of sparse matrices,
multiple factorization runs, and others.

The guiding principle of constructing NIMFA was a component-oriented architecture. Every
block of the algorithms, like data preprocessing, initialization of matrix factors,overall optimization,
stopping criteria and quality scoring may be selected from the library or defined in a user-script, thus
seamlessly enabling experimentation and construction of new approaches.Optimization process
may be monitored, tracking residuals across iterations or tracking fitted factorization model.

NIMFA uses a popular Python matrix computation packageNumPy for data management and
representation. A drawback of the library is that is holds matrix factors andfitted model in main
memory, raising an issue with very large data sets. To address this, NIMFA fully supports compu-
tations with sparse matrices as implemented inSciPy.

4. An Example Script

The sample script below demonstrates factorization of medulloblastoma gene expression data us-
ing alternating least squares NMF with projected gradient method for subproblems (Lin, 2007) and
Random Vcol (Albright et al., 2006) initialization algorithm. An object returned bynimfa.mf run
is fitted factorization model through which user can access matrix factors and estimate quality mea-
sures.

import nimfa
V = nimfa.examples.medulloblastoma.read(normalize = True)
fctr = nimfa.mf(V, seed=’random_vcol’, method=’lsnmf’, rank=40, max_iter=65)
fctr_res = nimfa.mf_run(fctr)

print ’Rss: %5.4f, Evar: %5.4f’ % (fctr_res.fit.rss(), fctr_res.fit.evar())
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print ’K-L divergence: %5.4f’ % fctr_res.distance(metric = ’kl’)
print ’Sparseness , W: %5.4f, H: %5.4f’ % fctr_res.fit.sparseness()

Running this script produces the following output, where slight differences in reported scores
across different runs can be attributed to randomness of the Random Vcol initialization method.

Rss: 0.1895, Evar: 0.9998
K-L divergence: 38.6581
Sparseness , W: 0.7279, H: 0.8739

5. Availability and Requirements

NIMFA is a Python-based package requiringSciPy version 0.9.0 or higher. It is available under the
GNU General Public License (GPL) version 3. The latest version with documentation and working
examples can be found athttp://nimfa.biolab.si.
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