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Abstract

Motivation: Markov networks are undirected graphical models that are widely used to infer rela-

tions between genes from experimental data. Their state-of-the-art inference procedures assume

the data arise from a Gaussian distribution. High-throughput omics data, such as that from next

generation sequencing, often violates this assumption. Furthermore, when collected data arise

from multiple related but otherwise nonidentical distributions, their underlying networks are likely

to have common features. New principled statistical approaches are needed that can deal with dif-

ferent data distributions and jointly consider collections of datasets.

Results: We present FUSENET, a Markov network formulation that infers networks from a collection

of nonidentically distributed datasets. Our approach is computationally efficient and general: given

any number of distributions from an exponential family, FUSENET represents model parameters

through shared latent factors that define neighborhoods of network nodes. In a simulation study,

we demonstrate good predictive performance of FUSENET in comparison to several popular graph-

ical models. We show its effectiveness in an application to breast cancer RNA-sequencing and

somatic mutation data, a novel application of graphical models. Fusion of datasets offers substan-

tial gains relative to inference of separate networks for each dataset. Our results demonstrate that

network inference methods for non-Gaussian data can help in accurate modeling of the data gener-

ated by emergent high-throughput technologies.

Availability and implementation: Source code is at https://github.com/marinkaz/fusenet.

Contact: blaz.zupan@fri.uni-lj.si

Supplementary information: Supplementary information is available at Bioinformatics online.

1 Introduction

Undirected graphical models or Markov networks are a popular

class of statistical tools for probabilistic description of complex as-

sociations in high-dimensional data (cf. Rue and Held, 2005).

Biological processes in a cell involve complex interactions between

genes and it is important to understand, which genes conditionally

depend on each other. These dependencies can be inferred from the

experimental data and represented in a gene network. As a popular

approach to network modeling, Markov networks are particularly

appealing because they focus on finding such conditional depend-

ence relationships. Intuitively, the existence of a link between genes

A and B in a Markov network indicates that the behavior of gene A

is still predictive of gene B given all available measurements about

gene A and its immediate neighbors in a network. Hence, Markov

networks can help us to find a rich set of direct dependencies be-

tween genes that are stronger than gene correlations (Allen and Liu,

2013).

Markov networks have been well studied in bioinformatics and

numerous applications are concerned with inferring the network

structure primarily from microarray and next generation sequencing

gene expression data (Kotera et al., 2012; Gallopin et al., 2013;

Segal et al., 2003). They are complementary but not superior to

other gene network inference approaches (Marbach et al., 2012).

However, the increasing variety of data generating technologies and

heterogeneity of resulting data draw attention to two challenges in

the context of Markov network inference: inference from non-

Gaussian distributed data, and simultaneous inference from many

datasets.

In bioinformatics, many datasets are high dimensional, contain a

limited number of samples with a large number of zeros, and come

from skewed distributions. Most existing methods assume that data

follow a Gaussian distribution. While this assumption holds for

typical log ratio expression values from microarray data, it is vio-

lated for measurements obtained from sequencing technologies.
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For example, gene expression levels from RNA-sequencing count

how many times a transcript maps to a specific genomic location

(Wang et al., 2009) and as such these data are not Gaussian (Allen

and Liu, 2013). The Gaussian assumption is also violated for cat-

egorical datasets, such as data on mutation types and copy number

variation data (Hudson et al., 2010). While it would be possible to

design a network inference for each specific data type, we could

benefit from a procedure that can treat a wide class of distributions

and can jointly consider all available data during network inference

(�Zitnik and Zupan, 2015).

We have developed a novel approach, called FUSENET, for infer-

ence of undirected networks from a number of high-dimensional

datasets (Fig. 1). Our approach builds upon recent theoretical results

about Markov networks (Yang et al., 2012, 2013) and, unlike the

previous works in Markov modeling, can be applied to settings

where data arise from multiple related but otherwise nonidentical

distributions. To achieve this level of modeling flexibility, we repre-

sent model parameters with latent factors. FUSENET implements data

fusion through sharing of latent factors that are common to all data-

sets and distributions, and handles data diversity through inference

of factors specific to a particular dataset.

In simulation studies, FUSENET recovers the true networks under-

lying the observed data more accurately than several alternative

approaches. The improved performance demonstrates that FUSENET

can find conditional dependencies between genes that could not be

reconstructed with Gaussian-based approaches. In a case study with

breast cancer RNA-sequencing expression values and somatic muta-

tion data, we demonstrate the benefits of joint network inference

from multiple related datasets. The networks inferred collectively

from both types of data show greater functional enrichment than

networks learned from any data type alone.

2 Related work

The most straightforward approach to network inference is a simi-

larity-based approach, which assumes that functionally related genes

are likely to share high similarity with respect to a given dataset. A

well-known network obtained with this approach is the S. cerevisiae

genetic interaction network by Costanzo et al. (2010). Whenever the

similarity value between two genes is above a threshold they are

linked by an edge, which is referred to as a direct network inference

approach (Kotera et al., 2012). In contrast to direct network infer-

ence, model-based network inference via graphical models focuses

on local dependencies between genes, where each gene is directly af-

fected by a relatively small number of genes. Edges estimated by a

graphical model can be related to causal inference (Pearl and Verma,

1991).

The problem of learning a network structure associated with an

undirected graphical model has seen a wide range of applications

ranging from social networks and image and speech processing

(Metzler and Croft, 2005; Wang et al., 2013) to genomics.

Applications in bioinformatics include estimation of molecular path-

ways from protein interaction and gene expression data (Segal et al.,

2003; Stingo and Vannucci, 2011), reconstruction of gene regula-

tory networks from microarray data (Marbach et al., 2012), infer-

ence of a cancer signaling network from proteomic data (Mukherjee

and Speed, 2008) and reconstruction of genetic interaction networks

from integrated experimental data (Isci et al., 2014). Methods

applied to these problems and many other recent gene network in-

ference algorithms (Anjum et al., 2009; Friedman et al., 2008;

Meinshausen and Bühlmann, 2006; Ravikumar et al., 2010; Schäfer

and Strimmer, 2005) estimate Gaussian or binary Markov networks,

i.e. they assume that data follow an approximately Gaussian

distribution.

Although non-Gaussian data are becoming increasingly common

in biology, until now, very few network inference algorithms have

been proposed for their treatment. When dealing with non-Gaussian

data, some authors simply use methods that are based on a Gaussian

assumption (Cai et al., 2012). We show in experiments that this de-

cision may result in poor predictive performance. Recently, various

extensions of Gaussian Markov networks have been proposed that

first Gaussianize the data, using for example a copula transform

(Liu et al., 2009, 2012; Murray et al., 2013) or a log transform, and

then apply algorithms that rely on an assumption of normality.

While these approaches perform better than naı̈ve application of

Gaussian-based methods to untransformed data, they are ill-suited

to data generated by next generation sequencing technologies (Allen

and Liu, 2013). A handful of recent algorithms (Allen and Liu,

2013; Gallopin et al., 2013) have considered Markov networks for

non-Gaussian data, using for example the Poisson distribution for

RNA-sequencing read counts. In contrast to our FUSENET, these meth-

ods cannot integrate datasets across different data types, thereby

limiting their ability to fuse information from many datasets.

Our work presented here is similar in spirit to our recently de-

veloped methodology for data fusion via collective matrix factoriza-

tion (�Zitnik and Zupan, 2015). The methodology therein can jointly

model any number of datasets that can be represented with matrices.

Unlike existing data integration approaches, it does not require
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Fig. 1. An overview of FUSENET in a toy application to network inference.

FUSENET’s input is a collection of datasets that can follow different exponential

family distributions. The example from the figure uses two datasets: (a) gene

expressions from next-generation sequencing follow the Poisson distribu-

tion, and (b) somatic mutation data follow the multinomial distribution. (c)

FUSENET infers a network by collectively modeling dependencies between any

two genes conditioned on the rest of the genes. The absence of an edge be-

tween s2 and s3 (dotted line in grey) implies that s2 acts independently of s3

given s1 and s4, the neighbors of s2. The ? symbol stands for conditional in-

dependence. Genes s1 and s2 are linked because data profiles of s2 in (a, b)

are still predictive of the profile values of s1 given s4, the neighbor of s2. (d)

Shown are FUSENET-inferred coefficients that relate s2 to all other genes.

Nonzero values indicate gene dependency. In the resulting network, gene s2

has two neighbors, s1 and s4
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transforming data into a common data space (e.g. a gene space). We

applied this methodology to mining disease-disease associations

(�Zitnik et al., 2013), predicting drug toxicity (�Zitnik and Zupan,

2014) and gene functions (�Zitnik and Zupan, 2015) and observed

substantial gains in predictive accuracy. While both our work here

and in �Zitnik and Zupan (2015) rely on latent factor models, they

are substantially different from one another. First, FUSENET builds on

the Markov network theory, whereas previously we considered ma-

trix decomposition. Second, FUSENET is a probabilistic model that ex-

plicitly considers various data distributions, and third, FUSENET is a

network inference approach, whereas our previous works focused

on matrix completion.

3 Methods

FUSENET takes as its input a collection of datasets where each dataset

consists of a set of gene profiles (Fig. 1). Gene profiles can be

heterogeneous and belong to different data types, e.g. data can be

continuous, discrete or categorical. For example, measurements

from RNA-sequencing represent the numbers of fragments that

were mapped to a specific genomic location (Wang et al., 2009).

The RNA-sequencing expression values are then non-negative and

integer valued and, hence, are not approximately Gaussian, but ra-

ther follow the Poisson or negative binomial distribution. This is in

contrast to copy number variation data and mutation data, i.e.

single-base substitutions, short indels, or multiple base substitutions,

that might be modeled better with multinomial or categorical distri-

butions. On the other end of spectrum are microarray gene expres-

sion data, which are approximately Gaussian distributed.

The crucial feature of FUSENET is the representation of model par-

ameters via latent factors. This feature, together with the sharing of

latent factors between datasets, allows us to infer a network by sim-

ultaneously considering many datasets that each can arise from a

different exponential family distribution (Section 3.7).

We exemplify FUSENET by deriving Markov network models for

two distributions from an exponential family, the Poisson distribu-

tion (Section 3.3) and the multinomial distribution (Section 3.5).

Since the exponential family includes not only Gaussian but also bi-

nomial, multinomial, Poisson, gamma distributions and others,

FUSENET can achieve great flexibility in estimating gene networks

from diverse data (Section 3.6) and also comes with an efficient al-

gorithm for network structure estimation (Section 3.8).

Our work provides two novel contributions over current

approaches to gene network inference discussed in Related work:

• FUSENET simultaneously infers networks from datasets that may

be generated by nonidentical distributions, and
• FUSENET estimates large-scale genomic networks from increasingly

common non-Gaussian distributed data.

3.1 Preliminaries
3.1.1 Markov networks

A Markov network specifies conditional dependence relationships

between genes. In particular, if there is no edge between genes s and

t then this implies that the behavior of s is independent of t given the

set of immediate neighbors of s. From this local property (Murphy,

2012), one can easily see that two genes (nodes) are conditionally

independent given the rest of the genes iff there is no direct edge

between them. The conditional independence (Markov) properties

permit a rich set of dependencies among the nodes and hence, the

connectivity of a Markov network can reveal complex relationships

between its nodes (Allen and Liu, 2013; Jalali et al., 2011).

3.1.2 Exponential family

The probability distributions that we study in this article are specific

examples of a broad class of distributions called the exponential

family (Duda and Hart, 1973). Members of the exponential family

have many important properties in common. Given parameters h,

the exponential family of distributions over X is defined to be the set

of distributions of the form:

PðXÞ ¼ expðhBðXÞ þ CðXÞ �DðhÞÞ; (1)

where B(X) are sufficient statistics, C(X) is a base measure and DðhÞ
is a log-normalization constant (Murphy, 2012). The exponential

family includes many widely used distributions, such as Bernoulli,

binomial, Poisson, gamma, multinomial and Gaussian distributions.

3.1.3 Parameterization of Markov networks

Let X ¼ ðX1;X2; . . . ;XpÞ be a random vector with Xi being a ran-

dom variable. Suppose G ¼ ðV;EÞ is an undirected graph with

p nodes representing p variables in X, jVj ¼ p. Then the correspond-

ing undirected graphical model is any distribution defined on X that

satisfies Markov independence assumptions with respect to graph G

(Murphy, 2012). By the Hammersley-Clifford theorem (Murphy,

2012), any such distribution of X decomposes according to graph G

in the following way. Let C be a set of maximal cliques (fully con-

nected subgraphs) in graph G and let f/cðXcÞ; c 2 Cg be “clique

potential” functions. By the Hammersley-Clifford theorem, any dis-

tribution of X within the graphical model family defined by G can

be represented as an exponential of a weighted sum of potential

functions over the maximal cliques C:

PðXÞ / exp
X
c2C

hc/c Xcð Þ
 !

; (2)

where fhc; c 2 Cg are the weights of potential functions.

An important question is how one would select potential func-

tions f/c; c 2 Cg to obtain various multivariate extensions of uni-

variate distributions. Recently, Yang et al. (2012) showed that if a

node-conditional univariate distribution, i.e. distribution of a ran-

dom variable conditioned on all other variables, belongs to an expo-

nential family, it necessarily follows that the joint distribution of X

has the form:

PðXÞ / expð
X
s2V

hsBðXsÞ þ
X
s2V

X
t2NðsÞ

hstBðXsÞBðXtÞ

þ
X
s2V

X
t2 ; ... ;tk2NðsÞ

hs;t2 ; ... ;tk
BðXsÞ

Yk
j¼2

BðXtj
Þ þ

X
s2V

CðXsÞÞ; (3)

where the cliques are of size at most k, N sð Þ are neighbors of node

s, B represent sufficient statistics and C is the base measure of the a

given exponential family distribution (cf. Proposition 1 and

Proposition 2 in Yang et al. (2012)). These results tell us that the

joint distribution specified in Eq. (3) has the most general form

under the assumption of exponential family node-conditional distri-

butions. Hence, learning a graphical model from the data can be

reduced to learning weights fhsg [ fhstg [ . . . [ fhs;t2 ; ... ;tk
g of distri-

bution-specific sufficient statistics.

3.2 Problem definition
Suppose we are given a collection D of n observations,

D ¼ fxð1Þ; xð2Þ; . . . ;xðnÞg, where xðiÞ is a p-dimensional vector drawn

i.i.d. from a specific distribution of the form in Equation (3). This

distribution has parameters fh�c ; c 2 Cg and is associated with a

graph G ¼ ðV;E�Þ on p nodes. Graph G encodes Markov
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independence properties between the respective variables. The goal

of learning the structure of G is to infer an edge set E� that corre-

sponds to distribution, which generated observations in D. We can

express E� as a function of parameters fh�c ; c 2 Cg and write it as:

E� ¼ fðs; tÞ 2 V � V : 9 clique c 2 C : fs; tg � c ^ h�c 6¼ 0g:

Hence, learning the network structure reduces to the problem of

estimating weights fĥc; c 2 Cg that should be as close as possible to

the true but otherwise unknown parameters fh�c ; c 2 Cg.
In this article, we focus largely on a special case of pairwise

Markov networks, where the joint distribution has cliques of size at

most two:

P Xð Þ / exp ð
X
s2V

h�s BðXsÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
set of nodes

þ
X

ðs;tÞ2V�V

h�stBðXsÞBðXtÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
set of edges

þ
X
s2V

CðXsÞÞ

(4)

with entries h�st 6¼ 0 if t 2 NðsÞ and h�st ¼ 0 if t 62 N ðsÞ. Following

the work of Ravikumar et al. (2010), Jalali et al. (2011) and Allen

and Liu (2013), we approach the problem of Markov network struc-

ture learning via neighborhood estimation, where we obtain the

global network estimate Ê by stitching together the estimated neigh-

borhoods of the nodes. The overall network structure is then:

Ê ¼
[

s2V;t2N̂ ðsÞ

fðs; tÞg; (5)

where (s, t) denotes an edge between s and t and N̂ ðsÞ ¼
ft 2 Vnfsg : ĥst 6¼ 0g is the estimated neighborhood of node s.

In the remainder of this section, we formulate two pairwise

Markov networks, which assume either Poisson or multinomial data

distribution. These two exponential family models are taken as an

example through which we specify a general scheme for network

inference from multiple potentially nonidentical data distributions.

3.3 Poisson model specification
Following the work of Yang et al. (2012) and Allen and Liu (2013), we

define a Poisson Markov network model by specifying a distribution

where all node-conditional distributions follow a univariate Poisson dis-

tribution. Our Poisson Markov network model is then a series of locally

defined models, one for every variable (node). A local model for s is

given by a distribution of Xs conditioned on all other variables:

PðXsjXVnsÞ � Poisson ðexp fus þ
X

t2Vnfsg
uT

s WTWutXtgÞ; (6)

where XVns ¼ fXtjt 2 Vnfsgg denotes the rest of the variables, and

us 2 Rr and W 2 Rr�r are model parameters. An r-dimensional vec-

tor us is a latent factor for node s that consists of r latent compo-

nents. For now, we assume that the number of latent components r

is given; we will later discuss how to automatically determine r.

Notice that the latent factor of node s, us, represents the strength of

membership of node s to r latent components and W models the

interactions between all combinations of r latent components. The

formulation of the Poisson conditional distribution in Equation (6)

ensures that node pair-wise weights are symmetric, which is an

appealing property when studying undirected graphical models. In

particular, the contribution of Xt towards PðXsjXVnsÞ is the same as

is the contribution of Xs towards PðXtjXVntÞ.
We refer to our model as a model parameterized via latent facto-

rization, since model parameters us; ut and W form a factorization

of the edge weight hst, which is specified by a Markov network

model in Equation (4). The importance of latent factor parameter-

ization will be obvious later in Section 3.7 when we discuss collec-

tive network inference from many datasets.

Recall the univariate Poisson distribution is given by the mass

function PðX ¼ xÞ ¼ kxexp ð�kÞ=x!, where k is the shape parameter.

Our model extends the univariate Poisson in a natural and strict

sense to the multivariate graphical model setting. The latter can be

obtained from the univariate Poisson by setting the shape parameter

to k ¼ exp ðus þ
P

t2Vns uT
s WTWutXtÞ. We then write the expression

in Equation (6) as:

PðXsjXVnsÞ ¼ expfusXs � logðXs!Þ þ
X

t2Vnfsg
ðuT

s WTWutXsXt

�expðus þ uT
s WTWutXtÞÞg

(7)

Intuitively, variable Xs in Equation (7) can be viewed as the

response variable in a latent factor Poisson regression in which the

other variables XVns play the role of the predictors. Variables with

strong relationships with gene s will have nonzero regression coeffi-

cients, and these will be connected to node s in the inferred graph.

3.4 Optimization of the Poisson model
The node-conditional distributions specified in Equation (7) define

a global distribution that factors according to the cliques of the

underlying graph G that we would like to estimate. We obtain

edge set Ê by stitching node neighborhoods as prescribed by

Equation (5), where we define the neighborhood of node s as

N̂ ðsÞ ¼ ft 2 Vnfsg : uT
s WTWut 6¼ 0g. This means that edge (s, t) is

included in the network if the estimated product of respective latent

factors of variables Xs and Xt is nonzero.

To estimate edge set Ê, we have to determine the node neighbor-

hoods of all nodes in V. To achieve this goal, we solve a sparsity

constrained conditional maximum likelihood estimation problem:

min
U;W

X
s2V

‘sðU;W;DÞ þ aðRegðUÞ þ RegðWÞÞ: (8)

Here, U is a matrix with node latent factors placed in the col-

umns, U ¼ ½u1; u2; . . . ;un�.
Equation (8) consists of two parts, which we discuss next. Terms

involving Reg represent the elastic net penalties (Zou and Hastie,

2005). The penalty is defined for U as RegðUÞ ¼ ð1� kÞ 1
2 jjUjj

2
2;1þ

kjjUjj1;1, where k�0 is a regularization parameter controlling the

amount of sparsity in the node neighborhood. The definition of the

penalty term for W is analogous. Notice that the L2;1 norm is the

sum of 2-norms of the columns, jjUjj2;1 ¼
Pp

s¼1 jjusjj22, and the L1;1

norm is the sum of 1-norms of the columns, jjUjj1;1 ¼
Pp

s¼1 jjusjj1.

Since latent factors are affected by the strength of regularization, the

choice of parameter k is important. Procedure for selection of k is

described in Supplementary Section 1.

The crucial part of Equation (8) is, however, the sum of the

node-wise Poisson likelihood functions. Given node s and n realiza-

tions of the associated random variable Xs, the Poisson likelihood

function ‘s follows directly from Equation (7) and can be written as:

‘sðU;W;DÞ ¼ �1

n
log
Yn

i¼1

PðXs ¼ xðiÞs jXVns ¼ X
ðiÞ
ns Þ

¼ �1

n

Xn

i¼1

ðxðiÞs X
ðiÞ
ns UT

nsW
TWus

�expðXðiÞns UT
nsW

TWÞÞ;

(9)

where x
ðiÞ
s is the i-th realization of Xs in data D; X

ðiÞ
ns denotes the i-th

realization of the rest of the variables XVns, and U and W are matrix
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unknowns. Notice that node-wise terms are ignored here for

simplicity.

3.5 Multinomial model specification and optimization
We now develop a multinomial Markov network model that relies on

latent factor parameterization of the model parameters and follows

the same paradigm as our Poisson model described in the previous sec-

tion. The multinomial model presented here is a natural extension of

the multinomial graphical model described by Jalali et al. (2011).

We start with the neighborhood recovery of one fixed node s and

then combine the neighborhood sets across nodes to estimate the

network. The multinomial model assumes that each variable Xi

from a random vector X follows a multinomial distribution with

potentially different parameters. This means that Xi can take any

value from a small discrete set f1; 2; . . . ;mg of cardinality m.

Probabilities of different values are not independent so that, given

any m – 1 of the probabilities, the probability of the remaining value

is fixed. It is convenient to express the distribution in terms of only

m – 1 values, thereby leaving m – 1 probability parameters that need

to be estimated.

The distribution of Xs conditioned on other variables XVns ¼
fXt : t 2 Vnfsgg is given by:

PðXs ¼ jjXVnsÞ ¼

expðhsj þ
X

t2Vnfsg

X
k

hst;jkIkðXtÞÞ

1 þ
X

l

exp ðhsl þ
X

t2Vnfsg

X
k

hst;lkIkðXtÞÞ
(10)

for all j 2 f1;2; . . . m� 1g. Here, hsj represents a node-wise term

that models the probability of variable Xs taking value j. The other

model parameter is hst;jk, which models dependency between varia-

ble Xs and variable Xt when they take values j and k, respectively.

We can view Equation (10) as a multiclass logistic (softmax) regres-

sion, where Xs is the response variable and indicator functions asso-

ciated with other variables:

fIkðXtÞ; t 2 Vnfsg;k 2 f1;2; . . . ;m� 1gg;

where IkðXtÞ ¼ 1 if Xt ¼ k else 0, are the predictors.

We now proceed by writing model parameters hsj and hst;jk in the

form of a product of latent factors. We gather node-wise terms hsj

into a matrix Q 2 Rp�ðm�1Þ. We factorize hst;jk as hst;jk ¼ uT
s Qsj

WTWQtkut. Here, us and ut are r-dimensional latent factors and W

2 Rr�r encodes interactions between latent components in the same

way as is described in Section 3.3.

To estimate the latent factors and node-wise terms from the data

we solve the following convex optimization program:

min
U;Q;W

X
s2V

‘sðU;Q;W;DÞ þ aðReg ðUÞ þ Reg ðQÞ þReg ðWÞÞ; (11)

where definitions of U, W and Reg are the same is in the previous

section. Here, the node-wise multinomial likelihood function ‘s for

node s follows from Equation (10) and can be written as:

‘sðU; Q; W; DÞ ¼ �1

n
log
Yn
i¼1

PðXs ¼ xðiÞs jXVns ¼ X
ðiÞ
ns Þ ¼

�1

n

Xn

i¼1

ðQ
sx
ðiÞ
s
þ

X
t2Vnfsg

X
k

uT
s Q

sx
ðiÞ
s

WTWQtkutIkðxðiÞt Þ�

log ð1 þ
X

l

exp ðQsl þ
X

t2Vnfsg

X
k

uT
s QslW

TWQtkutIkðxðiÞt ÞÞÞÞ;

(12)

where x
ðiÞ
s 2 f1; 2; . . . ;m� 1g is the i-th realization of Xs in data D;

X
ðiÞ
ns denotes the i-th realization of the rest of the variables XVns, and

U, Q and W are matrix unknowns. Given latent factor estimates U

and W, and the estimate of node-wise terms Q, we determine

the neighborhood for node s as N̂ ðsÞ ¼ ft 2 Vnfsg :X
j;k

uT
s QsjW

TWQtkut 6¼ 0g. This means that edge (s, t) is included in

the network if product uT
s QsjW

TWQtkut does not vanish over at

least one choice of categories j and k.

3.6 Other exponential family distributions
So far, we described in Section 3.3–3.5, the Poisson model and the

multinomial model that are suitable for separately inferring the edge

set of a Poisson or a multinomial Markov network. In this section,

we would like to allude to the fact that a procedure with derivations

very similar to those in the above sections can be applied to any

exponential family distribution.

From Equation (1), we see that the unnormalized probability of

an exponential family distribution can be expressed as an exponen-

tial of a weighted linear combination of sufficient statistics. These

sufficient statistics correspond to clique potential functions (see Sec.

3.1.3). Under the assumption of joint distribution having cliques of

size at most two, node-conditional distributions take the form:

PðXsjXVnsÞ / expðhsBðXsÞ þ
X

t2NðsÞ
hstBðXsÞBðXtÞ þCðXsÞÞ

where fhs; s 2 Vg and fhst; s; t 2 Vg are parameters that shall be esti-

mated from the data.

FUSENET yields a general framework for including data from any

exponential family distribution, such as Gaussian, binomial, Poisson

or multinomial distributions, in its predictive model by simply

expressing weights fhs; s 2 Vg and fhst; s; t 2 Vg of a given distribu-

tion as products of appropriately selected latent factors. Here, facto-

rization of the weights is appropriate if it allows fusion of data from

diverse distributions, such that factorization consists of both latent

factors that are shared between different distributions and factors

that are specific to a particular distribution (�Zitnik and Zupan,

2015), a property that we describe in the following section.

3.7 Collective inference of a gene network
We proceed by formulating a collective network inference model,

wherein a network is jointly estimated from multiple nonidentical

data distributions.

Let Dx ¼ fxð1Þ; xð2Þ; . . . ;xðnxÞg be a set of nx observations of

a random vector X, where each p-dimensional vector xðiÞ is

drawn from a distribution Px of the form of Equation (4) and let

Dy ¼ fyð1Þ; yð2Þ; . . . ; yðnyÞg be a set of ny observations where each

p-dimensional vector yðiÞ is drawn from distribution Py of the form

of Equation (4). Importantly, distributions Px and Py are not necessarily

identical in terms of their parameters or distribution type. For example,

Px might denote the Poisson distribution and Py might be the multino-

mial distribution or they could both describe multinomial distributions

that have different parameters. For simplicity of notation we provide

here the formulation for the case with only two datasets, Dx and Dy,

but notice that our analysis generalizes to any number of datasets.

In collective network inference, we solve for:

min
U;Qx ;Qy ;

Wx ;Wy

X
s2V

ð‘s;Px
ðU;Qx;Wx;DxÞ

þ‘s;Py
ðU;Qy;Wy;DyÞÞ þ reg:param:;

(13)

where regularization parameters depend on the form of data distri-

butions. In a specific scenario in which Px and Py are the Poisson

and the multinomial distributions, respectively, we set Qx ¼ I.
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We specify the regularization according to the Poisson model in

Equation (8) and the multinomial model in Equation (11) as:

kðReg ðUÞ þ Reg ðWxÞ þ Reg ðQyÞ þ Reg ðWyÞÞ;

where Reg is the elastic net penalty defined in Section 3.3. The esti-

mated neighborhood of node s, which corresponds to a random vari-

able Xs 2 X, are then nodes whose behavior depends on behavior of

s according to any of considered data distributions,

N̂ ¼ ft 2 Vnfsg : ĥst;Px
6¼ 0

W
ĥst;Py

6¼ 0g. In our specific scenario,

parameters ĥst;Px
and ĥst;Py

would be given by ĥst;Px
¼ uT

s WTWut

and ĥst;Py
¼
P

j;k uT
s QsjW

TWQtkut.

It is important to notice the coupling of the parameters in

FUSENET through which data fusion is achieved (�Zitnik and Zupan,

2015). As is evident from Equation (13), the latent factor of node s,

us, participates both in terms associated with Px and terms related to

Py. Hence, a good estimate of us should simultaneously minimize

both ‘s;Px
and ‘s;Py

, but should do so in a way that statistics internal

to both data distributions are considered. To account for the fact

that datasets may disagree and differ in how accurately they capture

biological signals, FUSENET has parameters that are specific to every

distribution. In particular, we allow that interactions between latent

components in Dx are different from those in Dy and hence, the

model has one latent matrix W for each distribution. An additional

parameter Q captures the characteristics of a particular exponential

family distribution, e.g., the bias associated with m categories in the

multinomial distribution.

3.8 Learning the models in practice
Now that we defined the FUSENET model, we explain how to solve

related optimization problems. Notice that the exact optimization

problem one needs to solve depends on a particular data setting, i.e.

a particular combination of considered exponential family

distributions.

There has been a strong line of work on developing fast algo-

rithms to solve sparse regression problems that are similar to

Equations (8) and (11) including the work by Krishnapuram et al.

(2005), Meier et al. (2008), Jalali et al. (2011) and Allen and Liu

(2013). Existing algorithms for undirected graphical model selection

assume that model parameters are independent of each other. This,

however, is not true in FUSENET due to reasons discussed in Section

3.7 that are important to achieve data fusion. Consequently, this

also means that we cannot use off-the-shelf optimization solvers.

We propose to fit our FUSENET by computing cyclical coordinate

descent along the path of regularization parameter k (see

Supplementary Section 1). Parameters of FUSENET inference algo-

rithm, i.e. regularization and latent dimensionality, are selected in

data-dependent way via stability selection. Interested reader is

referred to Supplementary Section 1.

4 Experimental setup

We compare the performance of FUSENET to several state-of-the-art

Markov network models in estimating the true underlying network

structure.

4.1 Performance evaluation
The success of network recovery is evaluated by comparison to the

gold standard networks, when they are available, and by functional

enrichment of the inferred networks.

4.1.1 Assessing the accuracy of network recovery

Simulated data come with complete and unambiguous true underly-

ing networks, hence we can assess the performance of the algorithms

as follows. We report receiver operator curves (ROC) computed by

varying the regularization parameter k, precision recall (PR) curves,

and true and false positive rates for fixed k as estimated via stability

selection. The true positive rate is estimated as proportion of

the edges found by a network inference algorithm that are also in

the true network. The false positive rate represents proportion of the

edges in the inferred network that are not present in the true net-

work. An algorithm with a perfect performance achieves an area

under the ROC curve of 1, precision of 1 and recall of 1, a true posi-

tive rate of 1 and a false positive rate of 0.

4.1.2 Quantifying the functional content of inferred networks

We employ two approaches to evaluate the ‘functional correctness’

of the networks inferred from cancer data. First, we use SANTA

(Cornish and Markowetz, 2014) to quantify the strength of associa-

tion between sets of functionally related genes from the Gene

Ontology (GO) (Ashburner et al., 2000) and the inferred network.

Second, we overlay the inferred network with gene information

from the GO and for every GO term assess how community-like a

subnetwork of genes that belong to a particular GO term is.

Communities are sets of genes with many connections between the

members and few connections to the rest of the network. Four dif-

ferent structural notions of network communities exist in networks

and we report the values of their representative scoring functions

(Yang and Leskovec, 2012). We refer the reader to Supplementary

Section 4 for mathematical details.

4.2 Considered gene network inference algorithms
In the experiments, we consider the Poisson FUSENET (Section 3.3),

the multinomial FUSENET (Section 3.5) and FUSENET with fusion of

Poisson and multinomial data distributions (Section 3.7). We com-

pare our models to the Graphical Lasso (GLASSO) (Friedman et al.,

2007), which is a widely used Markov network model based on a

Gaussian assumption. To see how FUSENET relates to techniques that

perform data preprocessing, we consider the GLASSO after applying

a log transform to the data plus one (e.g. cf. Gallopin et al., 2013)

and the GLASSO with the nonparanormal Gaussian copula trans-

formation (NPN-Copula) (Liu et al., 2009). We also compare

FUSENET with two Markov network models that are designed for

non-Gaussian distributed data: the Local Poisson Graphical Model

(LPGM) (Allen and Liu, 2013), and the Multinomial Markov

Network Model (Mult-GM) (Jalali et al., 2011). The crucial param-

eter of these methods is degree of regularization, which controls

sparsity of the networks. We select the value for regularization via

stability selection (see Supplementary Section 1).

5 Data

Network inference algorithms are evaluated based on simulated

data and large-scale cancer genomic datasets.

5.1 Multivariate data simulation
Four network structures are simulated: (i) the Erdo†s Rényi random

network, where an edge between each pair of nodes is set with equal

probability and independently of other edges; (ii) a hub network,

where each node is connected to one of three hub nodes; (iii) a scale-

free network, in which node degree distribution follows a power-

law; and (iv) a small-world network, in which most nodes are not
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neighbors of each other but most nodes can be reached from every

other by a small number of hops. We refer the reader to

Supplementary Section 2 for detailed description of the procedures

used for data simulation.

5.2 Cancer genomic data
We apply network inference algorithms to two examples of non-

Gaussian high-throughput genomic data to learn (i) an mRNA

expression network, (ii) a somatic mutation network and (iii) a col-

lectively inferred gene network based on both data types.

We download breast cancer (BRCA-US) gene expression data

measured by next generation sequencing and breast cancer (BRCA-

US) simple somatic mutation data from the International Cancer

Genome Consortium (ICGC) (Hudson et al., 2010) portal (release

17). We follow the steps in Allen and Liu (2013) and process RNA-

sequencing data to be approximately Poisson. Data preprocessing,

whose detailed steps are described in Supplementary Section 3,

results in a matrix with rows as the subjects (nexp ¼ 1;012) and col-

umns as genes (pexp ¼ 657). These genes form the nodes of our

Poisson breast cancer mRNA network.

Breast cancer simple somatic mutation data include single base

substitutions, multiple base substitutions and short indels. Mutation

data are converted into a matrix with rows as subjects (nmut ¼ 954)

and columns as genes containing mutations or variations (500

genes). Each matrix entry is categorized into one of three groups

based on the type of mutation: no mutation, single base substitution,

insertion/deletion of<200 base pairs.

For the collectively inferred network, we consider both gene

expression profiles and somatic mutation data provided by the

ICGC assuming the Poisson model for the RNA-seq data and the

multinomial model for the mutation data. We refer the reader to

Supplementary Section 3 for more details.

6 Results and discussion

6.1 Network recovery with simulated data
In every simulation, we generated a dataset of observations based on

a simulated network and then applied different network inference

algorithms to determine whether the algorithms successfully recov-

ered complex relationships between data variables.

We simulated four network types, which are known to resemble

the structure of real biological networks (Allen and Liu, 2013;

Costanzo et al., 2010). We report receiver operator curves computed

by varying the regularization parameter k in Figure 3 and

Supplementary Figure S4, boxplots of true and false positive rates

for fixed k as determined by stability selection in Figure 3,

Supplementary Figures S2 and S4. Further, we evaluated precision

and recall of the networks estimated from different data distribu-

tions in Supplementary Figures S2–S5.

Experimental evidence indicates that FUSENET outperforms

Gaussian-based competitors (GLASSO, Log-GLASSO and NPN-

Copula) as well as existing methods that are designed specifically for

the Poisson and the multinomial data (LPGM in Fig. 2 and Mult-

GM in Fig. 3). The overall good performance of FUSENET is consistent

across the four types of network structure and the two data distribu-

tions that we considered in experiments.

The improved statistical power of FUSENET and LPGM over meth-

ods that during network inference rely heavily on the assumption of

normality is particularly impressive. Results in Figure 3 suggest that

in situations where this assumption is not satisfied, we can expect

reduced prediction performance if we naively apply Gaussian-based

methods, (GLASSO) or if we perform insufficient data preprocessing

(Log-GLASSO). However, we note that sophisticated techniques

that replace Gaussian distributed data by the transformed data

obtained, e.g. through a semiparametric Gaussian copula (NPN-

Copula; Liu et al. (2009)), can give substantial gains in accuracy

over the naive analysis. These observations are not surprising as dis-

regarding information about data distribution can adversely affect

performance of prediction models. Our results demonstrate that

employing the ‘correct’ statistical model, in this case FUSENET or

LPGM, can lead to more accurate network inference.

Next, we try to understand which algorithmic component of

FUSENET contributes most to its good performance relative to existing

algorithms for network structure learning. The primary difference

between FUSENET and non-Gaussian-based methods considered here,

LPGM and Mult-GM, is representation of model parameters with

products of latent factors. In LPGM and similarly in Mult-GM, a

prediction model is fitted locally by an algorithm, which performs a

series of independent penalized regressions. This is in contrast with

FUSENET, where different model parameters are not entirely independ-

ent of each other but rather rely on borrowing strength from each

other via factorization. Our results on simulated data suggest that

representation of model parameters through the use of latent factors

is beneficial. Furthermore, latent parameterization can improve per-

formance of network recovery beyond what is possible with models

that do not use latent factors. On the downside, we note that due to

coupling of model parameters, FUSENET is not trivially parallelizable,

which is otherwise true for LPGM and Mult-GM.

Results shown in Figures 2 and 3 are reported for datasets with a

few hundred observations (n) and a few tens of variables (p; see fig-

ure captions). We note that reported results are consistent with

experiments done in various high-dimensional scenarios even when

the number of variables is greater than the number of observations

(p>n). Results therein reveal the same trend, namely, the overall

strong performance of FUSENET in recovering true networks from

non-Gaussian data.

6.2 Functional content of genomic networks
An important challenge in cancer systems biology is to uncover com-

plex dependencies between genes implicated in cancer. Since our

knowledge about genome-scale gene networks is incomplete and

only a few functional modules are known for higher organisms

(Rolland et al., 2014), our aim is to quantify associations between

Fig. 2. Application of gene network inference algorithms to multinomial-

distributed simulated data. Simulation studies on four network types were

performed: random (see Supplementary Fig. S2), hub, scale-free and small

world. For each graph type, we generated n¼300 observations at a high

signal-to-noise ratio (SNR) with P¼50 variables (nodes) taking values from

an alphabet of size m¼3. Boxplots are shown for multinomial FUSENET (pro-

posed here) and the multinomial graphical model (Mult-GM) (Jalali et al.,

2011)
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the inferred gene networks and known cellular functions and pheno-

types, and to assess the significance of these associations.

6.2.1 Comparison of FUSENET variants with existing methods

To characterize how functionally informative the inferred networks

are, we employ four structural definitions of network communities

(Fig. 4 and Supplementary Figs S6 and S7). These represent four pos-

sible notions of association between a given GO term and the

inferred network (Yang and Leskovec, 2012). The triangle participa-

tion ratio quantifies how well genes that are members of a given GO

term are linked to each other in the inferred network. The cut ratio

captures the abundance of external connectivity, i.e. edges between

genes of a GO term and the rest of the network, whereas conduc-

tance and flake-ODF consider both internal and external network

connectivity. Through these four measures we are able to estimate

the overall concordance of inferred gene networks and known func-

tional annotation of genes. For these reasons, networks that score

higher on many measures should be considered more informative

across a wider spectrum of cellular functions.

Figure 4 shows that gene network inferred by FUSENET through

fusion of breast cancer RNA-sequencing data and somatic mutation

data is more concordant with functional annotation data in the GO

than are networks inferred by FUSENET from either RNA-sequencing

or somatic mutation data alone. We note that we used Poisson

FUSENET to infer network from RNA-sequencing data, multinomial

FUSENET to infer network from somatic mutation data and collective

FUSENET for joint network inference from RNA-sequencing and

mutation data. These results demonstrate that combining data

through the use of latent factors can perform better than independ-

ent modeling of each dataset alone.

For each of the four community scoring measures in Figure 4, we

compared score distributions of GO terms across three networks

inferred by FUSENET using Kolmogorov-Smirnov tests. We concluded

that the network inferred by FUSENET through fusion of RNA-

sequencing and mutation data associates with GO significantly

more strongly than the other two networks (P value<1�10�5 on

all four measures from Fig. 4). This experiment shows how cancer

genomic data provide different levels of information about cellular

machinery, highlighting that it is possible to infer a network that

better explains the mechanisms of cancer by combining multiple

datasets in a principled statistical way.

We further compared FUSENET to existing network inference

methods on cancer data. The comparison was made only with

LPGM, as this was the best performing method in our study on

simulated data (Section 6.1) and in the cancer-data study of Allen

and Liu (2013). Supplementary Figure S6 shows the functional con-

tent of the networks inferred from RNA-sequencing data by either

Poisson FUSENET or LPGM. On a related note, Supplementary Figure S7

Fig. 3. Application of gene network inference algorithms to Poisson-distributed simulated data. Simulation studies on four network types were performed: ran-

dom (see Supplementary Fig. S4), hub, scale-free and small world. These graph structures appear in many real biological networks. For each graph type, we gen-

erated data with n¼ 200 observations with P¼100 variables (nodes) at a low (first row) and high (second row) signal-to-noise ratio (SNR). Receiver operating

curves and boxplots are shown for Poisson FUSENET (proposed here), the Local Poisson Graphical Model (LPGM) (Allen and Liu, 2013), the Graphical Lasso

(GLASSO) (Friedman et al., 2007), the GLASSO on log-transformed data (Log-GLASSO) (e.g. cf. Gallopin et al., 2013) and the GLASSO on data transformed

through nonparanormal Gaussian copula (NPN-Copula) (Liu et al., 2009)

Fig. 4. The strength of association between gene sets from the Gene

Ontology (GO) and networks inferred with FUSENET. Inferred networks were

overlaid with GO terms and subnetworks induced by each GO term were

assessed for how well they corresponded to network communities. Four dif-

ferent scoring functions were used to quantify the presence of different struc-

tural notions of communities (Supplementary Section S4) that can appear in

biological networks: flake-over-median-degree (flake-ODF), cut ratio, triangle

participation ratio (TPR) and conductance. Considering breast cancer RNA-

sequencing (RNA-seq) and somatic mutation data (Mut), these boxplots show

the gains that fusion of data from different distributions (Mut & RNA-seq) can

offer over network inference from any dataset alone, either RNA-seq or Mut.

Poisson FUSENET was used with RNA-sequencing data, multinomial FUSENET

with somatic mutation data and fully-specified FUSENET for joint consideration

of RNA-sequencing and mutation data
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shows enrichment of the networks inferred from somatic mutation

data by either multinomial FUSENET or Mult-GM. Notice that LPGM

and Mult-GM were designed for data that are approximately

Poisson distributed, such as measurements from RNA-sequencing,

and multinomially distributed, such as various types of gene varia-

tions, respectively. These results demonstrate that networks inferred

by FUSENET can better capture known GO annotations than networks

obtained by methods such as LPGM and Mult-GM, whose predic-

tion models do not have factorized representation. These observa-

tions are consistent across four complementary structural definitions

of GO terms, where every GO term is viewed as a network commun-

ity defined by its member genes.

6.2.2 Networks via breast cancer data

We employ SANTA (Cornish and Markowetz, 2014) to quantify the

functional content of gene networks. SANTA extends the concept of

gene set enrichment analysis to networks. We observed that GO

terms indeed cluster more strongly on Poisson FUSENET’s

networks than on networks inferred by GLASSO and Log-GLASSO

(P value<1�10�6, RNA-seq network), NPN-Copula

(P value<1�10�5, RNA-seq network) and LPGM (P value<

1�10�4, RNA-seq network). These results suggest that network

edges inferred by FUSENET might represent more accurate indication

of shared cellular functions than edges inferred by other considered

methods. This effect was independent of the GO term size and was

strongest for specific cellular functions such as ‘centrosome cycle’

(P value<1�10�9), ‘cellular response to DNA damage stimulus’

(P value<1�10�9), ‘apoptotic process’ (P value<1�10�9) and

‘regulation of cytokinesis’ (P value<1�10�8). We observed similar

results when inferring networks from somatic mutation data. Gene

network inferred by multinomial FUSENET was functionally richer

than network inferred by Mult-GM. Here, the functional content of

a network was quantified with SANTA as proportion of evaluated

GO terms whose association strength with the network had

P value<1�10�5.

Interactions that are captured by fusing both cancer related data-

sets recovered many gene–gene associations that have been previ-

ously linked to increased breast cancer predisposition and

metastasis. For example, FUSENET revealed a hypothesized transcrip-

tional regulatory GATA3 module (Wang et al., 2014) consisting of

fully connected GATA3, PTCH1, NFIB and PPARA. GATA3 is an

important transcriptional regulator in breast cancer (Theodorou

et al., 2013), and low expression levels of GATA3 are associated

with a poor prognosis (Albergaria et al., 2009). It has been shown

by Wang et al. (2014) that PTCH1, PPARA and NFIB exhibit epis-

tatic interactions with GATA3, have negatively correlated expres-

sion levels with GATA3 and that GATA3 binds to gene regions near

NFIB, PTCH1 and PPARA in breast epithelial tumor cell line.

Other interactions identified in our network include ATM and

BRCA1, ATM and BRCA2, and CHEK2 and BRCA2, which are

known gene-gene interactions whose mutations affect breast cancer

susceptibility (Turnbull et al., 2012).

Another transcriptional module that was found by FUSENET con-

sists of FLI1, JAK2 and CCND2. This module has been only

recently associated with breast cancer patient outcome (Wang et al.,

2014). Interestingly, FLI1 module has been captured by FUSENET

when fusing RNA-sequencing and mutation data but has been

missed when using FUSENET with any of the two cancer datasets in

isolation, as well as by any other inference algorithm considered in

this study. One possible explanation for the latter result might be

observations made by Wang et al. (2014). Wang et al. examined

The Cancer Genome Atlas breast cancer patient survival data and

found that low expression or mutation in one or more members of

the FLI1 module is associated with reduced overall survival time in

all patients. The illustrative example of FLI1 module highlights an

advantage of FUSENET over methods considering a single dataset dur-

ing network inference.

7 Conclusion

FUSENET is an approach for automatic inference of gene networks

from data arising from potentially many nonidentical distributions.

It is based on the theory of Markov networks, where the inferred

network edges denote a type of direct dependence that is stronger

than merely correlated measurements. An appealing property of

FUSENET is its ability to estimate network edges by fusing potentially

many datasets. In the case studies, FUSENET’s models outperform sev-

eral state-of-the-art undirected graphical models. We show that

FUSENET’s high performance is attributed to the ability to model non-

Gaussian distributions and fusion of data through sharing of latent

representations. Our work here has broadened the class of off-the-

shelf network inference algorithms for simultaneously considering a

wide range of parametric distributions and has combined Markov

network inference with data fusion.
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