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Abstract
Summary: Heterogeneous knowledge graphs (KGs) have enabled the modeling of complex systems, from genetic interaction graphs and
protein-protein interaction networks to networks representing drugs, diseases, proteins, and side effects. Analytical methods for KGs rely on
quantifying similarities between entities, such as nodes, in the graph. However, such methods must consider the diversity of node and edge
types contained within the KG via, for example, defined sequences of entity types known as meta-paths. We present metapaths, the first R
software package to implement meta-paths and perform meta-path-based similarity search in heterogeneous KGs. The metapaths package
offers various built-in similarity metrics for node pair comparison by querying KGs represented as either edge or adjacency lists, as well as auxil-
iary aggregation methods to measure set-level relationships. Indeed, evaluation of these methods on an open-source biomedical KG recovered
meaningful drug and disease-associated relationships, including those in Alzheimer’s disease. The metapaths framework facilitates the scalable
and flexible modeling of network similarities in KGs with applications across KG learning.

Availability and implementation: The metapaths R package is available via GitHub at https://github.com/ayushnoori/metapaths and is re-
leased under MPL 2.0 (Zenodo DOI: 10.5281/zenodo.7047209). Package documentation and usage examples are available at https://www.ayush
noori.com/metapaths.

1 Introduction

Relational data across biological systems—such as the cellular
interactome, single cell similarity graphs, gene co-expression
networks, and patient interaction networks—can be repre-
sented by graph architectures. A simple graph G ¼ V; Eð Þ is
defined by a set of nodes V and edges E of a single type.
However, real-world networks are often comprised of diverse
data modalities; thus, they are poorly modeled by homoge-
nously typed networks. For instance, a homogeneous network
is insufficient for modeling the complexities of drug mecha-
nisms and indications. A graph with many types of nodes—
such as drugs, diseases, and proteins—that are connected by
different relation types—such as “is indicated for,” “is thera-
peutic target of,” or “physically interacts with”—is necessary.
Interconnected objects from various data sources that are rep-
resented as a single multigraph with heterogeneous
knowledge-informed node and edge types are known as
knowledge graphs (KGs) (Hogan et al. 2022). Formally, if A
is the set of node types with mapping function u : V ! A, the
edges E of a KG can be represented as a set of tuples u; vð Þ,
where nodes u; v 2 V are connected by an edge, and each
belongs to a specific node type u uð Þ and u vð Þ 2 A.

Relationships between entities in KGs are modeled by net-
work similarities quantified using sequences of nodes—or
linkage paths—in the network. However, meaningful similar-
ity search methods on KGs must account for the diverse types

in these walks. For example, consider a KG of the biological
interactome with the following node types: A ¼ fdisease (D),
drug (R), protein (P), protein function (F), side effect (S)g.
Classic random walk-based similarity metrics would not dif-
ferentiate between the following paths of length three: RDP
(i.e. drug, disease, protein) and RSP (i.e. drug, side effect, pro-
tein), even though the former considers disease-mediated asso-
ciations while the latter considers mechanisms of side effects
(Fig. 1).

To distinguish between such paths of identical lengths, we
leverage meta-paths, a general graph-theoretic approach for
flexible similarity search in large networks. Meta-paths are
sequences of node types which define a walk from an origin
node to a destination node (Sun et al. 2011b). Note that edge
types may also be specified in the walk; here, we do not con-
sider such meta-paths. Fundamentally, the similarity between
an origin node and a destination node is measured by the
number of meta-paths that exist between them. While meta-
paths are frequently used in biomedical network analysis (e.g.
Fu et al. 2016; Himmelstein et al. 2017; Zhang et al. 2020),
there is currently no package available in R that offers a wide
range of support for meta-paths.

Informative meta-paths in KGs are often engineered by
hand based on domain knowledge or expertise (e.g. the
meta-path DRS is clinically meaningful, since it describes
associations between a disease and the side effects of its
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treatments, whereas the meta-path PSF would not be).
Alternatively, optimal meta-paths can be discovered in an
unsupervised fashion by feature selection metrics [e.g. maxi-
mal spanning tree (Wang et al. 2018), Laplacian score, or
ranking based on meta-path frequency or uniqueness (Zhu
et al. 2018)] after enumerating meta-paths from a sampled
subset of nodes VM � V, multi-hop reasoning with reinforce-
ment learning (Wan et al. 2020), or graph attention applied
on vector embedded meta-path instance sets (Li et al. 2021),
among other approaches.

Once informative meta-paths for a given KG have been identi-
fied, these meta-paths define the semantics of the relationships
between nodes in the KG, thereby enabling heterogeneous graph
convolutional (Zhang et al. 2019) and graph attention (Wang
et al. 2019) networks for downstream machine learning analyses
such as link prediction (Himmelstein et al. 2017), node classifi-
cation (Wang et al. 2021), and subgraph prediction (Alsentzer
et al. 2020); additional downstream applications are discussed
in the Supplementary data. Although various algorithms exist to
model meta-path-based node similarities in a KG, a unifying
framework is lacking to compute and compare these similarity
scores. Here, we introduce metapaths which, to the best of
our knowledge, is the first software package in the R ecosystem
to implement meta-paths. The metapaths package enables the
computation of meta-path-based similarity search in heteroge-
neous KGs.

2 Implementation and evaluation

The primitives of the metapaths package identify the neigh-
bors of a specified node with a given type by querying either
an edge list or, for efficiency, an adjacency list precomputed
from an edge list. The meta-path traversal function accepts an
origin node, a destination node, and a specified meta-path;
then, via the neighbor identification functions, it starts at the
origin node and recursively expounds the sequence of node
types until the destination node is reached. The resulting paths
are used to compute meta-path-based similarity scores using
various available similarity metrics, including the natively
supported Path Count, Normalized Path Count, Degree-
Weighted Path Count, and PathSim (Supplementary data)
(Sun et al. 2011a,b; Himmelstein and Baranzini 2015). Users
may also use the framework provided by the metapaths
package to define and test custom similarity metrics of their

choosing or evaluate the similarity between two sets of nodes
via auxiliary aggregation functions.

To validate the metapaths package, we demonstrate that
the package similarity functions report higher connectivity in
the ogbl-biokg (BioKG) biomedical KG (Hu et al. 2020)
between Alzheimer’s disease (AD)-related drugs (e.g. donepe-
zil, memantine, and galantamine) and AD-related pathways
(Supplementary Table S1); this increased connectivity also
holds at both the node pair and node set level (Fig. 1 and
Supplementary data). Finally, by testing metapaths func-
tions on randomly sampled BioKG subgraphs of increasing
size, we demonstrate that the performance of the metapaths
package scales well with input size (Supplementary Fig. S1).

3 Conclusion

The metapaths R software package facilitates the scalable
and flexible modeling of network similarities in KGs.
Relationships between individual nodes in a KG can be quan-
tified using built-in or user-defined similarity metrics; such
metrics can also be applied to model set-level relationships via
aggregation methods. Evaluation on AD-related pathways in
BioKG recovers meaningful drug and disease-associated rela-
tionships as quantified by high similarity scores. The applica-
tions of such similarity search in KGs extend across KG
learning.

Supplementary data

Supplementary data is available at Bioinformatics online.

Code and data availability

The metapaths R package is available via GitHub at https://
github.com/ayushnoori/metapaths and is released under MPL
2.0 (Zenodo DOI: 10.5281/zenodo.7047209). Package docu-
mentation and usage examples are available at https://www.
ayushnoori.com/metapaths. The ogbl-biokg and ogbn-
arxiv datasets are publicly available from the Open Graph
Benchmark at https://ogb.stanford.edu.

Conflict of Interest

None declared.

(a)

(b)

(c)

(d)

Figure 1. Evaluation of the metapaths package for similarity search in the ogbl-biokg biomedical KG. (a) We query using the RDPF (i.e. drug–disease–

protein–function) meta-path. (b) The function call used to calculate meta-path-based similarity scores is shown. (c) The meta-path traversal function

identifies three paths following the specified meta-path that connect donepezil—a drug used to treat Alzheimer’s disease (AD)—with the regulation of

amyloid fibril formation pathway, which is implicated in AD (Supplementary data). (d) The computed similarity scores using Path Count, Normalized Path

Count, and Degree-Weighted Path Count metrics are shown
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