Journal of Machine Learning Research 13 (2012) 849-853 Submitted 12/11; Published 3/12

NIMFA : A Python Library for Nonnegative Matrix Factorization

Marinka Zitnik MARINKA .ZITNIK @STUDENT.UNI-LJ.SI
Blaz Zupan BLAZ.ZUPAN@FRI.UNI-LJ.SI
Faculty of Computer and Information Science

University of Ljubljana

SI-1000 Ljubljana, Tzaska 25, Slovenia

Editor: Mikio Braun

Abstract

NIMFA is an open-source Python library that provides a udifigerface to nonnegative matrix
factorization algorithms. It includes implementationsstite-of-the-art factorization methods, ini-
tialization approaches, and quality scoring. It suppoothldense and sparse matrix representation.
NIMFA's component-based implementation and hierarchitedign should help the users to em-
ploy already implemented techniques or design and code trewegies for matrix factorization
tasks.

Keywords: nonnegative matrix factorization, initialization metlspdjuality measures, scripting,
Python

1. Introduction

As a method to learn parts-based representation, a nonnegative matwoipizitcon (NMF) has
become a popular approach for gaining new insights about complex lalatibnships in high-
dimensional data through feature construction, selection and clustetihgs recently been suc-
cessfully applied to many diverse fields such as image and signal progdswinformatics, text
mining, speech processing, and analysis of multimedia data (Cichocki e0@8).2NMF's dis-
tinguishing feature is imposition of nonnegativity constraints, where onlysulmractive combi-
nations of vectors in original space are allowed (Lee and Seung, 209%). Specific knowledge
of the problem domain can be modelled by further imposing discriminative cartstréocality
preservation, network-regularization or constraint on sparsity.

We have developed a Python-based NMF library called NIMFA which implésremvide va-
riety of useful NMF operations and its components at a granular level.aumwas both to pro-
vide access to already published variants of NMF and ease the innouasvef its components
in crafting new algorithms. The library intentionally focuses on nonnegativiant of matrix fac-
torization, and in terms of variety of different approaches comparesifably to several popular
matrix factorization packages that are broader in scope (PyMEp(//code. googl e. com p/
pynt), NMF packagel{ttp://nnf.r-forge.r-project.org), and bioNMF Gttt p://bionnf.
cnb. csi c. es); see Table 1).

(©2012 MarinkaZitnik and Blaz Zupan.

ZITNIK AND ZUPAN

NIMFA PyMF NMF bioNMF
Language Python Python R, C++ PHP, Matlab, C
License/Copyright GPL3 GPL3 GPL2+ license-free
Hierarchical factorization models + - (+) -
Sparse format support + (+) - -
Web based client - - - +
Quality measures + - + +
Fitted model and residuals tracking + - + -
Algorithm specific parameters + + + +
Advanced initialization methods + - + (+)
Extensive documentation + - + +
Support for multiple runs + — + +
Visualization +) - + +
Methods / Shared with NIMFA 11/11 10/3 5/4 3/3

Table 1: Feature comparison of NIMFA and three popular matrix factorizéiicaries. Symbo#-
denotes full support,+) partial support and symbet} no support. Last row reports on a
number of different NMF algorithms implemented and a number of these thahared
with NIMFA .

2. Supported Factorization Methods and Approaches

In a standard model of NMF (Lee and Seung, 2001), a data mtisxfactorized tov =W H
by solving a related optimization problem. Nonnegative matéWesndH are commonly referred
to as basis and mixture matrix, respectively. NIMFA implements an originallygsegh optimiza-
tion (Lee and Seung, 2001; Brunet et al., 2004) with Euclidean or KkHhaibler cost function,
along with Frobenius, divergence or connectivity costs. It also stppdternative optimization
algorithms including Bayesian NMF Gibbs sampler (Schmidt et al., 2009), ite@rditional
modes NMF (Schmidt et al., 2009), probabilistic NMF (Laurberg et al., 2608 alternating least
squares NMF using projected gradient method for subproblems (LirT)2@parse matrix factor-
ization is provided either through probabilistic (Dueck and Frey, 2004jternating nonnegativity-
constrained least squares factorization (Kim and Park, 2007). Hsterfactorization (Wang et
al., 2004; Li et al., 2001) may be used when dependency of a newddatoonstrained to a given
small number of original features. Crisp relations can be revealed byyoNdF (Zhang et al.,
2007).

NIMFA also implements several non-standard models. These compriseaotisfactorization
V =W §0) H (Pascual-Montano et al., 2006) and multiple model factorization for simulteneo
treatment of several input matrices and their factorization with the same basis WaZhang et
al., 2011).

All mentioned optimizations are incremental and start with initial approximation oficeaiV
andH. Appropriate choice of initialization can greatly speed-up the conveegend increase the
overall quality of the factorization results. NIMFA contains implementationsopiutar initializa-
tion methods such as nonnegative double singular value decompositiasitBe®and Gallopoulos,
2007), random C and random Vcol algorithms (Albright et al., 2006)erldan also completely

850

NIMFA : APYTHON LIBRARY FOR NONNEGATIVE MATRIX FACTORIZATION

specify initial factorization by passing fixed factors or choose any ieegipe method of randomly
populated factors.

Factorization rank, choice of optimization method, and method-specific paeenjeintly de-
fine the quality of approximation of input matrix with the factorized system. NIMFA provides a
number of quality measures ranging from standard ones (e.g., Euclidganag, Kullback-Leibler
divergence, and sparseness) to those more specific like featunegstepresenting specificity to
basis vectors (Kim and Park, 2007).

3. Design and Implementation

NIMFA has hierarchical, modular, and scalable structure which allowstmifreatment of numer-
ous factorization models, their corresponding factorization algorithms ataization methods.
The library enables easy integration into user’s code and arbitrary catiin of its factoriza-
tion algorithms and their components. NIMFA's modules encompass implementatitattoriza-
tion (ni nf a. et hods. fact ori zat i on) and initialization algorithmsn{ nf a. met hods. seedi ng),
supporting models for factorization, fitted results, tracking and computafiqoaity and perfor-
mance measuresi(nf a. nodel s), and linear algebra helper routines for sparse and dense matrices
(ninfa.utils).

The library provides access to a set of standard data seté4. dat aset s), including those
from text mining, image processing, bioinformatics, functional genomiascatiaborative filter-
ing. Moduleni nf a. exanpl es stores scripts that demonstrate factorization-based analysis of these
data sets and provide examples for various analytic approaches likeZatitm of sparse matrices,
multiple factorization runs, and others.

The guiding principle of constructing NIMFA was a component-orientetiisgcture. Every
block of the algorithms, like data preprocessing, initialization of matrix factwes;all optimization,
stopping criteria and quality scoring may be selected from the library oradkiima user-script, thus
seamlessly enabling experimentation and construction of new approaCipéisnization process
may be monitored, tracking residuals across iterations or tracking fittedifadton model.

NIMFA uses a popular Python matrix computation packbigePy for data management and
representation. A drawback of the library is that is holds matrix factordfitted model in main
memory, raising an issue with very large data sets. To address this, NIMigAstipports compu-
tations with sparse matrices as implementegcinPy.

4. An Example Script

The sample script below demonstrates factorization of medulloblastoma geress&®n data us-
ing alternating least squares NMF with projected gradient method for slilgons (Lin, 2007) and
Random Vcol (Albright et al., 2006) initialization algorithm. An object retuttog ni nf a. nf _run
is fitted factorization model through which user can access matrix factdrestimate quality mea-
sures.

i mport ninfa
V = nimfa. exampl es. medul | obl astoma. read(normalize = True)
fctr = nimfa.nf(V, seed="random.vcol’', method="Isnnf', rank=40, max_iter=65)

fctr_res = nimfa.mf _run(fctr)

print 'Rss: Ub.4f, Evar: _%.4f" % (fctr_res.fit.rss(), fctr_res.fit.evar())

851

ZITNIK AND ZUPAN

print 'K-L_divergence: 9%.4f' % fctr_res.distance(metric = "kl")
print ' Sparseness, W _9%.4f, H _9%b.4f" % fctr_res.fit.sparseness()
Running this script produces the following output, where slight diffeeerio reported scores
across different runs can be attributed to randomness of the Randolmifialization method.
Rss: 0.1895, Evar: 0.9998

K-L divergence: 38.6581
Sparseness, W 0.7279, H: 0.8739

5. Availability and Requirements

NIMFA is a Python-based package requirisgg Py version 0.9.0 or higher. It is available under the
GNU General Public License (GPL) version 3. The latest version withigentation and working
examples can be found ettt p: // ni nf a. bi ol ab. si .

Acknowledgments

We would like to acknowledge support for this project from the Google Sunoh€ode 2011
program and from the Slovenian Research Agency grants P2-(2@899, and L2-1112.

References

Russell Albright, Carl D. Meyer and Amy N. Langville. Algorithms, initializatiorssd conver-
gence for the nonnegative matrix factorization. NCSU Technical Repath 81706, NC State
University, Releigh, USA, 2006.

Christos Boutsidis and Efstratios Gallopoulos. SVD-based initialization: A b&at for nonnega-
tive matrix factorization Pattern Recognitiojd1(4):1350-1362, 2008.

Jean-P. Brunet, Pablo Tamayo, Todd R. Golub and Jill P. Mesirov. Me&sgand molecular pattern
discovery using matrix factorization. Proceedings of the National Academy of Sciences of the
USA 101(12):4164-4169, 2004.

Andrzej Cichocki, Rafal Zdunek, Anh Huy Phan and Shun-ichi Am&tonnegative Matrix and
Tensor Factorizations: Applications to Exploratory Multi-way Data Analysid 8lind Source
Separation.John Wiley & Sons Ltd, West Sussex, United Kingdom, 2009.

Delbert Dueck and Brendan J. Frey. Probabilistic sparse matrix faatianiz University of
Toronto Technical Report PSI-2004-23, Probabilistic and Statistiéatdnce Group, University
of Toronto, 2004.

Hyuonsoo Kim and Haesun Park. Sparse non-negative matrix fadtongavia alternating non-
negativity-constrained least squares for microarray data anaBmmformatics 23(12):1495—
1502, 2007.

Hans Laurberg, Mads G. Christensen, Mark D. Plumbley, Lars K. éfaasid Soren H. Jensen.
Theorems on positive data: on the uniqueness of NMI&mputational Intelligence and Neuro-
sciencedoi: 10.1155/2008/764206, 2008.

852

NIMFA : APYTHON LIBRARY FOR NONNEGATIVE MATRIX FACTORIZATION

Daniel D. Lee and H. Sebastian Seung. Learning the parts of objectsbyegative matrix factor-
ization. Nature 401(6755):788-791, 1999.

Daniel D. Lee and H. Sebastian Seung. Algorithms for non-negative nifattiarization. InPro-
ceedings of the Neural Information Processing Systgrages 556-562, Vancouver, Canada,
2001.

Stan Z. Li, Xinwen Huo, Hongjiang Zhang and Qian S. Cheng. Learniagadly localized, parts-
based representation. Rroceedings of the IEEE Conference on Computer Vision and Pattern
Recognitionpages 207-212, Kauai, USA, 2001.

Chin J. Lin. Projected gradient methods for nonnegative matrix factonizatieural Computation
19(10):2756-2779, 2007.

Alberto Pascual-Montano, J. M. Carazo, Kieko Kochi, Dietrich LehmamhRoberto D. Pascual-
Marqui. Nonsmooth nonnegative matrix factorization (nsnmfIHBE Transactions on Pattern
Analysis and Machine Intelligenc28(3):403-415, 2006.

Mikkel N. Schmidt, Ole Winther, and Lars K. Hansen. Bayesian nonthagmatrix factorization.
In Proceedings of the 9th International Conference on IndependentpGoemt Analysis and
Signal Separationpages 540-547, Paraty, Brazil, 2009.

Yuan Wang, Yunde Jia, Changbo Hu and Matthew Turk. Fisher noatiegmatrix factorization
for learning local features. IRroceedings of the 6th Asian Conference on Computer Vision
pages 27-30, Jeju, Korea, 2004.

Shihua Zhang, Qingjiao Li and Xianghong J. Zhou. A novel computatifraahework for si-
multaneous integration of multiple types of genomic data to identify microRNA-gemdatory
modules.Bioinformatics 27(13):401-409, 2011.

Zhongyuan Zhang, Tao Li, Chris H. Q. Ding and Xiangsun Zhang. Bihdatrix Factorization
with applications. InProceedings of 7th IEEE International Conference on Data Minpages
391-400, Omaha, USA, 2007.

853

